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List of acronymous 

ACE2 – angiotensin-converting enzyme 2 

Ag – antigen  

Ab-Ag – antibody-antigen  

CG – coarse-grain  

CDRs – complementarity-determining regions  

CpH – constant-pH  

CPT – convalescent plasma therapy  

FPTS – Fast proton titration scheme  

FDA – Food and Drug Administration 

FF – force field  

FORTE – Fast cOarse-grained pRotein-proTein modEl 

L – light chain  

H – heavy chain  

MD – Molecular Dynamics 

mAb – monoclonal antibody  

MC – Monte Carlo  

PMF – Potentials of Mean Force  

PDF – probability distribution functions  

RBD – receptor-binding domain  

RAbD – RosettaAntibodyDesign  

REU – ROSETTA Energy Units 

RMSD – Root-mean-square deviation 

SARS-CoV-2 – severe acute respiratory syndrome coronavirus 2  

SIRAH – Southamerican Initiative for a Rapid and Accurate Hamiltonian 

S –spike 

TAS – theoretical alanine scanning 

US – Umbrella sampling 

VOC – present and past variants of concern 

VOI – present and past variants of interest 

wt – wild-type 
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S1) Theoretical methods – Supplementary information 

Following a biophysical approach, classical MD and MC methods are techniques that have a 

long history of successful applications in many scientific problems as standalone theoretical 

studies or in combination with experimental techniques 1–8. Other bioinformatics algorithms 

are completing theoretical resources and helping to address challenging problems in the 

biomolecular world 9–12. 

 

Some previous theoretical studies with CR3022  

As mentioned in the introduction, CR3022 has been suggested as a promising therapeutic 

option to neutralize SARS-CoV-2 13–16, and is often explored in theoretical studies 17–20. In a 

pioneer computational study at the very beginning of the pandemic17, using constant-pH MC 

simulations, Giron, Laaksonen, and Barroso da Silva showed that CR3022 - known to bind to 

SARS-CoV-1 RBD - could also bind to SARS-CoV-2 RBD. They also mapped the epitopes 

and identified the importance of electrostatic interactions for the corresponding Ab-Ag 

interface 17. Following different routes, Ding et al. 18 have proposed an efficient and reliable 

computational screening method based on “Molecular Mechanics Poisson-Boltzmann surface 

area” (MM/PBSA) to estimate binding free energy between SARS-CoV-2 RBD and ACE2 

together with CR3022 and CB6 in good agreement with reported experimental values. Their 

scheme identifies the key residues that increase hydrophobicity and indicates that changing the 

sign of charged residues from positive to negative can increase the binding affinity. In 

comparison with standard MM/PBSA, their method is more accurate due to the introduction of 

electrostatic energy in the scheme. 

Lagoumintzis et al. 21 used in silico methods in their studies of the recent hypothesis that SARS-

CoV-2 would interact with nicotinic acetylcholine receptors (nAChRs) and disrupt the 

regulation of the nicotinic cholinergic system (NCS) and the cholinergic anti-inflammatory 

pathway. They used ROSETTA and multi-template homology modeling to study a sequence 

from a snake venom toxin to predict the structure of the extracellular domains of nAChRs 

(“toxin binding site”). Using the “High Ambiguity Driven protein-protein DOCKing” 

(HADDOCK) approach 22, they found a protective role of nicotine and other cholinergic 

agonists and observed that CR3022 and other similar mAbs show an increased affinity for 

SARS-CoV-2 Spike glycoprotein. To study the molecular mechanisms in SARS-CoV-2 S 

protein binding with several mAbs, Verkhivker and Di Paola 23 performed all-atom and CG 

simulations with mutational sensitivity mapping, using the BeAtMuSiC approach and 

perturbation response scanning profiling of SARS-CoV-2 receptor-binding domain complexed 

with CR3022 and CB6 antibodies, complementing it with a network modeling analysis of the 

residue interactions. Their results provide insight into allosteric regulatory mechanisms of 

SARS-CoV-2 S proteins, where the mAbs are modulating the signal communication. This 

provides a strategy to target specific regions of allosteric interactions therapeutically. Recently, 

Riahi et al. 24 presented a combined physics-based and machine learned-based computational 

mAb engineering platform to improve the binding affinity to SARS-CoV-2. They minimized 

(protonated, if needed) the Protein Data Bank (PDB) structures 25 using the “Molecular 
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Operating Environment” (MOE) program 26, and continued with ROSETTA 27,28 and FastRelax 

ROSETTA 29 to later apply machine learning. MOE was used for residue scanning in 

combination with two machine learning models: TopNETTree (for local geometry of protein 

complexes) and SAAMBE3D (for a variety of chemical, physical as well as sequential, and 

mutation properties). CR3022 and two other mAbs (m396 and 80R) were used as templates for 

their diversified epitopes, complexed with SARS-CoV-2 RBD. Their results suggest 

combining these three mAbs for higher neutralization activity. Nguyen et al. 19 confirmed that 

electrostatic interactions explain the higher binding affinity of CR3022 for SARS-CoV-2 

RBDwt than the 4A8 mAb in their all-atom and CG MD simulations (including steered MD). 

They used the Jarzynski equality to estimate the non-equilibrium binding free energy. They 

analyzed H-bonds and non-bonded contacts and used Debye-Hückel theory to model the 

electrostatic interactions for both RBD and N-terminal domain binding sites containing charged 

residues. Their results indicate that effective mAb candidates should contain many charged 

amino acids in the regions binding to spike protein. As the important residues of the spike 

protein involved in the binding are positively charged (Lys and Arg), the mAbs should 

correspondingly contain negatively charged residues (Asp and Glu) as anticipated before 17. 

Martí et al. 30 have applied classical MD simulations and accelerated MD (aMD) for enhanced 

sampling. They have included the complexes between the RBD of SARS-CoV-2 spike (S) 

glycoprotein and CR3022 or S309 antibodies and the ACE2 receptor. Using MD simulations, 

they calculated the potential of mean force to obtain the free energy profiles for the complexes 

with the RBD. With their protocol, they could explore a large part of the conformational space 

accessible to RBD-ACE2/CR3022/S309 complexes. They found the affinity in protein-protein 

complexes to follow the decreasing order: S/CR3022 > S/309 > S/ACE2. Shariatifar and 

Farasat 20 have also performed MD simulations for SARS-CoV-2 RBD complexed with 

CR3022 and its modifications and calculated the free binding energies. They used the 

FastContact software to select mutations favorable for the wild type to produce two variants of 

CR3022 based on their amino acid binding conformations, showing a clear affinity 

enhancement compared to the wild type. 

 

Structural-bioinformatics-based RAbD approach 

The RAbD protocol consists of alternating outer and inner Monte Carlo design cycles. Each 

outer cycle consists of randomly choosing CDRs (L1, L2, L3, H1, H2, H3) from clusters in the 

RAbD database and then grafting that CDR’s structure onto the antibody framework in place 

of the existing CDRs (GraftDesign). The program then performs N rounds of the inner cycle, 

consisting of sequence design (SeqDesign) followed by energy minimization. Each inner cycle 

introduces mutations and structurally optimizes the backbone and repacks side chains of the 

CDR chosen in the outer cycle to optimize interactions of the CDR with the antigen and other 

CDRs. Through all the steps the Ab-Ag complex is modeled at the atomistic level. 

 

Three scenarios were used for antibody design: (A) all CDRs were modeled; (B) L1 was 

preserved from the original CR3022, the rest were subjected to full design. L1 in the original 

fragment of CR3022 mAb (for the sake of simplicity, we shall refer to the fragment of CR3022 

simply as CR3022 from now on) is an extended loop that makes a large surface area contact 
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with the RBDwt antigen (wildtype/Wuhan sequence) which stabilizes the Ab-Ag interaction. 

So, L1 was subjected only to SeqDesign, not to GraftDesign as the latter one also modifies the 

length of the CDR; (C) L1 and H3 were taken from CR3022, the rest being subjected to full 

design. L1 was modeled as in step (B). Among the 6 CDRs, H3 - located in between the H and 

L chains - is the only one not canonical, i.e., it does not adopt classifiable conformations 

(clusters of conformations). When visually analyzing the RAbD-generated conformations, it 

became obvious that some candidates with both very high scores and Ab-Ag interface surface 

areas were not realistic (Figure S1). For example, large Ab-Ag interface surface areas 

encountered in some cases were due to very long H3 CDRs. However, care should be taken 

when predicting H3 CDR, especially for long ones. Thus, H3 was not subjected to GraftDesign 

or SeqDesign in this scenario.  

 

 

 

 

 

Figure S1. Example of a candidate mAb considered a false positive. Native CR3022/RBD complex 

(left) and the RAbD predicted pose, code 16-17_0352, of mAb-RBD complex (right) have been 

represented with the L1 and H3 CDRs highlighted. It can be seen how the designed long H3 (mauve) 

CDR actually prevents native L1 (blue) CDR from interacting with the antigen. The contact area 

between the 16-17_0352 mAb and RBD is higher (2339 Å2) than in the native complex (2060 Å2). 

However, H3 modeling should be regarded with care, especially for long H3 CDRs, for which the 

predictions have low reliability. 
 

 

A total number of 235,800 complexes were designed using the RAbD approach. Choosing the 

best candidates for the subsequent evaluations from this very large number of antibody-antigen 

complexes is to a large extent arbitrary. However, the selection was based on two criteria that 

were chosen to include an interface interaction energy and contact area better or at least 

comparable with the ones of the native CR3022 - RBD complex: I) the candidate must have an 
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Ab-Ag interface score below –150 REU (ROSETTA Energy Units) (the native interface score 

is -65 REU), and II) an Ab-Ag interface surface area larger than 1900 Å2 (the native complex 

interface surface area is 2060 Å2). 

 

CG molecular dynamics (MD) with an enhanced sampling approach for free energy 

calculations 

During the US procedure, the geometry of the mAb was restrained by applying weak harmonic 

position restraints (20 kJ mol−1nm−2 force constant) on the CG beads corresponding to the 

protein backbone. The distance between the center of mass (COM) of mAb and the RBD was 

considered as the reaction coordinate. Cylindrical positional restraints (as defined in the 

GROMACS 2019 suite 31,32). The simulation time was enough for convergence (see Figure 

S3). 

 

A fast constant-pH coarse-grained (CG) simulation approach for free energy calculations 

on a large scale 

This approach is aimed to capture only the main features of the complexation phenomena with 

a clear emphasis on the electrostatic interactions. Different studies have highlighted the 

importance of these interactions for the host-pathogen and antigen-specific antibody interfaces 
17,19,33–39. Successful applications of this simplified model to several biomolecular systems have 

been previously reported in the literature including viruses proteins and the SARS-CoV-2 

RBD-mAb interactions 17,40–45. In the FORTE model, charged and neutral spherical beads of 

different radii mimicking titratable and non-titratable amino acids, respectively, interact via 

Coulombic and van der Waals terms 40,41. Protein coordinates given by the structural-

bioinformatics-based approach were directly converted into this amino acid model. Atoms not 

belonging to the protein and the solvent were removed from the input structures.  

 

Early ideas of such a model are rooted in the works of Marcus 46 and Jönsson and co-authors 
47–49. The reduction in the degrees of freedom together with the description of the proteins at 

the mesoscopic level in a continuum solvent model is a clear advantage from a computational 

point of view. For instance, the smaller amino acid (glycine) is modeled by four sites in the 

SIRAH ff while a single bead is used in FORTE. The reduction is even more significant for 

larger residues such as aspartic acid where the drop is from 11 to 1. This can result in a decrease 

in the computing time by a factor of 112 making it possible to apply it in a large-scale scenario. 

On the other hand, the main drawbacks are the assumption of a rigid body description to model 

the macromolecules and the ambiguity involved in the choices of the van der Waals 

contributions 17,40. Yet, to form the RBD-mAb complex, the two molecules have to come close 

before conformational changes happening at short-range separation distances can be important 

to add additional attraction and/or stabilize the formed complex 50. These limitations have not 

been critical in previously studied cases. The present outcome also contributes to this direction 

as discussed in the results section below. More details of this electrostatic protein-protein 

model are given elsewhere 17,40,41. 
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The relatively lower computation costs in comparison with other theoretical approaches allow 

the repetition of the calculations at different physical-chemical conditions (e.g., different 

solution pHs) and macromolecular systems (e.g., RBDs with several different mutations) using 

high-performance computers. This is a key aspect to investigate the binding affinities for a set 

of several RBDs (with all possible mutations of interest), and different binder candidates and 

perform further optimization of the best ones. Many runs are needed which are prohibitive with 

more elaborated molecular models. 

 

 

Figure S2. Scheme for the procedure used for the theoretical electrostatic mAb optimization using TAS. 

A pair RBD-mAb is submitted to a constant-pH (CpH) complexation study using FORTE where the 

two macromolecules can titrate, translate and rotate in all directions. After each simulation run, the free 

energy of interaction is saved for comparison at the end of the full cycle. A substitution of an amino 

acid by ALA is introduced in the wt mAb. A new complexation run is carried out with this new binder 

(i.e., the wild type with a new single ALA mutation). The process is systematically repeated for all 

residues. Only one residue is replaced by ALA per time.  This procedure corresponds to step 8 in Figure 

1 (see the main text). 

 

 

We included in our evaluation different mutations present on RBD for different past and 

present variants of concern (VOC): (a) N501Y (Alpha/B.1.1.7), (b) K417N, E484K and 

N501Y (Beta/B.1.351), (c) K417T, E484K and N501Y (Gamma/P.1),  (d) L452R, T478K and 

E484Q (Delta/B.1.617.2), (e) G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, 

T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H (Omicron-BA.1/B.1.1.529), and 

variants of interests (VOI) 51: (a) L452R (Epsilon/B.1.427/B.1.429), (b) E484K (Eta/B.1.525), 

(c) E484K and N501Y (Iota/B.1.526 NY), (d) L452R and E484Q (Kappa/B.1.617.1), and (e) 
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Y453F (mink) 52–56. The input structures with the mutations in the SARS-CoV-2 RBDs were 

prepared with “UCSF Chimera 1.15” 57 by the simple replacement of the amino acid followed 

by a minimization with default parameters and considering the H-bonds 57. Structures obtained 

by this simple procedure seem to be equivalent to other available ones 17. For instance, a 

comparison between a recent RBD structure predicted by AlphaFold2 for the Omicron variant 
55 with the one generated using “UCSF Chimera 1.15” gives a root-mean-square difference of 

0.5 Å. This suggests that the mutations seen so far do not have a significant effect on the overall 

folded structure of the RBD. 

 

In silico alanine scanning was used to determine the contribution of Ab-specific amino acids 

to the Ab-Ag binding. In this process, an amino acid from a given binder was replaced by ALA, 

and the complexation simulation was repeated for this new possible binder. This mutation was 

done directly at the mesoscopic level of the proteins without the need to pre-generate its 

coordinates by the above-described procedures. It is assumed that the tested point mutations 

will have a minor effect on the overall folded structure of the mAb. The minima values of βw(r) 

for each new system (RBDwt interacting with the mAbs classified as Pbest or Pbest-1 carrying the 

ALA mutation) are recorded for comparison after all possible single replacements were fully 

explored one by one. This theoretical lead optimization protocol is schematically illustrated in 

Figure S2. 

 

A three-cycle process was followed in this electrostatic optimization pipeline for mAb 

engineering with higher affinity. After all possible ALA substitutions were tested one per time, 

the best single mutation (i.e., the one with higher binding affinity) obtained from this first cycle 

was incorporated into the binder resulting in a binder’. This new protein binder’ contains a 

single ALA mutation in a specific position that resulted in the higher RBDwt affinity among all 

tested possibilities. The process was restarted with this new macromolecule (i.e., binder’) being 

subjected to another TAS loop. After this second loop, the new binder (binder’’) has a new 

amino acid substitution in its sequence together with the previous one already incorporated by 

the ALA single mutation in the first cycle (i.e., at this point, the binder’’ has two ALA 

replacements [A-A]). The third cycle of TAS was also done using the binder’’ with the double 

ALA mutation to explore the effect of an additional ALA replacement in its sequence (A-A-

A). Besides TAS, equivalent tests were also done with the substitution of any residue by GLU 

in a “theoretical glutamic acid scanning”. This acid residue was chosen based on a previous 

work where we could observe some dependency on an increase in the binding affinities with a 

decrease in the total net charges of the binders 17. This process with three cycles was repeated 

for GLU as done with ALA. All these replacements by either ALA or GLU were combined in 

different ways (A-A-A, A-A-E, A-E-E, and E-E-E). Each possible combination was evaluated 

to guide the selection of the systems that improved the binding affinity for the RBDwt. Only up 

to three simultaneous substitutions in the wildtype mAb were tested to avoid a complete 

mischaracterization of the original template protein (for both mAbs candidates classified as 

Pbest or Pbest-1). This could result in a complete unfolding of the macromolecule and/or an 

increase in the chances for Ab-Ag aggregation. Moreover, at this point, the number of different 

simulated systems was too large, and the computational costs started to be prohibitive even for 

a relatively cheaper CG model. Finally, the most promising mAb (identified as Pbest in our 
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classification) designed with these three engineering cycles, i.e., the one with the higher RBDwt 

binding affinity, was tested with the other RBDs from the main VOCs and VOIs. Additionally, 

titration simulations employing the FPTS58 were used to provide the main physical-chemical 

properties of the individual macromolecules (all from the wild-type to P10 and each new 

macromolecule produced by the binding optimization technique with a single, double and triple 

mutation). In these runs, the total net charge numbers of these binders were computed in the 

absence of the RBD, i.e., the FTPS was employed for a single binder in an electrolyte solution. 

Such a large set of net charges data was used to further investigate the possible correlations 

between the binding affinities and the mAb´s net charge. This was useful to complement the 

previous initial analysis performed with a quite smaller number of pairs of RBD-binders in 

comparison with this larger data set 17.  
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Table S1. mAb candidates that meet the selection criteria described in the “Theoretical methods” 

section of the paper’s main body (ΔG < - 150 REU, SASA > 1900 Å2). Red is for the (A) approach; 

blue for (B) and black for (C) approaches as described in the main text. 

 
ΔG 
(REU) 

SASAh 
(Å2) 

SASA 
(Å2) 

SASAp 
(Å2) nHB nres Candidate code  

1 -362 1078 2009 932 9 80 INTERFACE_rescored_01.pose.6w41-FabOut.10_0119_0001 P01 

2 -357 1022 1979 957 8 78 INTERFACE_rescored_01.pose.6w41-FabOut.05_0483_0001 P02 

3 -298 1141 1955 814 3 86 INTERFACE_rescored_02.pose.6w41-FabOut.05_0427_0001 P03 

4 -282 1058 2029 971 10 94 INTERFACE_rescored_03.pose.6w41-FabOut.24_0219_0001 P04 

5 -272 1166 1941 775 7 80 INTERFACE_rescored_04.pose.6w41-FabOut.05_0291_0001 P05 

6 -251 1087 1995 908 6 83 INTERFACE_rescored_03.pose.6w41-FabOut.03_0220_0001 P06 

7 -248 1190 2065 875 6 93 INTERFACE_rescored_08.pose.6w41-FabOut.08_0886_0001 P07 

8 -242 1155 1994 839 7 81 INTERFACE_rescored_10.pose.6w41-FabOut.21_00364_0001 P08 

9 -230 1110 1966 856 8 81 INTERFACE_rescored_18.pose.6w41-FabOut.06_00190_0001 P09 

10 -227 1092 1932 840 8 81 INTERFACE_rescored_07.pose.6w41-FabOut.03_0550_0001 P10 

11 -226 1135 1919 785 5 82 INTERFACE_rescored_12.pose.6w41-FabOut.08_0558_0001  

12 -220 977 1916 939 9 86 INTERFACE_rescored_01.pose.6w41-FabOut.01_0110_0001  

13 -201 986 1928 942 8 81 INTERFACE_rescored_14.pose.6w41-FabOut.19_0918_0001  

14 -198 1048 1999 952 9 86 INTERFACE_rescored_11.pose.6w41-FabOut.03_0437_0001  

15 -186 1156 1951 795 5 83 INTERFACE_rescored_13.pose.6w41-FabOut.24_0566_0001  

16 -185 1100 2005 905 11 84 INTERFACE_rescored_11.pose.6w41-FabOut.20_0689_0001  

17 -184 1053 1968 915 7 80 INTERFACE_rescored_17.pose.6w41-FabOut.09_0149_0001  

18 -181 1102 1995 893 9 82 INTERFACE_rescored_19.pose.6w41-FabOut.02_0806_0001  

19 -178 1099 2082 982 9 85 INTERFACE_rescored_18.pose.6w41-FabOut.17_0043_0001  

20 -177 997 1954 957 11 78 INTERFACE_rescored_16.pose.6w41-FabOut.19_0451_0001  

21 -177 1016 1940 924 9 81 INTERFACE_rescored_13.pose.6w41-FabOut.15_0068_0001  

22 -176 1115 2052 937 10 85 INTERFACE_rescored_15.pose.6w41-FabOut.04_0788_0001  

23 -175 1013 1907 893 8 79 INTERFACE_rescored_10.pose.6w41-FabOut.08_0719_0001  

24 -175 1040 1930 890 9 85 INTERFACE_rescored_14.pose.6w41-FabOut.13_0109_0001  

25 -175 1184 2079 895 8 81 INTERFACE_rescored_20.pose.6w41-FabOut.02_0069_0001  

26 -175 1067 1937 870 7 83 INTERFACE_rescored_12.pose.6w41-FabOut.02_0701_0001  

27 -175 1133 2000 867 8 85 INTERFACE_rescored_17.pose.6w41-FabOut.08_0226_0001  

28 -174 1117 1911 794 8 82 INTERFACE_rescored_20.pose.6w41-FabOut.23_0912_0001  

29 -173 1042 1959 917 8 83 INTERFACE_rescored_06.pose.6w41-FabOut.14_0537_0001  

30 -172 1004 1989 984 10 81 INTERFACE_rescored_14.pose.6w41-FabOut.12_0003_0001  

31 -170 1072 1925 853 8 82 INTERFACE_rescored_05.pose.6w41-FabOut.18_0099_0001  

32 -170 959 1903 944 10 78 INTERFACE_rescored_18.pose.6w41-FabOut.16_0459_0001  

33 -165 1047 1968 921 11 83 INTERFACE_rescored_16.pose.6w41-FabOut.13_0289_0001  

34 -165 1105 2189 1084 8 80 INTERFACE_rescored_20.pose.6w41-FabOut.10_0302_0001  

35 -165 1119 1974 855 8 86 INTERFACE_rescored_19.pose.6w41-FabOut.20_0138_0001  

36 -164 1043 2237 1194 5 105 INTERFACE_rescored_11.pose.6w41-FabOut.20_0897_0001  

37 -161 1144 2157 1012 10 85 INTERFACE_rescored_18.pose.6w41-FabOut.19_0255_0001  

38 -159 1130 1932 801 8 84 INTERFACE_rescored_17.pose.6w41-FabOut.24_0100_0001  

39 -159 1054 2064 1010 12 85 INTERFACE_rescored_20.pose.6w41-FabOut.14_0421_0001  

40 -155 1028 1933 905 10 78 INTERFACE_rescored_07.pose.6w41-FabOut.19_0010_0001  

41 -151 1113 2002 889 6 82 INTERFACE_rescored_09.pose.6w41-FabOut.06_0158_0001  

SASA: solvent-accessible surface area of the mAb-RBD interface 
SASAh: hydrophobic SASA 
SASAp: polar SASA 
nHB: number of hydrogen bonds at the interface 
nres: number of residues participating in the interface 
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Figure S3. Root-mean-square deviation (RMSD) of the residues situated at the interaction interface 

between the antibodies (native and P01) and RBD during the atomistic molecular dynamics’ 

simulations. A cut-off of 3 Å was used to define the antibody-antigen interaction interface. 
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S2) Supplementary discussions on atomistic MD simulations results 

 

Mutations designed in the P01 candidate were located in all six CDRs on both the light (L) and 

heavy (H) chains. These mutations improved specificity and affinity by favoring the formation 

of supplementary salt bridges and hydrogen bonds as well as hydrophobic interactions. Protein-

protein interactions are complex processes that, at short distances, are dependent on the 

interface properties consisting of shape complementarity, size, short-range electrostatic 

interactions, and polar and hydrophobic interactions. Specificity in protein-protein binding is 

mainly given by electrostatic interactions 59 while non-specific and van der Waals interactions 

are the driving force for increased affinity 60. Thus, for each saved MD trajectory frame the 

number of salt bridges formed between charged residues of the mAb and RBDwt was calculated. 

A salt bridge was considered to exist between acidic/basic residues if the distance between the 

heavy atoms of the charged moieties (i.e., side-chain carboxyl and amino) was shorter than 3.5 

Å. Using the entire pool (full trajectory) of calculated salt-bridge numbers, a histogram was 

extracted concerning the number of salt bridges (i.e., the distribution of several frames with a 

particular number of salt bridges). The histogram was then normalized considering the area 

under the curve to be 1 to obtain the PDF of the mAb-RDBwt salt-bridges number. The number 

of non-polar contacts was obtained by counting, for each frame, the hydrophobic residue atom 

pairs (mAb-to-RBDwt) within a distance shorter than 3.5 Å. A similar procedure as above was 

applied to calculate the histogram and PDF of non-polar contacts. For the polar interaction 

histogram and PDF, we counted the number of hydrogen bonds between polar residues and 

polar to charged residues in the mAb-RBDwt pair. It can be seen from the plots in Figure 8 that 

the main contributions to the increased affinity of P01 to RBDwt, compared with the wild-type 

CR3022, come from an increased number of salt bridges and a higher hydrophobic contact area 

to RBDwt. The average number of salt bridges at the P01 interface to RBDwt is ~4 while for the 

wild-type CR3022 is ~3. The Lys35 residue, which replaced a Ser35 in the CR3022, is an 

important player in short-range electrostatic interactions at the P01-RBDwt interface as it is 

strategically placed on the tip of the L1 loop and has the optimum side-chain length to form a 

strong salt-bridge with the acidic Glu in position 516 on the RBDwt. The average number of 

hydrophobic contacts between P01 and RBDwt (~95) is significantly bigger than for the 

CR3022-RBDwt pair (~125), which will result in a higher binding affinity. Four mutations in 

P01, that replace original residues in CR3022 with more hydrophobic ones, contribute to this 

increased hydrophobic contact area: W40F, S110A, G111A, and I112L. They form a 

hydrophobic patch in the middle of the mAb–RBDwt interface that interacts with Lys378(4 

methylene groups)-Tyr380-Pro-384-Tyr369-Val382 on the RBDwt counterpart. 
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Figure S4. Molecular descriptors were used to analyze the contributions of different interaction types 

to RBDwt-P01 binding: normalized probability distribution functions (PDF) of Ab-Ag salt-bridges (A), 

non-polar contacts (B), and hydrogen bond (C) numbers. 
 

 

To get a detailed picture of the RBDwt-P01 interaction interface, we have analyzed the impact 

of the introduced mutations on the local molecular environment of the complex, which is 

discussed below for each CDR separately. 

 

L1 CDR design. The tyrosine residue in position 31 in L1 CDR was replaced by Asn in P01, 

which easily participates in hydrogen bonding with both Thr430 and Asp428 on RBDwt. The 

interaction of the native Tyr31 with Thr430 is impeded due to the longer side chain of tyrosine 

compared with asparagine. One key mutation present in L1 is S35K which replaces a neutral 

serine residue with a positively charged lysine. The original Ser35 residue is located on the tip 

of the L1 loop that penetrates deep into the Ab-Ag interface stabilizing the complex. Replacing 

the serine with lysine in this position provides a strong salt bridge formation between the long 

basic side chain of Lys35 and the acidic Glu in position 516 on the RBDwt, an interaction not 

present in the native CR3022. Replacement of Asn with Gln in position 37 provided further 

stabilization as the longer side chain of glutamine compared with asparagine allowed for a new 

interaction of Gln37 on the antibody with His519 on the RBDwt. 

L2 CDR design. The replacement of the neutral hydrophilic Ser72 with an acidic Glu residue 

in P01 introduces a strong salt bridge formation between Glu72 and the basic Lys386 on the 

RBDwt. 

L3 CDR design. Another mutation that increases binding specificity and affinity was introduced 

in the L3 loop replacing Tyr110 with Arg in P01. The substitution of neutral tyrosine with the 

positively charged arginine allows for a salt bridge formation with the neighboring Asp428 on 

RBDwt. The P01-designed L3 CDR has two supplementary residues Pro135 and His136 

compared with the native CR3022. This makes the L3 loop more extended towards RBDwt, 

increasing the Ab-Ag contact surface area. The L3 loop also contains the mutation of Thr112 

to Tyr112 which, due to the new conformation of L3, allows for hydrogen bond formation 

between Tyr112 and three partners on RBDwt: the side chain of Glu414, the backbone carbonyl 
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oxygen atom of Pro412, and the side chain of the acidic Asp427, interactions not present in the 

native CR3022. 

H1 CDR design. The Tyr residue in position 28 was replaced by Gly. This mutation seems 

advantageous because the smaller side chain of glycine and the particular conformation of the 

designed H1 loop allowed the side chain of Tyr369 from the RBDwt to become buried on the 

mAb surface. The hydroxyl moiety of Tyr369 can also participate in hydrogen bonding with 

the side chain -NH group of Trp39, a residue that represents another mutation in the Rosetta-

designed H1 loop: Y39W. Trp40 was replaced by a more hydrophobic Phe residue, whose side-

chain inserts between the cycle of Tyr380 and the long hydrocarbon chain of Lys387, thus 

hydrophobically stabilizing the Ab-Ag interaction. 

H3 CDR design. Serine in position 133 was mutated to a His residue which inserts in between 

G381 and Asp427 on the RBDwt, forming a hydrogen bond-mediated bridge between the -NH 

group of G381 and the backbone -C=O group of Asp427. 
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S3) Supplementary discussions on the total net charge of the mAbs and their binding 

affinities 

 

In summary, more negatively charged mAbs tend to have a higher RBD affinity34. Any 

negatively charged binder will have a stronger attraction for the newer variants as they 

become more positively charged (see ref. 61). P01’’’ has a net charge number of -4.7 at pH 7 

while the RBD from the wt and Omicron have +2.2 and +5.2, respectively. In Figure S5a, this 

charge-free energy correlation is explored for the WT and Px (x: 01 to 10). Although there is 

no perfect linear behavior, it can be seen that there is indeed this tendency. This is more 

clearly seen in Figure S5b, where the data from all single, double and triple mutations 

investigated by the theoretical ALA/GLU scanning is shown together. This data suggests that 

Coulombic forces are the main driving forces for the association of this antigen with the 

studied mAbs. There are now accumulative data on the importance of electrostatic 

interactions for this system 17,19,33,34. Certainly, other physical interactions can participate in 

this associative mechanism that is not solely but largely controlled by Coulombic forces. 

Therefore, the total net charge of the mAb is an important physical-chemical parameter to 

design better binders with higher affinity. This is what was next explored towards a more 

specific and efficient macromolecule capable of preventing viral infection.  

 

  

Figure S5. Correlation between the total net charge number of each fragment of mAb and the 

corresponding βwmin values for their complexations with SARS-CoV-2 RBDwt. (a) Left panel: Data for 

each fragment of Rosetta-designed mAb (P01 to P10). (a) Right panel: Data for each mutated fragment 

of P01 and P06 was obtained during the theoretical ALA scanning procedure (correlation coefficient 

equals 0.8). The data for the total net charge numbers were obtained from titration simulations with a 

single protein in the absence of the RBDwt by the FPTS at pH 7. All βwmin values were computed from 

RBDwt-complexation studies using FORTE at pH 7 and 150mM of NaCl. 
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Figure S6. Individual residue electrostatic contributions to the complexation RBDwt-P01 obtained with 

the theoretical ALA scanning procedure applied to P01. Acid and basic residues are represented by red 

and blue, respectively. Data for the amino acids belonging to the light (L) and heavy (H) chains are 

given in the left and right panels, respectively. Calculations were done with the FORTE approach. ΔΔG 

(in KBT units) is defined as the difference between the minimum value measured in βw(r) for the 

complexation RBDwt-P01’ [βwmin(P01’)] and the corresponding quantity for the original P01 

[βwmin(P01)] for each new mutation. See the main text for other details.  

 

 

 

 

 

Figure S7. Molecular structure of the RBDwt complexed with P01. The RBDwt is represented in green. 

All ionizable residues from the binder P01 whose single ALA mutation resulted in representative ΔΔGs 

(values larger than the estimated errors) are highlighted by blue (basic residues) and red (acid residues). 

The most important mutations (see Figure S5) are labeled and represented with vdW spheres. The letters 

L and H are used to refer to the light and heavy chain, respectively.  
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S4) Supplementary discussions on the precision of the FORTE data 

 

One of the main advantages of CG methods such as FORTE is the smoother energy landscape 

that allows for reasonable precision in the results. This can be easily seen by comparing 

different replicate runs. Some examples are given in Figure S8 and Table S2 above. Figure S8 

displays the free energy of interactions for the complexation of the RBD(wt)-P01 system 

obtained by different replicate runs. In table S2, we compiled βwmin values for some selected 

simulated cases for runs with a different number of MC steps. The other studied systems behave 

in the same manner. As larger the sampling, i) better populated are all the histogram bins used 

for computing the g(r) during the sampling, ii) and reduced the statistical noises in the 

calculated βw(r).17 A shorter number of MC steps decreases the precision of the βwmin values 

as expected. Due to the relatively lower CPU cost of the FORTE runs than other approaches, 

longer simulation runs are possible increasing the precision of the computed free energy of 

interactions for the studied protein-protein systems by FORTE.  

  

  

 

Figure S8. Free energy profiles for the interaction of RBD(wt) with P01. The simulated free 

energy of interactions as a function of the separation distances [βw(r)] between the centers of 

the RBD and the binder is given at pH 7.0 and 150 mM of NaCl for 5 different independent 

runs. (a) Left panel: Data for a full range of separation distances. (b) Right panel: Data for the 

short-range separation distance highlighting the well-depths of each replicate run. 
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Table S2. Mean βwmin values for some selected simulated cases as a function of the number 

of MC steps of the production phase. (*) The number of MC steps used for production in this 

work. The estimated errors are given between parentheses and were based on 5 replicates.  

Studied complex 
 Mean value for βwmin 

 3x109 MC steps(*) 3x108 MC steps 

RBD(wt)-P01                   -0.785(3)  -0.81(2) 

RBD(Delta)-P01              -0.796(5)  -0.83(2) 

RBD(Omicron)-P01        -0.832(6)  -0.87(2) 

RBD(wt)-P01'''                -0.883(6)  -0.91(3) 

RBD(Delta)-P01'''           -0.951(5)  -0.98(3) 

RBD(Omicron)-P01'''     -0.985(6)  -1.03(4) 

     

RBD(wt)-P06                  -0.790(7)     -0.80(2) 

RBD(Delta)-P06             -0.798(5)     -0.82(2) 

RBD(Omicron)-P06       -0.83(1)     -0.85(2) 

RBD(wt)-P06'''               -0.843(5)     -0.85(2) 

RBD(Delta)-P06'''          -0.880(7)     -0.89(1) 

RBD(Omicron)-P06'''    -0.93(1)     -0.95(2) 
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