Supplementary Information

Gene	Primer (5'-3')	Product details	
Ager	ATC GCA TTC CTT GCA AAA GT	Mutant - ~500 bp	
(Alveolar Type I cells)	GGA CTC TTG TCC CAG AAG CA	Wild type – 200 bp	
Cdh1	GGG TCT CAC CGT AGT CCT CA	Mutant – 310 bp	
(E-cadherin)	GAT CTT TGG GAG AGC AGT CG	Wild type – 243 bp	
Foxj1 (Ciliated cells)	P1: GCA GAT GGA GAG AGG TGG AG	Mutant – 294 bp (P2 & P3)	
	P2: CTT GGC GTT GAG AAT GGA GA	Heterozygote – 294 bp & 472 bp	
	P3: ATT GCA TCG CAT TGT CTG AG	Wild type – 472 bp (P1 & P2)	
Rosa	CAC TTG CTC TCC CAA AGT CGC TC	Mutant 508 hr	
(Cdh1 conditional	ATA CTC CGA GGC GGA TCA CAA	Wild-type – 335 bp	
knock-in)	GAT GGG GAG AGT GAA GCA GAA CG		
Scbg1a1	ACT CAC TAT TGG GGG TGT GG	Mutant – 245 bp	
(Club cells)	CCA AAA GAC GGC AAT ATG GT		
Spc	ATG TCC AAT TTA CTG ACC G	~250 bp	
(Alveolar type II cells)	CGC GCC TGA AGA TAT AGA AG		

Table S1: Primer details for genotyping the Mice

Table S2: qPCR primer details to evaluate EMT and fibrosis markers

Gene	Primer	Product details	
Human			
CDH1	F: GCC TCC TGA AAA GAG AGT GGA AG	131 bp	
	R: TGG CAG TGT CTC TCC AAA TCC G		
GAPDH	F: GTC TCC TCT GAC TTC AAC AGC G	131 bp	
	R: ACC ACC CTG TTG CTG TAG CCA A		
Mouse			
Cdh1	F: CAT CAC TGC CAC CCA GAA GAC TG	153 bp	
	R: ATG CCA GTG AGC TTC CCG TTC AG		
Cdh2	F: CCT CCA GAG TTT ACT GCC ATG AC	149 bp	
	R: GTA GGA TCT CCG CCA CTG ATT C		
Col3a1	F: GAC CAA AAG GTG ATG CTG GAC AG	114 bp	
	R: CAA GAC CTC GTG CTC CAG TTA G		
Gapdh	F: CAT CAC TGC CAC CCA GAA GAC TG	153 hn	
	R: ATG CCA GTG AGC TTC CCG TTC AG	155 op	
Slug/Snai2	F: TCT GTG GCA AGG CTT TCT CCA G	133 bp	
	R: TGC AGA TGT GCC CTC AGG TTT G		
Snai1	F: TGT CTG CAC GAC CTG TGG AAA G	163 bp	
	R: CTT CAC ATC CGA GTG GGT TTG G		
Twist1	F: GAT TCA GAC CCT CAA ACT GGC G	134 bp	
	R: AGA CGG AGA AGG CGT AGC TGA G		

Fig. S1: Increased mRNA expression of mesenchymal and collagen markers in E-cadherin knockdown in AT1 cells of mice. To knock down E-cadherin in the AT1 cells of mice lungs, $Cdh l^{IVI}-Ager^{Cre}$ mice were fed a tamoxifen diet (TAM) for 30 days. These were compared to $Cdh l^{IVI}-Ager^{Cre}$ mice receiving a normal chow diet (ND). Basal mRNA expression of (a) epithelial -Cdh l was not altered, whereas mesenchymal - (b) Cdh 2, (c) Slug, (d) Snail, and (e) Twistl and collagen (f) Col3al markers were increased after E-cadherin was knocked down in AT1 cells. Data is expressed as median bars and representative of 3 to 4 mice per group. Mann-Whitney test was performed and P < 0.05 was considered statistically significant.

Cdh1^{fl/fl}-Ager^{Cre}

Fig. S2. E-cadherin knockdown in AT1 cells causes fibrosis. To knock down E-cadherin in the AT1 cells of mice lungs, $Cdh l^{fh/fl}$ - $Ager^{Cre}$ mice were fed a tamoxifen diet (TAM) for 30 days. These were compared to $Cdh l^{fh/fl}$ - $Ager^{Cre}$ mice receiving a normal chow diet (ND). The mice lung sections were stained with Masson trichrome. Mice lungs with E-cadherin knockdown in AT1 cells display areas of fibrosis due to excess deposition of collagen bundles (blue coloration) at 10X (scale bar of 250 μ m).

b

Figure S3: Loss of E-cadherin in mice tracheal epithelial cells (mTECs) does not affect the percentage of the ciliated cells and its ciliary beat frequency (CBF). To knock down E-cadherin in airways, mTECs from $Cdh l^{fl/fl}$ mice cultured at the air-liquid interface (ALI) were transfected with Ad5CMVCre-eGFP (Cre) at 2×10^9 pfu and these were compared to Ad-5CMVeGFP (Ctrl). (a) Percentage of ciliated cells (% pixels moving) and (b) CBF were not altered due to knockdown of E-cadherin. Data is expressed as median bars and representative of cells derived from 12 mice and 9 to 10 inserts. Mann-Whitney test was performed, and P<0.05 was statistically significant.

Figure S4. E-cadherin is reduced in COPD and cigarette-smoke (CS) injured epithelium. (a) COPD human bronchial epithelial cells have reduced expression of E-cadherin as compared to age, and sex-matched non-diseased human bronchial epithelial (Normal) cells (representative image – left panel, and quantified blot – right panel). Data is expressed as median bars and representative of 2 to 3 inserts from 2 donors. (b) Normal cells exposed to cigarette smoke (CS) demonstrate reduced E-cadherin expression as compared to air control (representative image – left panel, and quantified blot – right panel). Data is expressed as median bars and representative of 3 to 4 inserts from 3 donors. Mann-Whitney test was performed and P < 0.05 was considered statistically significant.

Normal

Figure S5: Representative image of Green Fluorescent Protein (GFP) at 20X of the nondiseased airway epithelium (Normal) at 4 to 6 weeks air-liquid interface (ALI) transfected with Adenovirus to knock out E-cadherin. Normal cells were transfected with Ad-GFP-U6-h-CFL1-shRNA (shCDH1) at 1.5×10^9 pfu to knock down E-cadherin and these were compared to control adenovirus (Ad-GFP-U6-shRNA, GFP).

Figure S6: Loss of E-cadherin in non-diseased airway epithelia does not affect the percentage of the ciliated cells and its ciliary beat frequency (CBF). Normal cells were transfected with Ad-GFP-U6-h-CFL1-shRNA (shCDH1) at 1.5×10^9 pfu to knock down E-cadherin and these were compared to control adenovirus (Ad-GFP-U6-shRNA, GFP). (a) Percentage of ciliated cells (% pixels moving) and (b) CBF were not altered due to knockdown of E-cadherin in Normal. Data is expressed as median bars and representative of 3 donors and 2 to 3 inserts per donor. Mann-Whitney test was performed and P < 0.05 was considered statistically significant.

Figure S7: Loss of E-cadherin in non-diseased airway epithelia (Normal) increases mesenchymal markers. Normal cells were transfected with Ad-GFP-U6-h-CFL1-shRNA (shCDH1) at 1.5×10^9 pfu to knock down E-cadherin and these were compared to control adenovirus (Ad-GFP-U6-shRNA, GFP). Normal cells with E-cadherin knockdown showed an increase in mesenchymal markers such as (a) *CDH2*, (b) *SNAI2*, (c) *SLUG*, and (d) *TWIST2*. Data is expressed as median bars and representative of 3 donors and 1 insert per donor. Mann-Whitney test was performed and P < 0.05 was considered statistically significant.

b

Fig. S8: Overexpression of E-cadherin in COPD epithelia does not affect the percentage of the ciliated cells and its ciliary beat frequency (CBF). COPD at 4 to 6 weeks ALI were transfected Ad-GFP-U6-h-CDH1 (CDH1) to overexpress E-cadherin or Ad-GFP (GFP) as control at 2×10^9 pfu. Transfection of COPD with CDH1 did not alter (a) percentage of ciliated cells (% pixels moving) and (b) CBF, as compared to COPD, transfected to GFP and age- and gendermatched Normal cells. Data is expressed as median bars and representative of 5 to 9 inserts from 2 donors. Kruskal-Walli's test followed by Dunn's multiple comparison test was performed. P < 0.05 were considered statistically significant.

Fig. S9: E-cadherin knock-in mice tracheal epithelial cells (mTECs) does not affect the percentage of the ciliated cells and its ciliary beat frequency (CBF). To induce the overexpression of E-cadherin in Cdh1 knock-in mice (Cdh1^{Oe}), mTECs were transfected with adeno-Cre (Ad5CMVCre-eGFP) at 2×10^9 pfu and were exposed to CS for 10 days. Knock-in of Ecadherin in mTECs did not alter (a) percentage of ciliated cells (% pixels moving) and (b) CBF. Data is expressed as median bars and representative of 6 inserts from 6 mice. Shapiro-Wilk test followed by Kruskal-Wallis multiple comparison tests was performed, and P < 0.05 were considered statistically significant.

Fig. S10: Nrf2-activator does not protect loss of cilia or decreased ciliary beat frequency in COPD and cigarette-smoke exposed epithelia. The COPD or the Normal epithelial cells exposed to cigarette smoke (CS) were treated with 100 nM of CDDO-Me (a Nrf2 pathway activator) for 5 days and 10 days respectively. COPD treated with CDDO-Me did not restore (a) percentage of ciliated cells (% pixels moving) and (b) ciliary beat frequency as compared to non-diseased epithelial cells. Similarly, CS exposed Normal cells treated with CDDO-Me did not restore CS induces (c) loss of ciliated cells and (d) CBF as compared to air exposed Normal cells. Data is representative of 5 to 9 inserts from 2 donors. Shapiro-Wilk test followed by Kruskal-Wallis multiple comparison tests was performed. P < 0.05 were considered statistically significant.

Uncropped gel blots for Fig. 6B

Uncropped gel blots for Fig. 6F

Uncropped gel blots for Fig. S4A

Uncropped gel blots for Fig. S4B

Fig. S11: Original and uncropped gel blots of manuscript. Red border indicates the lanes used in manuscript.