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Supporting Information Text11

S1. Proofs12

A. Proof of Theorem 1. Data from feedback covariate shift (FCS) are a special case of what we call pseudo-exchangeable∗
13

random variables.14

Definition S1. Random variables V1, . . . , Vn+1 are pseudo-exchangeable with factor functions g1, . . . , gn+1 and core function
h if the density, f , of their joint distribution can be factorized as

f(v1, . . . , vn+1) =
n+1∏
i=1

gi(vi; v−i) · h(v1, . . . , vn+1),

where v−i = v1:(n+1) \ vi,† each gi(·; v−i) is a function that depends on the multiset v−i (that is, on the values in v−i but not15

on their ordering), and h is a function that does not depend on the ordering of its n+ 1 inputs.16

The following lemma characterizes the distribution of the scores of pseudo-exchangeable random variables, which allows for17

a pseudo-exchangeable generalization of conformal prediction in Theorem S1. We then show that data generated under FCS18

are pseudo-exchangeable, and a straightforward application of Theorem S1 yields Theorem 1 as a corollary. Our technical19

development here builds upon the work of Tibshirani et al. (1), who generalized conformal prediction to handle “weighted20

exchangeable” random variables, including data under standard covariate shift.21

The key insight is that if we condition on the values, but not the ordering, of the scores, we can exactly describe their22

distribution. The following proposition is a generalization of arguments found in the proof of Lemma 3 in (1); the subsequent23

result in Lemma 1 is a generalization of that lemma.24

Proposition 1. Let Z1, . . . , Zn+1 be pseudo-exchangeable random variables with a joint density function, f , that can be
written with factor functions g1, . . . , gn+1 and core function h. Let S be any score function and denote Si = S(Zi, Z−i) where
Z−i = Z1:(n+1) \ {Zi} for i = 1, . . . , n+ 1. Define

wi(z1, . . . , zn+1) ≡

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j))

, i = 1, . . . , n+ 1, [S1]

where the summations are taken over permutations, σ, of the integers 1, . . . , n + 1. For values z = (z1, . . . , zn+1), let
si = S(zi, z−i) and let Ez be the event that {Z1, . . . , Zn+1} = {z1, . . . , zn+1} (that is, the multiset of values taken on by
Z1, . . . , Zn+1 equals the multiset of the values in z). Then

Sn+1 | Ez ∼
n+1∑
i=1

wi(z1, . . . , zn+1) δsi .

Proof. For simplicity, we treat the case where S1, . . . , Sn+1 are distinct almost surely; the result also holds in the general case,
but the notation that accommodates duplicate values is cumbersome. For i = 1, . . . , n+ 1,

P(Sn+1 = si | Ez) = P(Zn+1 = zi | Ez) =

∑
σ:σ(n+1)=i f(zσ(1), . . . , zσ(n+1))∑

σ
f(zσ(1), . . . , zσ(n+1))

=

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(zσ(1), . . . , zσ(n+1))∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(zσ(1), . . . , zσ(n+1))

=

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(z1, . . . , zn+1)∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(z1, . . . , zn+1)

=

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j))

= wi(z1, . . . , zn+1).

25

∗The name pseudo-exchangeable hearkens to the similarity of the factorized form to the pseudo-likelihood approximation of a joint density. Note, however, that each factor, gi(vi; v−i), can only depend
on the values and not the ordering of the other variables, v1, . . . , vi−1, vi+1, . . . , vn , whereas each factor in the pseudo-likelihood approximation also depends on the identities (i.e., the ordering)
of the other variables.

†With some abuse of notation, we denote z−i = z1:(n+1) \ zi whenever possible, as done here, but use z−i = z1:n \ zi whenever we need to append a candidate test point, as done in the main
text and in Theorem S1 below. In either case, we will clarify.
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Lemma 1. Let Z1, . . . , Zn+1 be pseudo-exchangeable random variables with a joint density function, f , that can be written
with factor functions g1, . . . , gn+1 and core function h. Let S be any score function and denote Si = S(Zi, Z−i) where
Z−i = Z1:(n+1) \ {Zi} for i = 1, . . . , n+ 1. For any β ∈ (0, 1),

P

{
Sn+1 ≤ Quantileβ

(
n+1∑
i=1

wi(Z1, . . . , Zn+1) δSi

)}
≥ β,

where wi(z1, . . . , zn+1) is defined in Eq. [S1].26

Proof. Assume for simplicity of notation that S1, . . . , Sn+1 are distinct almost surely (but the result holds generally). For
data point values z = (z1, . . . , zn+1), let si = S(zi, z−i) and let Ez be the event that {Z1, . . . , Zn+1} = {z1, . . . , zn+1}. By
Proposition 1,

Sn+1 | Ez ∼
n+1∑
i=1

wi(z1, . . . , zn+1) δsi ,

and consequently

P

(
Sn+1 ≤ Quantileβ

(
n+1∑
i=1

wi(z1, . . . , zn+1) δsi

)∣∣∣∣∣Ez
)
≥ β,

by definition of the β-quantile; equivalently, since we condition on Ez,

P

(
Sn+1 ≤ Quantileβ

(
n+1∑
i=1

wi(Z1, . . . , Zn+1) δSi

)∣∣∣∣∣Ez
)
≥ β.

Since this inequality holds for all events Ez, where z is a vector of n+ 1 data point values, smoothing gives

P

(
Sn+1 ≤ Quantileβ

(
n+1∑
i=1

wi(Z1, . . . , Zn+1) δSi

))
≥ β.

27

Lemma 1 yields the following theorem, which enables a generalization of conformal prediction to pseudo-exchangeable28

random variables.29

Theorem S1. Suppose Z1, . . . , Zn+1 where Zi = (Xi, Yi) ∈ X × R are pseudo-exchangeable random variables with factor
functions g1, . . . , gn+1. For any score function, S, and any miscoverage level, α ∈ (0, 1), define for any point x ∈ X :

Cα(x) =

{
y ∈ R : Sn+1(x, y) ≤ Quantile1−α

(
n+1∑
i=1

wi(Z1, . . . , Zn, (x, y)) δSi(x,y)

)}
, [S2]

where Si(x, y) = S(Zi, Z−i ∪ {(x, y)}) and Z−i = Z1:n \ Zi for i = 1, . . . , n, Sn+1(x, y) = S((x, y), Z1:n), and the weight
functions wi are as defined in Eq. [S1]. Then Cα satisfies

P (Yn+1 ∈ Cα(Xn+1)) ≥ 1− α,

where the probability is over all n+ 1 data points, Z1, . . . , Zn+1.30

Proof. By construction, we have

Yn+1 ∈ Cα(Xn+1) ⇐⇒ Sn+1(Xn+1, Yn+1) ≤ Quantile1−α

(
n+1∑
i=1

wi(Z1, . . . , Zn+1) δSi(Xn+1,Yn+1)

)
.

Applying Lemma 1 gives the result.31

Finally, Theorem 1 follows as a corollary of Theorem S1. Denoting Zn+1 = Ztest and Z−i = Z1:(n+1) \ {Zi}, observe that
data, (Z1, . . . , Zn+1), under FCS are pseudo-exchangeable with the core function

h(z1, . . . , zn+1) =
n+1∏
i=1

pX(xi) pY |X(yi | xi),
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and factor functions gi(zi; z−i) = 1 for i = 1, . . . , n and

gn+1(zn+1; z1:n) =
p̃X;z1:n(xn+1) pY |X(yn+1 | xn+1)
pX(xn+1) pY |X(yn+1 | xn+1) = p̃X;z1:n(xn+1)

pX(xn+1) = v(xn+1; z1:n)

where v(·; ·) is the likelihood ratio function defined in Eq. [2]. The weights, wi(z1, . . . , zn+1), in Eq. [S1] then simplify as

wi(z1, . . . , zn+1) =

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j))

=

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))∑n+1

k=1

∑
σ:σ(n+1)=k

∏n+1
j=1 gj(zσ(j); z−σ(j))

=

∑
σ:σ(n+1)=i gn+1(zσ(n+1); z−σ(n+1))∑n+1

k=1

∑
σ:σ(n+1)=k gn+1(zσ(n+1); z−σ(n+1))

=

∑
σ:σ(n+1)=i gn+1(zi; z−i)∑n+1

k=1

∑
σ:σ(n+1)=k gn+1(zk; z−k)

= n! · gn+1(zi; z−i)∑n+1
k=1 n! · gn+1(zk; z−k)

= v(xi; z−i)∑n+1
k=1 v(xk; z−k)

.

These quantities are exactly the weight functions, wyi , defined in Eq. [4] and used in the full conformal confidence set in Eq. [3]:32

wyi (Xtest) = wi(Z1, . . . , Zn, (Xtest, y)) for i = 1, . . . , n+ 1. That is, Eq. [3] gives the confidence set defined in Eq. [S2] for data33

under FCS. Applying Theorem S1 then yields Theorem 1.34

B. A randomized confidence set achieves exact coverage. Here, we introduce the randomized β-quantile and a corresponding
randomized confidence set that achieves exact coverage. To lighten notation, for a discrete distribution with probabil-
ity masses w = (w1, . . . , wn+1) on points s = (s1, . . . , sn+1), where si ∈ R and wi ≥ 0,

∑n+1
i=1 wi = 1, we will write

Quantileβ(s, w) = Quantileβ(
∑n

i=1 wiδsi). Observe that Quantileβ(s, w) is always one of the support points, si. Now
define the β-quantile lower bound:

QuantileLBβ (s, w) = inf

s :
∑
i:si≤s

wi < β,
∑
i:si≤s

wi +
∑

j:sj=Quantileβ(s,w)

wj ≥ β

 ,

which is either a support point strictly less than the β-quantile, or negative infinity. Finally, letting QFβ(s, w) and LFβ(s, w)
denote the CDF of the discrete distribution at Quantileβ(s, w) and QuantileLBβ(s, w)), respectively, the randomized
β-quantile is a random variable that takes on the value of either the β-quantile or the β-quantile lower bound:

RandomizedQuantileβ(s, w) =

{
QuantileLBβ(s, w) w. p. QFβ(s,w)−β

QFβ(s,w)−LFβ(s,w) ,

Quantileβ(s, w) w. p. 1− QFβ(s,w)−β
QFβ(s,w)−LFβ(s,w) .

[S3]

We use this quantity to define the randomized full conformal confidence set, which, for any miscoverage level, α ∈ (0, 1),
and x ∈ X is the following random variable:

Crand
α (x) =

{
y ∈ R : S((x, y), Z1:n) ≤ RandomizedQuantile1−α(s(Z1, . . . , Zn, (x, y)), w(Z1, . . . , Zn, (x, y))

}
, [S4]

where s(Z1, . . . , Zn, (x, y)) = (S1, . . . , Sn, S((x, y), Z1:n) and Si = S(Zi, Z−i ∪ {(x, y)}) for i = 1, . . . , n, and35

w(Z1, . . . , Zn, (x, y)) = (wy1 (x), . . . , wyn+1(x)) where wyi (x) is defined in Eq. [4]. Note that for each candidate label, y ∈ R, an36

independent randomized β-quantile is instantiated; some values will use the β-quantile as the threshold on the score, while the37

others will use the β-quantile lower bound. Randomizing the confidence set in this way yields the following result.38

Theorem S2. Suppose data, Z1, . . . , Zn, Ztest, are generated under feedback covariate shift and assume P̃X;D is absolutely
continuous with respect to PX for all possible values of D. Then, for any miscoverage level, α ∈ (0, 1), the randomized full
confidence set, Crand

α , in Eq. [S4] satisfies the exact coverage property:

P(Ytest ∈ Crand
α (Xtest)) = 1− α, [S5]

where the probability is over Z1, . . . , Zn, Ztest and the randomness in Crand
α .39
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Proof. Denote Zn+1 = Ztest and Z = (Z1, . . . , Zn+1). For a vector of n + 1 data point values, z = (z1, . . . , zn+1), use the
following shorthand:

Qβ(z) = Quantileβ(s(z), w(z)),
Lβ(z) = QuantileLBβ(s(z), w(z)),
Rβ(z) = RandomizedQuantileβ(s(z), w(z)),
QFβ(z) = QFβ(s(z), w(z)),
LFβ(z) = LFβ(s(z), w(z)).

As in the proof of Lemma 1, consider the event, Ez, that {Z1, . . . , Zn+1} = {z1, . . . , zn+1}. Assuming for simplicity that the
scores are distinct almost surely, by Proposition 1

S(Zn+1, Z1:n) | Ez ∼
n+1∑
i=1

wi(z1, . . . , zn+1) δS(zi,z−i),

and consequently

P(S(Zn+1, Z1:n) ≤ R1−α(z) | Ez)
= P(S(Zn+1, Z1:n) ≤ R1−α(z) | Ez,R1−α(z) = Q1−α(z)) · P(R1−α(z) = Q1−α(z) | Ez)+

P(S(Zn+1, Z1:n) ≤ R1−α(z) | Ez,R1−α(z) = L1−α(z)) · P(R1−α(z) = L1−α(z) | Ez)

= P(S(Zn+1, Z1:n) ≤ Q1−α(z) | Ez) ·
(

1−
QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

)
+

P(S(Zn+1, Z1:n) ≤ L1−α(z) | Ez) ·
QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

= QF1−α(z) ·
(

1−
QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

)
+ LF1−α(z) ·

QF1−α(z)− (1− α)
QF1−α(z)− LF1−α(z)

= −
(
QF1−α(z)− LF1−α(z)

)
·

QF1−α(z)− (1− α)
QF1−α(z)− LF1−α(z) + QF1−α(z)

= −QF1−α(z) + (1− α) + QF1−α(z)
= 1− α.

Since we condition on Ez, we equivalently have

P(S(Zn+1, Z1:n) ≤ R1−α(Z) | Ez) = 1− α,

and since this equality holds for all events Ez, where z is a vector of n+ 1 data point values, taking an expectation over Ez
yields

P(S(Zn+1, Z1:n) ≤ R1−α(Z)) = 1− α.

Finally, since

Yn+1 ∈ Crand
α (Xn+1) ⇐⇒ S(Zn+1, Z1:n) ≤ R1−α(Z),

the result follows.40

Note that standard covariate shift is subsumed by feedback covariate shift, so Theorem S2 can be used to construct a41

randomized confidence set with exact coverage under standard covariate shift as well.42

C. Data splitting. In general, computing the full conformal confidence set, Cα(x), using Alg. 1 requires fitting (n+ 1)× |Y|43

regression models. A much more computationally attractive alternative is called a data splitting or split conformal approach (2, 3),44

in which we (i) randomly partition the labeled data into disjoint training and calibration data sets, (ii) fit a regression model to45

the training data, and (iii) use the scores that it provides for the calibration data (but not the training data) to construct46

confidence sets for test data points. Though this approach only requires fitting a single model, the trade-off is that it does not47

use the labeled data as efficiently: only some fraction of our labeled data can be used to train the regression model. This48

limitation may be inconsequential for settings with abundant data, but can be a nonstarter when labeled data is limited, such49

as in many protein design problems.50

Here, we show how data splitting simplifies feedback covariate shift (FCS) to standard covariate shift. We then use the data51

splitting method from Tibshirani et al. (1) to produce confidence sets with coverage; the subsequent subsection shows how to52

introduce randomization to achieve exact coverage.53
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To begin, we recall the standard covariate shift model (4–6). The training data, Z1, . . . , Zn where Zi = (Xi, Yi), are i.i.d.54

from some distribution: Xi ∼ PX , Yi ∼ PY |Xi for i = 1, . . . , n. A test data point, Ztest = (Xtest, Ytest), is drawn from a different55

input distribution but the same conditional distribution, Xtest ∼ P̃X , Ytest ∼ PY |Xtest , independently from the training data.56

In contrast to FCS, here the test input cannot be chosen in a way that depends on the training data.57

Returning to FCS, suppose we randomly partition all our labeled data into disjoint training and calibration data sets. Let µ58

denote the regression model fit to the training data; we henceforth consider µ as fixed and make no further use of the training59

data. As such, without loss of generality we will use Z1, . . . , Zm to refer to the calibration data. Now suppose the test input60

distribution is induced by the trained regression model, µ; we write this as P̃X;µ. Observe that, conditioned on the training61

data, we now have a setting where the calibration and test data are drawn from different input distributions but the same62

conditional distribution, PY |X , and are independent of each other. That is, data splitting returns us to standard covariate shift.63

To construct valid confidence sets under standard covariate shift, define the following likelihood ratio function:

v(x) = p̃X;µ(x)
pX(x) , [S6]

where pX and p̃X;µ refer to the densities of the training and test input distributions, respectively. We restrict our attention to
score functions of the following form (7):

S(x, y) = |y − µ(x)|
u(x) . [S7]

where u is any heuristic, nonnegative notion of uncertainty; one can also set u(x) = 1 to recover the residual score function.
Note that, since we condition on the training data and treat the regression model as fixed, the score of a point, (x, y), is no
longer also a function of other data points. Finally, for any miscoverage level, α ∈ (0, 1), and any x ∈ X , define the split
conformal confidence set as

Csplit
α (x) = µ(x)± q · u(x),

q = Quantile1−α

(
m∑
i=1

wi(x) δSi + wn+1(x) δ∞

)
,

[S8]

where Si = S(Xi, Yi) for i = 1, . . . ,m and

wi(x) = v(Xi)∑m

j=1 v(Xj) + v(x)
, i = 1, . . . ,m, [S9]

wm+1(x) = v(x)∑m

j=1 v(Xj) + v(x)
.

For data under standard covariate shift, the split conformal confidence set achieves coverage, as first shown in (1).64

Theorem S3 (Corollary 1 in (1)). Suppose calibration and test data, Z1, . . . , Zm, Ztest, are under standard covariate shift,65

and assume P̃X;µ is absolutely continuous with respect to PX . For score functions of the form in Eq. [S7], and any miscoverage66

level, α ∈ (0, 1), the split conformal confidence set, Csplit
α (x), in Eq. [S8] satisfies the coverage property in Eq. [1].67

To achieve exact coverage, we can introduce randomization, as we discuss next.68

D. Data splitting with randomization achieves exact coverage. Here, we stay in the setting and notation of the previous
subsection and demonstrate how randomizing the β-quantile enables a data splitting approach to achieve exact coverage. For
any score function of the form in Eq. [S7], any miscoverage level, α ∈ (0, 1), the randomized split conformal confidence set is
the following random variable for x ∈ X :

Crand,split
α (x) =

{
y ∈ R : S(x, y) ≤ RandomizedQuantile1−α ((S1, . . . , Sm, S(x, y)), (w1(x), . . . , wm+1(x)))

}
, [S10]

where the randomized β-quantile, RandomizedQuantileβ is defined in Eq. [S3], Si = S(Xi, Yi) for i = 1, . . . ,m, and wi(·)69

for i = 1, . . . ,m+ 1 is defined in Eq. [S9]. Observe that for each candidate label, y ∈ R, an independent randomized β-quantile70

is drawn, such that the scores of some values are compared to the β-quantile while the others are compared to the β-quantile71

lower bound. The exact coverage property of this confidence set is a consequence of Theorem S2.72

Corollary 1. Suppose calibration and test data, Z1, . . . , Zm, Ztest, are under standard covariate shift, and assume P̃X;µ is73

absolutely continuous with respect to PX . For score functions of the form in Eq. [S7], and any miscoverage level, α ∈ (0, 1), the74

randomized split conformal confidence set, Crand,split
α (x), in Eq. [S10] satisfies the exact coverage property in Eq. [S5].75

Proof. Since standard covariate shift is a special case of FCS, the calibration and test data can be described by FCS where P̃X;D =76

P̃X;µ for any multiset D. The randomized split conformal confidence set, Crand,split
α , is simply the randomized full conformal77

confidence set, Crand
α , defined in Eq. [S4], instantiated with the scores S((x, y), Z1:m) = S(x, y) and S(Zi, Z−i∪{(x, y)}) = S(Zi)78

for i = 1, . . . ,m, and weights resulting from P̃X;D = P̃X;µ for all D. The result then follows from Theorem S2.79
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While we only need to fit a single regression model to compute the scores for data splitting, naively it might seem that in80

practice, we need to approximate Crand,split
α (x) by introducing a discrete grid of candidate labels, Y ⊂ R, and computing a81

randomized β-quantile for |Y| different discrete distributions. Fortunately, we can construct an alternative confidence set that82

also achieves exact coverage, the randomized staircase confidence set, Cstaircase
α , which only requires sorting m scores and an83

additional O(m) floating point operations to compute (see Alg. S1).84

Fig. S1. Depiction of how the probability P(y ∈ C rand,split
α (x)) is a piecewise constant function of y. (a) Given the values of the calibration data and test input, the scores

S1, . . . , Sm and corresponding probability masses w1, . . . , wm (black stems), as well as the probability mass for the test input, wm+1 = 0.3, are fixed. The only quantity
that depends on y is S(x, y). Four example values are shown as dashed green, teal, blue, and purple stems, representing values in [0, S(1)), (S(1), S(2)), (S(2), S(3)),
and (S(3),∞], respectively (see color legend). Note that in this example, 1 − α = 0.4. (b) The 0.4-quantile and 0.4-quantile lower bound of the discrete distribution in
the top panel as a function of S(x, y), where the colors correspond to values of S(x, y) in the intervals just listed. Note the discontinuity in the 0.4-quantile lower bound
at S(x, y) = S(1). (c) The c.d.f. of the discrete distribution at the 0.4-quantile and 0.4-quantile lower bound. Note the discontinuities when S(x, y) equals a calibration
score. (d) The probability P(y ∈ C rand,split

α (x)), which equals 1 or 0 if S(x, y) = 0.4-quantile lower bound or S(x, y) > 0.4-quantile, respectively, and otherwise equals the
probability in Eq. [S3] that the randomized 0.4-quantile equals the 0.4-quantile: 1− QF−0.4

QF−LF , where QF and LF denote the c.d.f. at the 0.4-quantile and 0.4-quantile lower
bound, respectively. Color legend: calculations of the plotted quantities (calculations for S(x, y) = S(i) omitted).

At a high level, its construction is based on the observation that for any x ∈ X and y ∈ R, the quantity P(y ∈ Crand,split
α (x)),85

where the probability is over the randomness in Crand,split
α (x), is a piecewise constant function of y. Instead of testing each86

value of y ∈ R, we can then construct this piecewise constant function, and randomly include entire intervals of y values that87

Clara Fannjiang, Stephen Bates, Anastasios N. Angelopoulos, Jennifer Listgarten, and Michael I. Jordan 7 of 15



Algorithm S1 Randomized staircase confidence set
Input: Miscoverage level, α ∈ (0, 1); calibration data, Z1, . . . , Zm, where Zi = (Xi, Yi); test input, Xtest; subroutine for likelihood ratio function,
v(·), defined in Eq. [S6]; subroutine for uncertainty heuristic, u(·); subroutine for regression model prediction, µ(·).
Output: Randomized staircase confidence set, C = Cstaircase

α (Xtest).
1: for i = 1, . . . ,m do . Compute calibration scores
2: Si ← |Yi − µ(Xi)|/u(Xi)
3: vi ← v(Xi)
4: vm+1 ← v(Xtest)
5: for i = 1, . . . ,m + 1 do . Compute calibration and test weights
6: wi ← vi/

∑m+1
j=1

vj

7: C ← ∅
8: LowerBoundIsSet← False
9: S(0) = 0, w0 = 0 . Dummy values so for-loop will include [0, S(1)]
10: for i = 0, . . . ,m− 1 do
11: if

∑
j:Sj≤S(i)

wj + wm+1 < 1− α then . S(x, y) ≤ β-quantile lower bound, so include deterministically

12: C = C ∪
[
µ(Xtest) + S(i) · u(Xtest), µ(Xtest) + S(i+1) · u(Xtest)

]
∪
[
µ(Xtest)− S(i+1) · u(Xtest), µ(Xtest)− S(i) · u(Xtest)

]
13: else if

∑
j:Sj≤S(i)

wj + wm+1 ≥ 1− α and
∑

j:Sj≤S(i)
wj < 1− α then . S(x, y) = β-quantile, so randomize inclusion

14: if LowerBoundIsSet = False then
15: LowerBoundIsSet← True . Set β-quantile lower bound
16: LF =

∑
j:Sj≤S(i)

wj

17: F ←

∑
j:Sj≤S(i)

wj+wm+1−(1−α)∑
j:Sj≤S(i)

wj+wm+1−LF

18: b ∼ Bernoulli(1− F )
19: if b then
20: C = C ∪

[
µ(Xtest) + S(i) · u(Xtest), µ(Xtest) + S(i+1) · u(Xtest)

]
∪
[
µ(Xtest)− S(i+1) · u(Xtest), µ(Xtest)− S(i) · u(Xtest)

]
21: if

∑m

i=1
wi < 1− α then . For S(x, y) > S(m), either S(x, y) = β-quantile or S(x, y) > β-quantile

22: if LowerBoundIsSet = False then
23: LF =

∑m

i=1
wi

24: F ← 1−(1−α)
1−LF

25: b ∼ Bernoulli(1− F )
26: if b then
27: C = C ∪

[
µ(Xtest) + S(m) · u(Xtest),∞

]
∪
[
−∞, µ(Xtest)− S(m) · u(Xtest)

]
have the same value of P(y ∈ Crand,split

α (x)).88

Fig. S1 illustrates this observation, which we now explain. First, the discrete distribution in Eq. [S10] has probability89

masses w1(x), . . . , wm+1(x) at the points S1, . . . , Sm, S(x, y), respectively. Given the values of the m calibration data points90

and the test input, x, all of these quantities are fixed—except for the score of the candidate test data point, S(x, y). That91

is, the only quantity that depends on the value of y is S(x, y), which is the location of the probability mass wm+1(x); the92

remaining m support points and their corresponding probability masses do not not change with y.93

Now consider the calibration scores, S1, . . . , Sm, sorted in ascending order. Observe that for any pair of successive sorted94

scores, S(i) and S(i+1), the entire interval of y values such that S(x, y) ∈ (S(i), S(i+1) belongs to one of three categories:95

S(x, y) ≤ β-quantile lower bound (of the discrete distribution with probability masses w1, . . . , wm+1 at support points96

S1, . . . , Sm, S(x, y)), S(x, y) = β-quantile, or S(x, y) > β-quantile. An interval of y values that belongs to the first category97

is deterministically included in Crand,split
α (x), regardless of the randomness in the randomized β-quantile (color-coded green98

in Fig. S1), while an interval that belongs to the last category is deterministically excluded (color-coded purple in Fig. S1).99

The only y values whose inclusion is not deterministic are those in the second category (color-coded teal and blue), which are100

randomly included with the probability, given in Eq. [S3], that the randomized β-quantile equals the β-quantile. Consequently,101

we can identify the intervals of y values belonging to each of these categories, and for those in the second category, compute102

the probability that the randomized β-quantile is instantiated as the β-quantile, which is P(y ∈ Crand,split
α (x)).103

This probability turns out to be a piecewise constant function of y. Note that it is computed from two quantities: the c.d.f.104

at the β-quantile and the c.d.f at the β-quantile lower bound (see Eq. [S3]). As depicted in Fig. S1 (third panel from top), for105

any two successive sorted calibration scores, S(i) and S(i+1), both of these quantities are constant over S(x, y) ∈ (S(i), S(i+1).106

That is, both the c.d.f. at the β-quantile and the c.d.f. at β-quantile lower bound are piecewise constant functions of y, which107

only change values at the calibration scores, S1, . . . , Sm (and can take on different values exactly at the calibration scores).108

Consequently, the probability P(y ∈ Crand,split
α (x)) is also a piecewise constant function of y, which only changes values at the109

calibration scores. It attains its highest value at µ(x) and decreases as y moves further away from it, resembling a staircase, as110

depicted in Fig. S1 (fourth panel from the top).111

Therefore, instead of computing a randomized β-quantile for all y ∈ R, we can simply compute the value of this probability112

on the m+ 1 intervals between neighboring sorted calibration scores: [0, S(1)), (S(1), S(2)), . . . , (S(m−1), S(m)), (S(m),∞], as well113

as its value exactly at the m calibration scores. These probabilities may equal 1 or 0, which correspond to the two cases114

earlier described wherein y is deterministically included or excluded, respectively. If the probability is not 1 or 0, then we can115

randomly include the entire set of values of y such that S(x, y) falls in the interval. Due to the form of the score in Eq. [S7],116

this set comprises two equal-length intervals on both sides of µ(x): (µ(x)− S(i+1), µ(x)− S(i)) ∪ (µ(x) + S(i+1), µ(x) + S(i)).117
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Finally, if we assume that scores are distinct almost surely, then our treatment of values of y such that S(x, y) = Si for118

i = 1, . . . ,m, does not affect the exact coverage property. For simplicity, Alg. S1 therefore includes or excludes closed intervals119

that contain these y values as endpoints, rather than treating them separately.120

More general score functions. In the reasoning above, we use the assumption that the score function takes the form in Eq. [S7]121

only at the end of the argument, to infer the form of the sets of y values. We can relax this assumption as follows. For any122

continuous score function, consider the preimage of the intervals [0, S(1)), (S(1), S(2)), . . . , (S(m−1), S(m)), (S(m),∞] under the123

function S(x, ·) (a function of the second argument with x held fixed), rather than the intervals given explicitly in Lines 12,124

20, and 27 of Alg. S1. This algorithm then gives exact coverage for any continuous score function, although it will only be125

computationally feasible when these preimages can be computed efficiently.126

S2. Efficient computation of the full conformal confidence set for ridge regression and Gaussian process regres-127

sion128

A. Ridge regression. When the likelihood of the test input is a function of the prediction from a ridge regression model, it129

is possible to compute the scores and weights for the full conformal confidence set by fitting n+ 1 models and O(n · p · |Y|)130

additional floating point operations, instead of naively fitting (n+ 1)× Y models, as demonstrated in Alg. S2.131

For the fluorescent protein design experiments, the TestInputLikelihood subroutine in Alg. S2 computed the likelihood
in Eq. [6], that is,

TestInputLikelihood(ai + biy)← exp(λ · (ai + biy))
·
∑

x∈X exp(λ · (Ci + yA−i,n)Tx)
,

TestInputLikelihood(an+1)← exp(λ · an+1)
·
∑

x∈X exp(λ · βTx)
,

[S11]

where the input space X was the combinatorially complete set of 8, 192 sequences. The TrainInputLikelihood subroutine132

returned the likelihood under the training input distribution, which is simply equal to to 1/8192, since training sequences were133

sampled uniformly from the combinatorially complete data set. See https://github.com/clarafy/conformal-for-design for134

an implementation.135

Computing the test input likelihoods was dominated by the (n+ 1)× |Y| normalizing constants, which can be computed136

efficiently using a single tensor product between an (n+ 1)× p× |Y| tensor containing the model parameters, Ci + yA−i,n and137

β, and an |X | × p data matrix containing all inputs in X . For domains, X , that are too large for the normalizing constants to138

be computed exactly, one can turn to tractable Monte Carlo approximations.139

Algorithm S2 Efficient computation of scores and weights for ridge regression-based feedback covariate shift
Input: training data, Z1, . . . , Zn, where Zi = (Xi, Yi); test input, Xn+1; grid of candidate labels, Y ⊂ R; subroutine for test input likelihood,
TestInputLikelihood(·), that takes an input’s predicted fitness and outputs its likelihood under the test input distribution; subroutine for training
input likelihood, TrainInputLikelihood(·).
Output: scores Si(Xn+1, y) and likelihood ratios v(Xi, Zy−i) for i = 1, . . . , n + 1, y ∈ Y.
1: for i = 1, . . . , n do
2: Ci ←

∑n−1
j=1

Y−i;jA−i;j

3: ai ← CTi Xi
4: bi ← AT

−i;nXi

5: β ← (XTX + γI)−1XTY

6: an+1 ← βTXn+1
7: for i = 1, . . . , n do
8: for y ∈ Y do
9: Si(Xn+1, y)← |Yi − (ai + biy)| . Can vectorize via outer product between (b1, . . . , bn) and vector of all y ∈ Y.
10: v(Xi;Z−i,y)← TestInputLikelihood(ai + biy)/TrainInputLikelihood(Xi) . Can vectorize (see commentary on Eq. [S11]).
11: Sn+1(Xn+1, y)← |y − an+1|
12: v(Xn+1;Z1:n)← TestInputLikelihood(an+1)/TrainInputLikelihood(Xn+1)

B. Gaussian process regression. Here we describe how the scores and weights for the confidence set in Eq. [3] can be computed140

efficiently, when the likelihood of the test input distribution is a function of the predictive mean and variance of a Gaussian141

process regression model.142

For an arbitrary kernel and two data matrices, V ∈ Rn1×p and V′ ∈ Rn2×p, let K(V,V′) denote the n1 × n2 matrix where
the (i, j)-th entry is the covariance between the i-th row of V and j-th row of V′. The mean prediction for Xi of a Gaussian
process regression model fit to the i-th augmented LOO data set, µy−i(Xi), is then given by

µy−i(Xi) = K(Xi,X−i)[K(X−i,X−i) + σ2I]−1Y y−i,

and the model’s predictive variance at Xi is

K(Xi, Xi)−K(Xi,X−i)[K(X−i,X−i) + σ2I]−1K(X−i, Xi),
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where the rows of the matrix X−i ∈ Rn×p are the inputs in Zy−i, Y
y
−i = (Y−i, y) ∈ Rn is the vector of labels in Zy−i, and σ

2 is143

the (unknown) variance of the label noise, whose value is set as a hyperparameter. Note that the mean prediction is a linear144

function of the candidate value, y, which is of the same form as the ridge regression prediction in Eq. [5]; furthermore, the145

predictive variance is constant over y. Therefore, we can mimic Alg. S2 to efficiently compute scores and weights by training146

just n+ 1 rather than (n+ 1)× |Y| models.147

S3. Additional details and results on designing fluorescent proteins148

Features Each sequence was first represented as a length-thirteen vector of signed bits (−1 or 1), each denoting which of149

the two wild-type parents the amino acid at a site matches. The features for the sequence consisted of these thirteen signed150

bits, called the first-order terms in the main text, as well as all
(13

2

)
products between pairs of these thirteen bits, called the151

second-order interaction terms.152

Additional simulated measurement noise. Each time the i-th sequence in the combinatorially complete data set was sampled,153

for either training or designed data, we introduced additional simulated measurement noise using the following procedure.154

Poelwijk et al. (8) found that the Walsh-Hadamard transform of the brightness fitness landscape included up to seventh-order155

statistically significant terms. Accordingly, we fit a linear model of up to seventh-order terms for each of the combinatorially156

complete data sets, then estimated the standard deviation of the i-th sequence’s measurement noise, σi, as the residual between157

its label and this model’s prediction. Each time the i-th sequence was sampled, for either training or designed data, we also158

sampled zero-mean Gaussian noise with standard deviation σi and added it to the i-th sequence’s label. This was done to159

simulate the fact that multiple measurements of the same sequence will yield different labels, due to measurement noise.160
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Fig. S2. Quantifying predictive uncertainty for designed proteins, using the red fluorescence data set. (a) Distributions of labels of designed proteins, for different values of the
inverse temperature, λ, and different amounts of training data, n. Labels surpass the fitness range observed in the combinatorially complete data set, [0.025, 1.692], due
to additional simulated measurement noise. (b) Empirical coverage, compared to the theoretical lower bound of 1 − α = 0.9 (dashed gray line), and (c) distributions of
confidence interval widths achieved by full conformal prediction for feedback covariate shift (our method) over T = 2000 trials. (d) Distributions of Jaccard distances between
the confidence intervals produced by full conformal prediction for feedback covariate shift and standard covariate shift (1). (e, f) Same as (b, c) but using full conformal prediction
for standard covariate shift. In (a), (c), (d), and (f), the whiskers signify the minimum and maximum observed values.

S4. Additional details on AAV experiments161

NNK sequence distribution. The NNK sequence distribution is parameterized by independent categorical distributions over162

the four nucleotides, where the probabilities of the nucleotides are intended to result in a high diversity of amino acids while163

avoiding stop codons. Specifically, for three contiguous nucleotides corresponding to a codon, the first two nucleotides are164

sampled uniformly at random from {A, C, T, G}, while the last nucleotide is sampled uniformly at random from only {T, G}.165

Additional simulated measurement noise. Following Zhu & Brookes et al. (9), the fitness assigned to the i-th sequence was an
enrichment score based on its counts before and after a selection experiment, ni,pre and ni,post, respectively. The variance of
this enrichment score for the i-th sequence was estimated as

σ2
i = 1

ni,post

(
1− ni,post

Npost

)
+ 1
ni,pre

(
1− ni,pre

Npre

)
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Fig. S3. Quantifying predictive uncertainty for designed proteins using the blue and red fluorescence data sets, for n = 48 training data points, λ = 6, and ridge regression
models with features of varying complexity. In particular, the features consist of all interaction terms up to order d between the thirteen sequence sites, where the maximum
order, d, is the x-axis of the following subplots. (a) Distributions of Jaccard distances between the confidence intervals produced by conformal prediction for feedback covariate
shift (FCS, our method) and standard covariate shift (SCS) (1) for the blue data set over T = 2000 trials. (b) Empirical coverage, compared to the theoretical lower bound of
1− α = 0.9 (dashed gray line), achieved by conformal prediction for FCS and SCS over those trials. (c) Distributions of confidence interval widths using conformal prediction
for FCS and SCS. (d-f) Same as (a-c) but for the red fluorescence data set. In (a), (c), (d), and (f), whiskers signify the minimum and maximum observed values.

where Npre and Npost denote the total counts of all the sequences before and after the selection experiment, respectively. Using166

this estimate, we introduced additional simulated measurement noise to the label of the i-th sequence by adding zero-mean167

Gaussian noise with a variance of 0.1 · σ2
i .168

Neural network details. As in (9), the neural network took one-hot-encoded sequences as inputs and had an architecture169

consisting of two fully connected hidden layers, with 100 units each and tanh activation functions. It was fit to the 7, 552, 729170

training data points with the built-in implementation of the Adam algorithm in Tensorflow, using the default hyperparameters171

and a batch size of 64 for 10 epochs, where each training data point was weighted according to its estimated variance as in (9).172
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Fig. S4. Quantifying predictive uncertainty for designed proteins using the blue and red fluorescence data sets, for n = 48 training data points, λ = 6, and varying ridge
regularization strength, γ. (a) Distributions of Jaccard distances between the confidence intervals produced by conformal prediction for feedback covariate shift (FCS, our
method) and standard covariate shift (SCS) (1) for the blue data set over T = 2000 trials. (b) Empirical coverage, compared to the theoretical lower bound of 1− α = 0.9
(dashed gray line), achieved by conformal prediction for FCS and SCS over those trials. (c) Distributions of confidence interval widths using conformal prediction for FCS and
SCS. (d-f) Same as (a-c) but for the red fluorescence data set. In (a), (c), (d), and (f), whiskers signify the minimum and maximum observed values.
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Fig. S5. Comparison between the weights constructed by conformal prediction for feedback covariate shift (FSC, our method) and standard covariate shift (SCS) (1) for one
example training data set and resulting designed sequence, for n = 48 with the blue fluorescence data set and two different settings of the inverse temperature, λ. Top: For
λ = 2, vector of the n + 1 weights prescribed under SCS for the n training data points (data point indices 1 through 48) and the candidate test data points (data point index
49), alongside (n+ 1)× |Y| matrix of the weights prescribed under FCS for those same n+ 1 training and candidate test data points. The weight for each of these data
points depends on the candidate label, y (x-axis of heatmap), through a linear relationship with y (see Section D). Bottom: same as top but for λ = 6.
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Fig. S6. Comparison between the weights constructed by conformal prediction for feedback covariate shift (FSC, our method) and standard covariate shift (SCS) (1) for one
example training data set and resulting designed sequence, for n = 48 with the blue fluorescence data set and two different settings of the ridge regularization strength, γ.
Top: For γ = 100, vector of the n + 1 weights prescribed under SCS for the n training data points (data point indices 1 through 48) and the candidate test data points (data
point index 49), alongside (n+ 1)× |Y| matrix of the weights prescribed under FCS for those same n+ 1 training and candidate test data points. The weight for each of
these data points depends on the candidate label, y (x-axis of heatmap), through a linear relationship with y (see Section D). Bottom: same as top but for γ = 10.
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