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Supplementary Figure 1. Geometry of DNN concept manifolds encodes a rich semantic structure. See SI 7. a, We sort the generalization error pattern of prototype
learning using concept manifolds from a trained ResNet50 to obey the hierarchical semantic structure of the ImageNet21k dataset. The sorted error matrix exhibits a prominent
block diagonal structure, suggesting that most of the errors occur between concepts on the same branch of the semantic tree, and errors between two different branches of
the semantic tree are exceedingly unlikely. Inset: error pattern across a subset of novel visual concepts, including FISH, BIRDS, MAMMALS, REPTILES, and INSECTS. The
full error pattern across all 1,000 novel visual concepts is shown at right. Rows correspond to concepts from which test examples are drawn. This error pattern exhibits a
pronounced asymmetry, with much larger errors above the diagonal than below (see panel c). We additionally plot the sorted pattern of individual geometric quantities: signal,
bias, and signal-noise overlap. Signal exhibits a pronounced block diagonal structure, similar to the error pattern. Bias exhibits a pronounced asymmetry, indicating that plant
and animal concept manifolds have significantly smaller radii than artifact and food concept manifolds do (see panel d). b, We plot the average few-shot accuracy, signal, bias,
and signal-noise overlap across all pairs of concepts, as a function of the distance between the two concepts on the semantic tree, defined as the number of hops required to
travel from one concept to the other. Few-shot learning accuracy, signal, and bias all increase significantly with semantic distance, while signal-noise overlaps decrease. c We
quantify the asymmetry of the error pattern in a, showing, for instance, that the probability of misclassifying a concept belonging to the category FOOD as an ANIMAL is more
than three times as likely as misclassifying an ANIMAL as FOOD. Similar asymmetries are shown for PLANT vs FOOD, ANIMAL vs ARTIFACT, and PLANT vs ARTIFACT. Error bars
represent standard error on the mean across all pairs of concepts in the two compared categories. d, e, To quantify the effect of distribution shift from the training concepts to
the novel concepts, we measure the tree distance from each of the 1k novel concepts to its nearest neighbor among the 1k training concepts. We plot the average few-shot
learning accuracy as a function of this distance. Few-shot learning accuracy degrades slightly with distance from the training set, but the effect is not dramatic.
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Supplementary Figure 2. Learning many novel concepts from few examples. Concept learning often involves categorizing more than two novel concepts. In SI D we
extend our theory to model few-shot learning of k novel concepts. a, An example one-shot learning task for k = 3: does the test image in the gray box contain a ‘coati’ (blue
box), a ‘numbat’ (green box), or a ‘tamandua’ (orange box), given one training example of each? b, Illustration of k-concept learning. Training examples of each novel concept
(open circles) are averaged into k class prototypes (x̄1, . . . , x̄k ; solid circles). A test example (ξ, blue cross) is classified based on its Euclidean distance to each of the
concept prototypes. This classification can be performed by k downstream neurons, one for each novel concept, which adjust their synaptic weights to point along the concept
prototypes. b, Empirical performance and theoretical predictions. We perform 5-shot learning experiments on visual concept manifolds extracted from a DNN in response to
1, 000 novel visual concepts from the ImageNet21k dataset. We compute the generalization error as a function of the number of novel concepts to be learned, k, as well as the
prediction from our theory (SI D). Performance is remarkably high, and generalization error stays below 20% even for k = 50 (where error at chance is 98%).
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Supplementary Figure 3. geometric theory and few-shot learning experiments on a variety of novel concepts. a, We compare the empirical generalization error in 1–,
2–, 3–, and 5-shot learning experiments to the prediction from our geometric theory (Eq. SI.34) on all 1, 000× 999 pairs of visual concepts from the ImageNet21k datset,
using concept manifolds derived from a trained ResNet50. We plot a 2d histogram rather than a scatterplot because the number of points is so large. x-axis: SNR obtained by
estimating neural manifold geometry. y-axis: Empirical generalization error measured in few-shot learning experiments. Theoretical prediction (dashed line) shows a good match
with experiments. b, We provide additional examples of 5-shot prototype learning experiments in a ResNet50 (colored points), along with the prediction from our geometric
theory (dashed line), on 36 randomly selected novel visual concepts from the ImageNet21k dataset. Each panel plots the generalization error of one novel visual concept (e.g.
‘Virginia bluebell’) against all 999 other novel visual concepts (e.g. ‘bluebonnet’, ‘African violet’). Each point represents the average generalization error on one such pair of
concepts. x-axis: SNR (Eq. 1) obtained by estimating neural manifold geometry. y-axis: Empirical generalization error measured in few-shot learning experiments. Theoretical
prediction (dashed line) shows a good match with experiments. Error bars, computed over many draws of the training and test examples, are smaller than the symbol size..
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Supplementary Figure 4. Dimensionality diverges between trained DNNs and the primate visual pathway. a, To verify that the mismatch in concept manifold
dimensionality between DNNs and visual cortex observed in Fig. 5d is not simply due to our choice to measure dimensionality using the participation ratio, we repeat this
analysis using a nonlinear estimate of intrinsic dimensionality based on nearest neighbor distances, studied in (1, 2). We find that the intrinsic dimension (blue) evolves similarly
to the participation ratio (red) in both DNNs and the ventral visual pathway, corroborating the stark mismatch between trained DNNs and the primate visual pathway. The
specific linear transformation used to relate the y-axes is DID = 0.53 ×DSVD + 0.87, where DID is the intrinsic dimensionality and DSVD is the participation ratio. b,c,
Eigenspectra in V4 and IT are well described by power laws, both for individual concept manifolds (b, shaded area represents standard deviation across manifolds) and for the
global population code across all concepts (c). The power law is shallower in IT, indicating that representations in IT are higher dimensional.
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Supplementary Figure 5. Comparing concept manifold geometry across supervised, self-supervised, and unsupervised models. We compare the geometry of 1000
concept manifolds derived from a ResNet50 trained in either a supervised (grey) or self-supervised (SimCLR (3), red) manner, as well as manifolds derived from CLIP (4).
SimCLR achieves comparable overall performance to the supervised model, despite its slightly lower average signal, due to its lower signal-noise overlaps. CLIP achieves
better overall performance than the other models due to higher average signal, and lower signal-noise overlaps (the contribution from noise-noise overlaps to the few-shot
learning error is small). Note also that dimensionality is not only similar between the supervised and self-supervised models (top center), but is also correlated across the 1000
novel concepts (top right).
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Supplementary Figure 6. Concept manifold geometry is correlated across primate IT cortex and trained DNNs. We estimate the geometry of visual concept manifolds
in primate IT cortex and in trained DNNs in response to the same 64 naturalistic visual concepts (5). We then compute the correlation between each quantity in IT cortex
and in a trained DNN. Here we use a ResNet50, whose neurons have been randomly subsampled to match the number of recorded neurons in macaque IT (168 neurons).
Each panel shows one geometric quantity: SNR (r=0.76, p < 1× 10−10), signal (r=0.75, p < 1× 10−10), bias (r=0.74, p < 1× 10−10), signal-noise overlaps (r=0.24,
p < 1× 10−10), noise-noise overlaps (see SI C; r=0.57, p < 1× 10−10), and dimension (r = 0.38, p < 0.005).
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Supplementary Figure 7. Few-shot learning performance improves consistently with the number of concepts seen during training. To investigate the effect of
training dataset size on novel concept learning and manifold geometry, we train DNNs (ResNet18) on random subsets of the ImageNet1k dataset with smaller numbers of
unique classes. We find that few-shot learning accuracy on novel concepts improves consistently (A), with error decaying roughly like a power law (B) with no indication of
saturating before reaching the 1k concepts corresponding to the standard ImageNet1k dataset. Hence we predict that training on even larger subsets of ImageNet21k will yield
further improvements in few-shot learning performance. We further observe that the manifold geometry of novel concepts, signal (C), signal-noise overlap (D), dimension (E),
and noise-noise overlap (F), evolves smoothly with increasing training dataset size.
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Supplementary Figure 8. Visual examples of concept manifolds with small and large dimension and radius. Among the 1, 000 novel visual concepts in our heldout
set, we collect examples of the visual concepts whose manifolds in a trained ResNet50 have, a, smallest radius, b, largest radius, c, smallest dimension, and d, largest
dimension. The salient visual features of concepts with small manifold radius, a, appear to exhibit significantly less variation than those of concepts with large manifold radius, b.
Furthermore, we observe that the visual concepts with smallest manifold radius and dimension are largely comprised of plants and animals a,c, while the visual concepts with
largest manifold and dimension are largely comprised of human-made objects b,d. e, A scatterplot of radius and dimension across all 1, 000 novel visual concepts reveals very
little correlation between R2 and D (r2 = 0.06, p < 1× 10−10). The 16 examples in panels a,b,c,d are marked with red outlines.
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Supplementary Figure 9. How many words is a picture worth? Comparing prototypes derived from language and vision. See SI B. a, We compare the performance
of prototype learning using prototypes derived from language representations (zero-shot learning, Sec. G) to those derived from one or a few visual examples (few-shot learing,
Sec. A). We find that prototypes derived from language yield a better generalization accuracy than those derived from a single visual example, but not two or more visual
examples. b,c,d, To better understand this behavior, we use our geometric theory for zero-shot learning, Eq. 3, to decompose the performance of zero- and few-shot learning
into a contribution from the ‘signal’, which quantifies how closely the estimated prototypes match the true concept centroids, and a contribution from the ‘noise’, which quantifies
the overlap between the readout direction and the noise directions. We find that both signal, b, and noise, c, are significantly lower for zero-shot learning than for few-shot
learning. Hence one-shot learning prototypes more closely match the true concept prototypes on average than language prototypes do. However, language prototypes are able
to achieve a higher generalization accuracy by picking out readout directions which overlap significantly less with the concept manifolds’ noise directions. d, To visualize this, we
project pairs of concept manifolds into the two-dimensional space spanned by the difference between the manifold centroids, ∆x0, and the language prototype readout
direction, ∆y. Blue and green stars indicate the language-derived prototypes, and the black boundary indicates the zero-shot learning classifier which points between the two
language prototypes. Each panel shows a randomly selected pair of concepts. In each case, the manifolds’ variability is predominantly along the ∆x0 direction, while the
language prototypes pick out readout directions ∆y with much lower variability. e, To obtain a single language representation for visual concepts with multiple word labels (e.g.
‘ferris wheel’, ‘bicycle wheel’, ‘steering wheel’), we chose to simply average the representations of each word. This choice only succeeds if the modifying words (e.g. ‘ferris’,
‘bicycle’, ‘steering’) correspond to meaningful directions when mapped into the visual representation space. We investigate this choice visually by projecting the ‘ferris wheel’,
‘bicycle wheel’, and ‘steering wheel’ visual concept manifolds into the three-dimensional space spanned by the word representations for ‘ferris’, ‘bicycle’, and ‘steering’ mapped
into the visual representation space. We find that the three concept manifolds are largely linearly discriminable in this three-dimensional space, indicating that averaging
the word representations can be an effective strategy, though likely not the optimal choice. f Zero-shot learning (left) exhibits a strikingly similar pattern of errors to one-shot
learning (right) across the 1000× 1000 novel concepts. g Zero-shot learning accuracy degrades slightly with distance from the training set, similar to few-shot learning in
Supp. Fig. 1e, but the effect is not dramatic.
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Supplementary Figure 10. Diverse decision rules exhibit asymmetry. We perform few-shot learning simulations using three different decision rules (prototype, exemplar,
and SVM) in the same setting studied throughout the main text: feature layer representations from a ResNet50 pretrained on ImageNet1k. Left, Few-shot generalization error as
a function of the number of the training examples m (reproduces Fig. 8d). Right, Asymmetry, defined as |εa − εb|/(εa + εb), is broadly consistent across all three decision
rules, decaying with m.
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Supplementary Figure 11. Proposed psychophysics experiment to evaluate human few-shot learning on novel naturalistic concepts.. a, Example one-shot learning
task. The participant is asked to correctly identify a novel image (gray box) as an example of either object a (blue box) or object b (green box), given one example of each. b,
The participant is asked to indicate previous familiarity with each of the visual concepts to be tested. We will use this information to ensure that we are evaluating novel concept
learning. c, We collect the predicted 1-shot learning errors on a proposed set of unfamiliar objects, obtained by performing 1-shot learning experiments on visual concept
manifolds in a trained ResNet50. The pattern of errors exhibits a rich structure, and includes a number of visual concept pairs whose errors are dramatically asymmetric.

b c Max-margin learninga Exemplar learning

Supplementary Figure 12. Comparing cognitive learning models. a, Under exemplar learning, a test example (green cross) is classified based on its similarity to each of
the training examples (green and blue open circles). Hence exemplar learning involves the choice of a parameter β which weights the contribution of each training example to
the discrimination function. When β = 0, all training examples contribute equally. When β =∞, only the training example most similar to the test example contributes to the
discrimination function. b, We perform exemplar learning experiments on concept manifolds in a trained ResNet50, and evaluate the generalization error as a function of β. We
find that the optimal choice of β is large, approaching the β →∞ limit. Furthermore, the optimal generalization error is very close to the β =∞ limit, which is equivalent
to a nearest neighbors classifier (1-NN), whose generalization error is shown in red. For comparison, the generalization error of a prototype classifier is shown in green. c,
Illustration of a max-margin classifier. The decision hyperplane (solid black line) of a max-margin classifier is optimized so that its minimum distance to each of the training
examples is maximized (6).
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Supplementary Figure 13. Numerical evaluation of the approximations used in our theory. a, Our theory for the few-shot learning SNR (see SI 3) approximates the
projection of concept manifolds onto the linear readout direction as Gaussian-distributed. As discussed in SI B, we expect this approximation to hold well when the SNR is small,
and to break down when the SNR is large. To investigate the validity of this approximation, we perform numerical experiments on synthetic ellipsoids constructed to match the
geometry of ImageNet21k visual concept manifolds in a trained ResNet50. For each pair of concept manifolds, we vary the signal ‖∆x0‖2 over the range 0.01 to 25 and
perform 1-shot learning experiments. We compare the generalization error measured in experiments (blue points) to the prediction from our theory (Eq. SI.34; dark line). The
theory closely matches experiment over several decades of error, and begins to break down for errors smaller than 10−3. Since errors smaller than 10−3 are difficult to
resolve experimentally using real visual stimuli –as we have fewer than 1, 000 examples of each visual concept, and hence the generalization error may be dominated by one
or a few outliers– we judge that this approximation holds well in the regime of interest. The match between theory and experiment for m > 1 shot learning (not shown) is as
close or closer than for 1-shot learning, due to a law of large numbers-like effect. b, c, The few-shot learning SNR in the main text, Eq. 1, differs from the full SNR derived in SI
C, Eq. SI.34, which includes several additional terms. In b we investigate the difference between the two expressions. The two theoretical curves are nearly indistinguishable
for m ≥ 3, but differ noticeably for m = 1. In c we compare Eq. 1 to the empirical generalization error measured in few-shot learning experiments on synthetic concept
manifolds constructed to match the geometry of ImageNet21k visual concept manifolds in a trained ResNet50. The theory closely matches experiments for m ≥ 3, but slightly
underestimates the generalization error for m = 1.
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25

2. Introduction 26

In this supplementary material we develop our geometric theory for the generalization error of few-shot learning of high- 27

dimensional concepts, we fill in the technical details associated with the main manuscript, and we perform more detailed 28

investigations extending the results we have introduced. The outline of the supplementary material is as follows. 29

In SI 3 we derive an analytical prediction for the generalization error of prototype learning. We begin with a brief review 30

of prototype learning using neural representations (SI A). We then derive an exact expression for the generalization error of 31

concept learning in a simplified model (SI B), before proceeding to the full theory on pairs of novel concepts (SI C). We then 32

extend our model and theory to capture learning of more than two novel concepts in SI D. 33

In SI 4 we examine the task of learning novel visual concepts without visual examples (zero-shot learning). We introduce a 34

geometric theory for the generalization error of zero-shot learning in SI A. We then compare the performance of zero-shot 35

learning to few-shot learning, examining the question how many words is an image worth?, and identifying intriguing differences 36

between the geometry of language-derived prototypes and vision-derived prototypes that govern the relative performance of the 37

two models (SI B). 38

In SI 5 we derive analytical predictions, drawing on the theory of random projections, for the number of neurons that must 39

be recorded to reliably measure concept manifold geometry (SI A), as well as the number of IT-like neurons a downstream 40

neuron must listen to in order to achieve high few-shot learning performance (SI B). In SI 6 we compare the performance of 41

two foundational cognitive learning rules: prototype and exemplar learning, and we derive a fundamental relationship between 42

concept dimensionality and the number of training examples that governs the relative performance of the two models. 43

In SI 7 we investigate the rich semantic structure encoded in the geometry of concept manifolds in trained DNNs. We show 44

that the tree-like semantic organization of visual concepts in the ImageNet dataset is reflected in the geometry of visual concept 45

manifolds, and that few-shot learning accuracy on pairs of novel concepts increases with the distance between the two concepts 46

on the semantic tree, due to changes in each of the four geometric quantities identified in our theory. We additionally quantify 47

the effect of distribution shift between the familiar concepts used to train the DNN, and novel concepts used to evaluate 48

few-shot learning performance. 49

3. A geometric theory of few-shot learning 50

A. Prototype learning using neural representations. Our model posits that novel concepts can be learned by learning to 51

discriminate the manifolds of neural activity they elicit in higher order sensory areas, such as IT cortex. We further posit that 52

learning can be accomplished by a population of downstream neurons via a simple plasticity rule. In the following sections we 53

will introduce an analytical theory for the generalization error of concept learning using a particularly simple and biologically 54

plausible plasticity rule: prototype learning. However, we find that this theory also correctly predicts the generalization error 55

of more complex plasticity rules which involve learning a linear readout, such as max-margin learning, when concept manifolds 56

are high-dimensional and the number of training examples is small. Furthermore, when concept manifolds are high-dimensional, 57

their projection onto the linear readout direction is approximately Gaussian, and well characterized by the mean and covariance 58

structure of the concept manifolds. For this reason we approximate concept manifolds as high-dimensional ellipsoids. We find 59

that this approximation predicts the generalization error of few-shot learning remarkably well, despite the obviously complex 60

shape of concept manifolds in the brain and in trained DNNs. 61

B. Exact theory for high-dimensional spheres in orthogonal subspaces. Before proceeding to the full theory, we begin by 62

studying a toy problem which simplifies the analysis and highlights some of the interesting behavior of few-shot learning in 63

high dimensions. We examine the problem of classifying two novel concepts whose concept manifolds are high-dimensional 64

spheres. Each sphere can be described by its centroid xa0,xb0, and its radius Ra, Rb, along a set of orthonormal axes 65

uai ,u
b
i , i = 1, . . . , D, where we assume that each manifold occupies a D-dimensional subspace of the N -dimensional firing rate 66

space. We will further assume that these subspaces are mutually orthogonal, uai · ubj = 0, and orthogonal to the centroids, 67

(xa0 − xb0) · uai = (xa0 − xb0) · ubi = 0, so that the signal-noise overlaps are zero. Thus a random example from each manifold can 68

be written as, 69

xa = xa0 +Ra

D∑
i=1

uai s
a
i , xb = xb0 +Rb

D∑
i=1

ubis
b
i . [SI.1] 70

where sa, sb ∼ Unif(SD−1) are random vectors sampled uniformly from the D-dimensional unit sphere. We will study 1-shot 71

learning in this section, using xa,xb as training examples to learn a decision rule, and proceed to few-shot learning in the next 72

section. Notice that in the 1-shot setting, prototype learning, max-margin learning, and exemplar learning all correspond to 73

the same decision rule, which simply categorizes a test example of concept a, ξa, based on whether it is more similar to xa or 74

xb. Hence the theory we derive in this section is general to prototype learning, max-margin learning, and exemplar learning, as 75

well as a wide range of other learning rules. The test example ξa can be written as, 76

ξa = xa0 +Ra

D∑
i=1

uai σ
a
i , [SI.2] 77
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where σa ∼ Unif(SD−1) is a random vector sampled uniformly from the D-dimensional unit sphere. Using the Euclidean78

distance metric, ξa is classified correctly if h ≡ − 1
2‖ξ

a − xa‖2 + 1
2‖ξ

a − xb‖2 > 0. This decision rule corresponds to a linear79

classifier, and can be implemented by a downstream neuron which adjusts its synaptic weight vector w to point along the80

difference between the training examples, w = xa − xb, and adjusts its firing threshold (bias) β to equal the average overlap81

of w with each training example, β = w · (xa + xb)/2. Then the output of the linear classifier on a test example ξa is82

w · ξa − β = − 1
2‖ξ

a − xa‖2 + 1
2‖ξ

a − xb‖2 = h, which can be thought of as the membrane potential of the downstream83

neuron. The generalization error on concept a, εa, is given by the probability that this test example is incorrectly classified,84

εa = P[h ≤ 0]. Evaluating h using our parameterizations for xa,xb, ξa (Eqs. SI.1, SI.2) gives,85

h = R2
a

2
(
‖∆x0‖2 +R2

bR
−2
a − 1

)
+R2

a s
a · σa. [SI.3]86

Where we have defined ∆x0 = (xa0 − xb0)/Ra. Thus we can evaluate the generalization error by computing εa = P[h ≤ 0]87

over all draws of the training and test examples. Defining ∆ = 1
2

(
‖∆x0‖2 +R2

bR
−2
a − 1

)
,88

εa = Psa,σa [h ≤ 0] =
∫
SD−1

dDσa

SD−1

∫
SD−1

dDsa

SD−1
Θ
(
−R2

a∆−R2
as
a · σa

)
[SI.4]89

where Θ(·) is the Heaviside step function, and SD−1 is the surface area of the D-dimensional unit sphere. Enforcing the90

spherical constraint via a delta function,91

=
∫
SD−1

dDσa

SD−1

∫
RD

dDsa

SD−1
Θ
(
−R2

a∆−R2
as
a · σa

)
δ
(
1− ‖sa‖2

)
[SI.5]92

Writing the delta and step functions using their integral representations,93

=
∫
SD−1

dDσa

SD−1

∫
RD

dDsa

SD−1

∫ ∞
R2
a∆

dλ√
2π

∫
dλ̂√
2π

∫
dα

2π exp
(
iλ̂
(
λ−R2

as
a · σa

))
exp
(
α

2 −
α

2 ‖s
a‖2
)

[SI.6]94

We now perform the Gaussian integral over sa,95

= (2π)D/2

SD−1

∫
SD−1

dDσa

SD−1

∫ ∞
R2
a∆

dλ√
2π

∫
dλ̂√
2π

∫
dα

2π exp
(
iλ̂λ− R4

a‖σa‖2λ̂2

2α + α

2 −
D

2 logα
)

[SI.7]96

Noting that ‖σa‖2 is constant over the unit sphere, the integral over σa drops out,97

= (2π)D/2

SD−1

∫ ∞
R2
a∆

dλ√
2π

∫
dλ̂√
2π

∫
dα

2π exp
(
iλ̂λ− R4

aλ̂
2

2α + α

2 −
D

2 logα
)

[SI.8]98

Performing the Gaussian integral over λ̂,99

= (2π)D/2

SD−1

∫ ∞
R2
a∆

dλ√
2π

∫
dα

2π exp
(
− λ2α

2R4
a

+ α

2 −
D

2 logα
)√

α

R4
a

[SI.9]100

Expressing the result in terms of the Gaussian tail function H(x) =
∫∞
x
dt e−t

2/2/
√

2π,101

= (2π)D/2

SD−1

∫
dα

2π H(
√
α∆) exp

(
α

2 −
D

2 logα
)

[SI.10]102

We evaluate the integral over α by saddle point. The saddle point condition is,103

α = D +
exp
(
− α∆2/2

)
√

2π

√
α∆

H(
√
α∆)

[SI.11]104

We will begin by studying the case where
√
α∆� 1, and revisit the case where

√
α∆ = O(1). When

√
α∆� 1, solving for105

α gives106

α = D

1−∆2 [SI.12]107

Noting that SD−1 is similarly given by SD−1 =
∫
dα′ exp

(
α′/2−D log(α′)/2

)
(2π)D/2, we obtain the saddle point condition108

α′ = D. Using these conditions, we evaluate the integral in Eq. SI.10 at the saddle point, yielding,109

εa =
(
1−∆2)D/2 exp

(
D

2
∆2

1−∆2

)
H

(√
D∆2

1−∆2

)
[SI.13]110

This expression reveals a sharp zero-error threshold at ∆ = 1, reflecting a geometric constraint due to the bounded support111

of each spherical manifold. The generalization error is strictly zero whenever R2
a <

1
3 (‖∆x0‖2 + R2

b). However, when D is112

12 |



large, the generalization error becomes exponentially small well before this threshold, when ∆� 1 and
√
α∆ = O(1). Indeed, 113

the generalization error of prototype learning on concept manifolds in DNNs and macaque IT is better described by the regime 114

where
√
α∆ = O(1). In this regime, the saddle point condition (Eq. SI.11) gives α = D, and the generalization error takes the 115

form, 116

εa = H(
√
D∆) = H

(
1
2
‖∆x0‖2 +R2

bR
−2
a − 1√

D−1

)
[SI.14] 117

Hence in this regime the generalization error is governed by a signal-to-noise ratio which highlights some of the key behavior 118

of the full few-shot learning SNR (Eq. 1). First, the SNR increases with the separation between the concept manifolds 119

‖∆x0‖2. Second, the SNR increases as the manifold dimensionality D increases. As Fig. 2c shows, this is due to the fact that 120

the projection of each manifold onto the linear readout direction w concentrates around its mean for large D. Remarkably, 121

no matter how close the manifolds are to one another, the generalization error can be made arbitrarily small by making D 122

sufficiently large. Third, the generalization error depends on an asymmetric term arising from the classifier bias, R2
bR
−2
a − 1. 123

Decreasing Rb for fixed Ra increases εa, while increasing Rb for fixed Ra decreases εa. Interestingly, increasing Rb beyond 124

Ra
√

1− ‖∆x0‖2 yields a negative SNR, and hence a generalization error worse than chance. 125

The dependence of Eq. SI.14 on the Gaussian tail function H(·) suggests that the projection of the concept manifold onto 126

the readout direction w is well approximated by a Gaussian distribution. This approximation holds when the SNR is O(1), but 127

breaks down when the SNR is large. Motivated by the observation that the few-shot learning SNR for concept manifolds in 128

macaque IT and DNNs is O(1) (Figs. 4,5), we will use this approximation in the following section to obtain an analytical 129

expression for the generalization error in the more complicated case of ellipsoids in overlapping subspaces, for which no exact 130

closed form solution exists. We investigate the validity of this approximation quantitatively in Supp. Fig. 13a. We perform 131

few-shot learning experiments on synthetic ellipsoids constructed to match the geometry of ResNet50 concept manifolds, 132

and compare the empirical generalization error to the theoretical prediction derived under this approximation. Theory and 133

experiment match closely for errors greater than 10−3. Since errors smaller than 10−3 are difficult to resolve experimentally 134

using real visual stimuli –as we have fewer than 1, 000 examples of each visual concept, and hence the generalization error may 135

be dominated by one or a few outliers– we judge that this approximation holds well in the regime of interest. 136

C. Full theory: high-dimensional ellipsoids in overlapping subspaces. We now proceed to the full theory for few-shot learning 137

on pairs of high-dimensional ellipsoids, relaxing the simplifying assumptions in the previous section. We draw µ = 1, . . . ,m 138

training examples each from two concept manifolds, a and b, 139

xaµ = xa0 +
Dtot
a∑
i=1

Rai u
a
i s
aµ
i , xbµ = xb0 +

Dtot
b∑
i=1

Rbiu
b
is
bµ
i , [SI.15] 140

Where xa0,xb0 are the manifold centroids, and Rai , R
b
i are the radii along each axis, uai ,ubi . saµ ∼ Unif(SD

tot
a −1), sbµ ∼ 141

Unif(SD
tot
b
−1) are random samples from the unit sphere. Dtot

a and Dtot
b represent the total number of dimensions along which 142

each manifold varies. In practical situations Dtot
a = Dtot

b = min{N,P}, where N is the number of recorded neurons and P is 143

the number of examples of each concept. To perform prototype learning, we average these training examples into prototypes, 144

x̄a and x̄b, 145

x̄a = xa0 + 1
m

m∑
i=1

Dtot
a∑
i=1

Rai u
a
i s
aµ
i , x̄b = xb0 + 1

m

m∑
i=1

Dtot
b∑
i=1

Rbiu
b
is
bµ
i , [SI.16] 146

To evaluate the generalization error of prototype learning, we draw a test example 147

ξa = xa0 +
Dtot
a∑
i=1

Rai u
a
i σ

a
i , [SI.17] 148

and compute the probability that ξa is correctly classified, Pxaµ,xbµ,ξa [h ≤ 0], where h ≡ 1
2‖ξ

a − x̄b‖2 − 1
2‖ξ

a − x̄a‖2. 149

Evaluating h using our parameterization gives, 150

h = 1
2‖x

a
0 − xb0‖2 + 1

m

Dtot
a∑
i=1

m∑
µ=1

(Rai )2saµi σai + 1
2m2

Dtot
b∑
i=1

(
Rbi

m∑
µ=1

sbµi
)2 − 1

2m2

Dtot
a∑
i=1

(
Rai

m∑
µ=1

saµi
)2

+
Dtot
a∑
i=1

Rai σ
a
i (xa0 − xb0) · uai + 1

m

Dtot
b∑
i=1

m∑
µ=1

Rbis
bµ
i (xa0 − xb0) · ubi + 1

m

∑
ij

m∑
µ=1

RaiR
b
jσ
a
i s
bµ
i u

a
i · ubj [SI.18]

As we will see, the first term corresponds to the signal, the second to the dimension, the third and fourth terms to the bias, 151

the fifth and sixth to signal-noise overlaps, and the seventh to noise-noise overlaps, which quantify the overlap between manifold 152

PNAS | September 20, 2022 | vol. XXX | no. XX | 13



subspaces. Each of these terms is independent and, as discussed in the previous section, approximately Gaussian-distributed153

when the dimensionality of concept manifolds is high. Hence by computing the mean and variance of each term we can estimate154

the full distribution over h. Noting that Pxaµ,xbµ,ξa [h ≤ 0] is invariant to an overall scaling of h, we will define the renormalized155

h̃ = h/R2
a, which is dimensionless. Computing the generalization error in terms of h̃, εa = Pxaµ,xbµ,ξa [h̃ ≤ 0], will allow us to156

obtain an expression which depends only on interpretable, dimensionless quantities.157

Signal. The first term in Eq. SI.18, corresponding to signal, is fixed across different draws of the training and test examples,158

and so has zero variance. Its mean is given by 1
2‖∆x0‖2, where ∆x0 = (xa0 − xb0)/

√
R2
a, and R2

a ≡ 1
Dtot
a

∑Dtot
a

i=1 (Rai )2.159

Dimension. The second term in Eq. SI.18 corresponds to the manifold dimension. Its mean is zero, since by symmetry odd160

powers of sai , σai integrate to zero over the sphere. Quadratic terms integrate to 1/Dtot
a ,

∫
SD

tot
a −1 d

Dtot
a s s2

i /SDtot
a −1 = 1/Dtot

a ;161

hence the variance is given by,162

1
(R2

a)2 Var
[

1
m

Dtot
a∑
i=1

m∑
µ=1

(Rai )2saµi σai

]
= 1

(R2
a)2

∫
SD

tot
a −1

( m∏
µ=1

dD
tot
a sµ

SDtot
a −1

)∫
SD

tot
a −1

dD
tot
a σ

SDtot
a −1

(
1
m

Dtot
a∑
i=1

m∑
µ=1

(Rai )2saµi σai

)2

[SI.19]

= 1
(R2

a)2
1
m2

Dtot
a∑
i=1

m∑
µ=1

(Rai )4
∫
SD

tot
a −1

( m∏
µ=1

dD
tot
a sµ

SDtot
a −1

)
(saµi )2

∫
SD

tot
a −1

dD
tot
a σ

SDtot
a −1

(σai )2 [SI.20]

= 1
m

∑
i
(Rai )4

(
∑

i
(Rai )2)2 [SI.21]

= 1
mDa

[SI.22]

Where Da = (
∑Dtot

a
i=1 (Rai )2)2/

∑Dtot
a

i=1 (Rai )4 is the participation ratio, which measures the effective dimensionality of the163

concept manifold, quantified by the number of dimensions along which it varies significantly (7). Hence this term reflects the164

manifold dimensionality, and its variance is suppressed for large Da.165

Bias. We next proceed to the third and fourth terms of Eq. SI.18, which correspond to bias. We show only the calculation166

for the first bias term, as the second bias term follows from the same calculation. The mean is given by,167

1
R2
a
E[ 1
m2

Dtot
a∑
i=1

(
Rai

m∑
µ=1

saµi
)2] = 1

R2
a

1
m2

Dtot
a∑
i=1

m∑
µ=1

(Rai )2
∫
SD

tot
a −1

( m∏
µ=1

dD
tot
a sµ

SDtot
a −1

)
(saµi )2 [SI.23]

= 1/m [SI.24]
And the variance is given by,168

1
(R2

a)2 Var
[

1
m2

Dtot
a∑
i=1

(
Rai

m∑
µ=1

saµi
)2] = 1

(R2
a)2

1
m4

Dtot
a∑
ij

(Rai )2(Raj )2
m∑

µνγδ

∫
SD

tot
a −1

( m∏
µ=1

dD
tot
a sµ

SDtot
a −1

)
saµi saνi s

aγ
j saδj −

1
m2 [SI.25]169

There are three possible pairings of indices which yield even powers of si. Due to symmetry, all other pairings integrate to170

zero. First, there are m terms of the form (sµi )4, each of which integrates to 3/(Dtot
a (Dtot

a + 2)). Second, there are 3m(m− 1)171

terms of the form (sµi )2(sνi )2, each of which integrates to 1/Dtot
a . Finally, there are m2 terms of the form (sµi )2(sνj )2, each of172

which integrates to 1/(Dtot
a (Dtot

a + 2)). Thus the integral gives,173

= 1
(R2

a)2
1
m4

(Dtot
a∑
i=1

3m(Rai )4

Dtot
a (Dtot

a + 2) + 3m(m− 1)(Rai )4

Dtot
a

2 +
Dtot
a∑
i 6=j

m2(Rai )2(Raj )2

Dtot
a (Dtot

a + 2)

)
− 1
m2 [SI.26]

= 1
(R2

a)2
mDtot

a +m(m− 1)(Dtot
a + 2)

m4Dtot
a

2(Dtot
a + 2)

(Dtot
a∑
i=1

3(Rai )4 +
Dtot
a∑
i6=j

(Rai )2(Raj )2
)
− 1
m2 [SI.27]

Dropping small terms of O(m/Dtot
a ), and writing the final expression in terms of the effective dimensionality Da,174

1
(R2

a)2 Var
[

1
m2

Dtot
a∑
i=1

(
Rai

m∑
µ=1

saµi
)2] = 2

m2Da

(
1− 1

m

Da
Dtot
a

)
[SI.28]175

Notice that when m = 1 and the radii are spread equally over all dimensions, so that Da = Dtot
a (i.e. the manifold is a176

sphere), the variance goes to zero. However, in practical situations the effective dimensionality is much smaller than the total177

number of dimensions, Da � Dtot
a , and the variance is given by 2/m2Da.178
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Signal-noise overlaps. We now proceed to the signal-noise overlap terms on the second line of Eq. SI.18, each of which has 179

zero mean. The variance of the first signal-noise overlap term is given by, 180

1
(R2

a)2 Var
[Dtot

a∑
i=1

Rai σ
a
i (xa0 − xb0) · uai

]
= 1

(R2
a)2

Dtot
a∑
i=1

(Rai )2((xa0 − xb0) · uai
)2 ∫

SD
tot
a −1

dD
tot
a σ

SDtot
a −1

(σai )2 [SI.29]

= 1
R2
a

Dtot
a∑
i=1

(Rai )2((xa0 − xb0) · uai
)2 [SI.30]

We refer to this term as signal-noise overlap because it quantifies the overlap between the noise directions uai and the 181

signal direction ∆x0, weighted by the radii Rai along each noise direction. To make the notation more compact, we define 182

Ua = [Ra1ua1 , . . . , RaDtot
a
uaDtot

a
]/
√
R2
a, so that the signal-noise overlap takes the form, 183

1
(R2

a)2 Var
[Dtot

a∑
i=1

Rai σ
a
i (xa0 − xb0) · uai

]
= ‖∆x0 ·Ua‖2, [SI.31] 184

Notice that this signal-noise overlap term does not depend on m, since it involves only the test examples. The second 185

signal-overlap term, in contrast, captures the variation of the training examples along the signal direction, and so its variance 186

does depend on m, 187

1
(R2

a)2 Var
[

1
m

Dtot
a∑
i=1

m∑
µ=1

Rbis
bµ
i (xa0 − xb0) · ubi

]
= 1
m
‖∆x0 ·Ub‖2, [SI.32] 188

where we have defined Ub = [Rb1ub1, . . . , RbDtot
b
ubDtot

b
]/
√
R2
a in analogy to Ua. As the number of training examples increases, 189

the variation of the b prototype along the signal direction decreases, and the contribution of this signal-noise overlap term 190

decays to zero. 191

Noise-noise overlaps. Finally, we compute the mean and variance of the final term of Eq. SI.18, the noise-noise overlap term, 192

which follows from a similar calculation. The mean is given by zero, and the variance by, 193

1
(R2

a)2 Var
[

1
m

Dtot
a∑
ij

m∑
µ=1

RaiR
b
jσ
a
i s
bµ
i u

a
i · ubj

]
= 1
m
‖UT

a Ub‖2F . [SI.33] 194

We refer to this term as the noise-noise overlap because it quantifies the overlap between the noise directions of manifold a, 195

Ua, and the noise directions of manifold b, Ub. 196

SNR. Combining the terms computed above, the mean and variance of h̃ are given by, 197

µ = 1
2‖∆x0‖2 + 1

2(R2
bR
−2
a − 1)/m,

σ2 = D−1
a

m
+ D−1

a

2m2

(
1− 1

m

Da
Dtot
a

)
+
D−1
b

2m2
(R2

b)2

(R2
a)2

(
1− 1

m

Db
Dtot
b

)
+ ‖∆x0 ·Ua‖2 + ‖∆x0 ·Ub‖2/m+ ‖UT

a Ub‖2F /m

[SI.34] 198

We will refer to the mean as the signal, and the standard deviation as the noise. Hence the generalization error can be 199

expressed in terms of the ratio of the signal to the noise, εa = P[h̃ ≤ 0] = H(SNR) ≡ H(µ/σ). Suppressing terms in Eq. SI.34 200

which we argue contribute only a small correction yields the few-shot learning SNR in the main text, Eq. 1. These additional 201

terms, whose contribution we quantify in Supp. Fig. 13b,c, are the two noise terms arising from the bias, D
−1
a

2m2

(
1− 1

m
Da
Dtot
a

)
202

and D−1
b

2m2
(R2
b
)2

(R2
a)2

(
1− 1

m
Db
Dtot
b

)
, and the noise-noise overlaps term ‖UT

a Ub‖2F /m. We find that for concept manifolds in macaque 203

IT and in DNN concept manifolds, noise-noise overlaps are substantially smaller than signal-noise overlaps and D−1
a , and their 204

contribution to the overall SNR is negligible. The two noise terms arising from the bias fall off quadratically with m, and we 205

find that their contribution is negligible for m ≥ 3 (Supp. Fig. 13b,c). Indeed, by performing few-shot learning experiments 206

using synthetic ellipsoids constructed to match the geometry of ImageNet21k visual concept manifolds in a trained ResNet50 207

(Supp. Fig. 13b), we find that Eq. 1 and Eq. SI.34 are nearly indistinguishable for m ≥ 3 . However, for m = 1 the additional 208

terms in Eq. SI.34 yield a small but noticeable correction. Consistent with this, we find that Eq. 1 accurately predicts the 209

empirical generalization error measured in few-shot learning experiments for m ≥ 3, but very slightly underestimates the 210

generalization error for m = 1 (Supp. Fig. 13c). For this reason we include only the dominant terms in the main text (Eq. 1), 211

but we use Eq. SI.34 to predict the generalization error in simulations when m ≤ 3. 212
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D. Learning many novel concepts from few examples. . Concept learning often involves categorizing more than two novel213

concepts (Supp. Fig. 2a). Here we extend our model and theory to the case of learning k new concepts, also known as k-way214

classification. Prototype learning extends naturally to k-way classification: we simply define k prototypes, x̄1, . . . , x̄k, by215

averaging the training examples of each novel concept (Supp. Fig. 2b). A test example ξa of concept a is classified correctly if216

it is closest in Euclidean distance to the prototype x̄a of concept a. That is, if hb > 0 for all b 6= a, where217

hb = 1
2‖ξ

a − x̄b‖2 − 1
2‖ξ

a − x̄a‖2. [SI.35]218

Notice that hb can be rewritten as hb = (x̄a − x̄b) · ξa − (‖x̄a‖2 − ‖x̄b‖2)/2. Hence this classification rule is linear, and can219

be implemented by k downstream neurons, one for each novel concept. Each downstream neuron adjusts its synaptic weight220

vector wb to point along the direction of a concept prototype, wb = x̄b, b = 1, . . . , k, and adjusts its firing threshold (bias) β to221

equal the overlap of wb with the prototype, βb = wb · x̄b/2. Then the test example ξa of concept a is classified correctly if the222

output of neuron a, wa · ξa − βa, is greater than the output of neuron b, wb · ξa − βb, for all b 6= a.223

The generalization error on concept a, εa, is given by the probability that at least one hb ≥ 0, for all b 6= a. Equivalently,224

εa = 1− P[
∏
b 6=a

(hb > 0)] [SI.36]225

To evaluate this probability, we consider the joint distribution of the hb for b 6= a, defining the random variable h ≡226

[h1, . . . , ha−1, ha+1, . . . , hk]. We have already computed hb (Eq. SI.18) and seen that it is a Gaussian distributed random227

variable when the SNR= O(1) and the concept manifold is high-dimensional. Hence in this regime h is distributed as a228

multivariate Gaussian random variable,229

p(h) =
exp[− 1

2 (h− µ)TΣ−1(h− µ)]√
(2π)k−1 det Σ

, [SI.37]230

with mean µb ≡ E[hb], and covariance Σbc = E[hbhc]− µbµc. We can therefore obtain the generalization error by integrating231

p(h) over the positive orthant, where all hb ≥ 0,232

εa = 1−
∫
Rk−1

+

dk−1h p(h) [SI.38]233

All that is left to do is compute the mean µ and covariance Σ. As before, P[
∏
b6=a(hb > 0)] is invariant to an overall234

scaling of hb, so we will work with the renormalized h̃ = h/R2
a in order to obtain dimensionless quantities. We have already235

evaluated the mean µb = E[h̃b] and the diagonal covariance elements Σbb = Var[h̃b] in SI C; these are just the signal and noise,236

respectively, from the two-way SNR, Eq. SI.34. So we proceed to the off-diagonal covariances, Σbc = E[h̃bh̃c]− µbµc. Using237

the expression for hb in Eq. SI.18, we find that when b 6= c three terms contribute,238

Σbc = 1
(R2

a)2 Var
[

1
2m2

Dtot
a∑
i=1

(
Rai

m∑
µ=1

saµi
)2]+ 1

(R2
a)2 Var

[
1
m

Dtot
a∑
i=1

m∑
µ=1

(Rai )2saµi σai

]

+ 1
(R2

a)2 Var
[(Dtot

a∑
i=1

Rai σ
a
i (xa0 − xb0) · uai

)(Dtot
a∑
i=1

Rai σ
a
i (xa0 − xc0) · uai

)]
[SI.39]

The first term we evaluate in Eq. SI.28,239

1
(R2

a)2 Var
[

1
2m2

Dtot
a∑
i=1

(
Rai

m∑
µ=1

saµi
)2] = 1

2m2Da

(
1− 1

m

Dtot
a

Da

)
[SI.40]240

The second term we evaluate in Eq. SI.22,241

1
(R2

a)2 Var
[

1
m

Dtot
a∑
i=1

m∑
µ=1

(Rai )2saµi σai

]
= 1
mDa

[SI.41]242

And for the third term we evaluate an analogous expression in Eq. SI.31, yielding,243

1
(R2

a)2 Var
[(Dtot

a∑
i=1

Rai σ
a
i (xa0 − xb0) · uai

)(Dtot
a∑
i=1

Rai σ
a
i (xa0 − xc0) · uai

)]
= (∆xab0 ·Ua)T (∆xac0 ·Ua) [SI.42]244

16 |



where ∆xab0 = (xa0 − xb0)/
√
R2
a, and ∆xac0 = (xa0 − xc0)/

√
R2
a. Combining these terms, and re-inserting the terms for b = c 245

derived in Eq. SI.34, we obtain the full expression for the covariance, 246

Σbc = D−1
a

m
+ D−1

a

2m2

(
1− 1

m

Dtot
a

Da

)
+ (∆xab0 ·Ua)T (∆xac0 ·Ua)

+ δbc

(
D−1
b

2m2
(R2

b)2

(R2
a)2

(
1− Dtot

b

Db

)
+ 1
m
‖∆xab0 ·Ub‖2 + 1

m
‖UT

a Ub‖2F

)
. [SI.43]

Recall from Eq. SI.34 that µ is given by, 247

µb = 1
2‖∆x0‖2 + 1

2(R2
bR
−2
a − 1)/m [SI.44] 248

Integrating the multivariate Gaussian with mean µ and covariance Σ over the positive orthant, Eq. SI.38, gives the 249

generalization error (Supp. Fig. 2). 250

4. Learning visual concepts without visual examples by aligning language to vision 251

A. A geometric theory of zero-shot learning. Prototype learning also extends naturally to the task of learning novel visual 252

concepts without visual examples (zero-shot learning), as we demonstrate in Section G by generating visual prototypes from 253

language-derived representations. Moreover, our theory extends straightforwardly to predict the performance of zero-shot 254

learning in terms of the geometry of concept manifolds. Consider the task of learning to classify two novel visual concepts, 255

given concept prototypes ya,yb derived from language, or from another sensory modality. To classify a test example of concept 256

a, we present the test example to the visual pathway and collect the pattern of activity ξa it elicits in a population of IT-like 257

neurons. We then classify ξa according to which prototype it is closer to. As in few-shot learning, we assume that ξa lies along 258

an underlying ellipsoidal manifold, 259

ξa = xa0 +
Dtot
a∑
i=1

Rai u
a
i σ

a
i , [SI.45] 260

where σ ∼ Unif(SD
tot
a −1). We define h ≡ 1

2‖ξ
a − yb‖2 − 1

2‖ξ
a − ya‖2 , so that the generalization error is given by the 261

probability that h ≤ 0, εa = Pξa [h ≤ 0]. Writing out h, 262

h = 1
2‖x

a
0 − yb‖2 −

1
2‖x

a
0 − ya‖2 −

Dtot
a∑
i=1

(ya − yb) · uaiRai σai [SI.46]

Hence the error depends only on the distances between the prototypes and the true manifold centroids, and the overlap 263

between the manifold subspace and the difference between the two prototypes. When the concept manifold is high dimensional, 264

the last term is approximately Gaussian-distributed, with zero mean and variance, 265

Var
[Dtot

a∑
i=1

Rai σ
a
i (ya − yb) · uai

]
=
Dtot
a∑
i=1

(Rai )2((ya − yb) · uai )2 ∫
SD

tot
a −1

dD
tot
a σ

SDtot
a −1

(σai )2 [SI.47]

= R2
a

Dtot
a∑
i=1

(Rai )2((ya − yb) · uai )2 [SI.48]

Defining ∆y = (ya − yb)/
√
R2
a the variance can be written more compactly as (R2

a)2‖∆y ·Ua‖2. Hence the generalization 266

error of zero-shot learning is governed by a signal-to-noise ratio, εzero-shot
a = H(SNRzero-shot

a ), where, 267

SNRzero-shot
a = 1

2
‖xa0 − yb‖2 − ‖xa0 − ya‖2

‖∆y ·Ua‖2
[SI.49] 268

Where we have normalized all quantities by R2
a. This theory yields a close match to zero-shot learning experiments performed 269

on concept manifolds in a trained ResNet50 (Fig. 7d), and affords deeper insight into the performance of zero-shot learning, as 270

we show in Fig. 7e, and explore further in the following section. 271
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B. How many words is a picture worth? Comparing prototypes derived from language and vision.. We found that prototypes272

derived from language yield a better generalization accuracy than those derived from a single visual example (Section G),273

but not two or more visual examples (Supp. Fig. 9a). To better understand this behavior, we use our geometric theory for274

zero-shot learning, Eq. 3, to decompose the zero-shot learning SNR into a contribution from the ‘signal’, which quantifies how275

closely the estimated prototypes match the true manifold centroids, and a contribution from the ‘noise’, which quantifies the276

overlap between the readout direction and the noise directions. We use the same theory to examine the prototypes generated277

by few-shot learning, even though these prototypes vary across different draws of the training examples, by averaging the278

signal and noise over many different draws of the training examples. This allows us to compare zero-shot learning and few-shot279

learning in the same framework, to understand whether the enhanced performance of zero-shot learning is due to higher signal280

(i.e. a closer match between estimated prototypes and true centroids) or lower noise (i.e. less overlap between the readout and281

noise directions). In Supp. Fig. 9b,c we show that both signal and noise are significantly lower for zero-shot learning than for282

few-shot learning. Therefore, one-shot learning prototypes more closely match the true concept prototypes on average than283

language prototypes do. However, language prototypes are able to achieve a higher overall generalization accuracy by picking284

out linear readout directions which overlap significantly less with the concept manifolds’ noise directions. We visualize these285

directions in Supp. Fig. 9d by projecting pairs of concept manifolds into the two-dimensional space spanned by the signal286

direction ∆x0 and the language prototype readout direction ∆y. In each case, the manifolds’ variability is predominantly287

along the signal direction ∆x0, while the language prototypes pick out readout directions ∆y with much lower variability.288

5. How many neurons are required for concept learning?289

Neurons downstream of IT cortex receive inputs from only a small fraction of the total number of available neurons in IT. How290

does concept learning performance depend on the number of input neurons? Similarly, a neuroscientist seeking to estimate291

concept manifold geometry in IT only has access to a few hundred neurons. How is concept manifold geometry distorted when292

only a small fraction of neurons is recorded from?293

In this section we will draw on the theory of random projections to derive analytical answers to both questions. We will294

model recording from a small number M of the N available neurons as projecting the N -dimensional activity patterns into an295

M -dimensional subspace. When activity patterns are randomly oriented with respect to single neuron axes, selecting a random296

subset of neurons to record from is exactly equivalent to randomly projecting the full N -dimensional activity patterns into an297

M -dimensional subspace. We will begin by deriving the behavior of concept manifold dimensionality D as a function of the298

dimension of the target space M , and use this to derive the behavior of the few-shot learning generalization error.299

A. Concept manifold dimensionality under random projections.. Consider randomly projecting each point x ∈ RN on a concept300

manifold to a lower-dimensional subspace, Ax = x′ ∈ RM using a random projection matrix A ∈ RM×N , Aij ∼ N (0, 1/M).301

We collect all points on the original concept manifold into an N × P matrix X, and collect all points on the projected concept302

manifold into an M × P matrix X ′ = AX. Recall that the effective dimensionality D(N) of the original concept manifold can303

be expressed in terms of its N ×N covariance matrix CN = 1
P
XXT − x0x

T
0 ,304

D(N) =
(
∑N

i=1 R
2
i )2∑N

i=1 R
4
i

= (trCN )2

tr(C2
N ) . [SI.50]305

Likewise, the effective dimensionality D(M) of the projected concept manifold can be expressed in terms of its M ×M306

covariance matrix CM = 1
P
X ′X ′T − x′

0x
′T
0 , D(M) = (trCM )2/tr(C2

M ). Notice that307

trCM = tr
( 1
P
XTATAX −Ax0x

T
0A

T
)

[SI.51]

= tr
(
ATA

( 1
P
XXT − x0x

T
0
))

[SI.52]

= tr(ATACN ). [SI.53]

Where we have used the cyclic property of the trace. Hence the relationship between trCN and trCM is governed by the308

statistics of Λ ≡ ATA. Λ is a Wishart random matrix, with mean E[Λ] = I and variance Var[Λ] = 1/M + I/M . To estimate309

the effective dimensionality D(M) of the projected concept manifold, we can compute the expected value of (trCM )2 and310

tr(CM )2 over random realizations of Λ.311

We will start with the denominator of D(M), tr(CM )2,312

E[tr(CM )2] = E[tr
(
(ΛCN )2)] [SI.54]

Diagonalizing CN = UR2UT ,

= E[tr
(
(UTΛUR2)2)] [SI.55]
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Defining Λ̃ ≡ UTΛU ,

= E[tr
(
(Λ̃R2)2)] [SI.56]

= E
[ N∑
ij=1

Λ̃2
ijR

2
iR

2
j

]
[SI.57]

Notice that Λ̃ has the same statistics as Λ. Hence,

=
N∑
i=1

R4
i + 1

M

N∑
i=1

R4
i + 1

M

N∑
ij=1

R2
iR

2
j [SI.58]

= (1 + 1/M)tr(C2
N ) + (trCN )2/M [SI.59]

We now proceed to the numerator (trCM )2, 313

E[(trCM )2] = E[(tr(Λ̃R2))2] [SI.60]

= E[
( N∑
i=1

Λ̃iiR2
i

)2] [SI.61]

= E[
N∑
ij=1

Λ̃iiΛ̃jjR2
iR

2
j ] [SI.62]

=
N∑
ij=1

R2
iR

2
j + 2

M

N∑
i=1

R4
i [SI.63]

= (trCN )2 + 2tr(C2
N )/M [SI.64]

Combining our expressions for the numerator and the denominator, we obtain an estimate for the expected value of D(M), 314

D(M) = (trCN )2 + 2tr(C2
N )/M

(1 + 1/M)tr(C2
N ) + (trCN )2/M

[SI.65]

= D(N) + 2/M
(1 + 1/M) +D(N)/M [SI.66]

Dropping the small terms of order 1/M , 315

D(M) = D(N)
1 +D(N)/M [SI.67] 316

Therefore, provided that M is large compared to D, the random projection will have a negligible effect on the dimensionality. 317

However, when M is on the order of D, distortions induced by the random projection will increase correlations between 318

points on the manifold, significantly decreasing the effective dimensionality. Taking N → ∞, this expression also allows 319

us to extrapolate the asymptotic dimensionality D∞ = D(M)/(1−D(M)/M) we might observe given access to arbitrarily 320

many neurons. When concept manifolds occupy only a small fraction of the M available dimensions given recordings of M 321

neurons, then recording from a few more neurons will have only a marginal effect. But when concept manifolds occupy a large 322

fraction of the M available dimensions, recording from a few more neurons may significantly increase the estimated manifold 323

dimensionality. Using this asymptotic dimensionality D∞, we can obtain a single expression for the estimated dimensionality 324

D(M) of concept manifolds given recordings of M neurons, 325

D−1(M) = D−1
∞ +M−1 [SI.68] 326

This prediction agrees well with random projections and random subsampling experiments on concept manifolds in IT and 327

in trained DNNs (Fig. 6). 328
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B. Few-shot learning requires a number of neurons M greater than the concept manifold dimensionality D. . We next ask329

how the generalization error of few-shot learning depends on the number of subsampled neurons. We will study the simple case330

of 1-shot learning on identical ellipsoids in orthogonal subspaces, and demonstrate empirically that the predictions we derive331

hold well for the full case. Recall that the 1-shot learning SNR for identical ellipsoids in orthogonal subspaces (SI C) is given by332

SNR(N) = 1
2
‖∆x0‖2√

D−1
a

= 1
2
‖xa0 − xb0‖2√

tr(C2
N )

[SI.69]333

Then the signal-to-noise ratio in the projected subspace, SNR(M), is given by334

SNR(M) = 1
2
‖Axa0 −Axb0‖2√

tr(C2
M )

[SI.70]335

We have already found that E[tr(C2
M )] ≈ tr(C2

N ) + (trCN )2/M . Furthermore, random projections are known to preserve336

the pairwise distances between high-dimensional points under fairly general settings, so that the distance between manifold337

centroids, ‖xa0−xb0‖2, is preserved under the random projection, E[‖Axa0−Axb0‖2] = ‖xa0−xb0‖2. Deviations from this average338

are quantified by the Johnson-Lindenstrauss Lemma, a fundamental result in the theory of random projections, which states339

that P points can be embedded in M = O(logP/ε2) dimensions without distorting the distance between any pair of points by340

more than a factor of (1± ε). Combining these results, we have341

SNR(M) = 1
2

‖xa0 − xb0‖2√
tr(C2

N ) + (trCN )2/M
= 1

2
‖∆x0‖2√

D(N)−1
√

1 +D(N)/M
= 1

2
SNR(N)√

1 +D(N)/M
[SI.71]342

Therefore, few-shot learning performance is unaffected by the random projection, provided that M is large compared to343

the concept manifold dimensionality. As before, we can extrapolate an asymptotic SNR given access to arbitrarily many344

neurons by taking N →∞, SNR∞ = SNR(M)
√

1 +D∞/M . When concept manifolds occupy only a small fraction of the M345

available dimensions, a downstream neuron improves its few-shot learning performance only marginally by receiving inputs346

from a greater number of neurons. However, when concept manifolds occupy a large fraction of the M available dimensions, a347

downstream neuron can substantially improve its few-shot learning performance by receiving inputs from a greater number of348

neurons. Using this asymptotic signal-to-noise ratio, SNR∞, we can obtain a single expression for the few-shot learning SNR349

as a function of the number of input neurons, M ,350

SNR(M) = SNR∞√
1 +D∞/M

[SI.72]351

This prediction agrees well with random projections and random subsampling experiments on concept manifolds in IT and352

in trained DNNs (Fig. 6).353

6. Comparing cognitive learning models in low and high dimensions354

A long line of work in the psychology literature has examined the relative advantages and disadvantages of prototype and355

exemplar theories of learning. Exemplar learning is performed by storing the representations of all training examples in memory,356

and categorizing a test example by comparing it to each stored example (Supp. Fig. 12a). Exemplar learning thus involves a357

choice of how to weight the similarity to each of the training examples. In one extreme, all similarities are weighted equally, so358

that a test example is categorized as concept a if its average similarity to each of the training examples of concept a is greater359

than its average similarity to each of the training examples of concept b. This limit is analytically tractable, and we find that it360

performs consistently worse than prototype learning. Indeed, in our experiments the optimal weighting is very close to the361

opposite extreme, in which only the most similar training example is counted, and the test example is assigned to whichever362

category this most similar training example belongs to (Supp. Fig. 12b). This limit corresponds to a nearest-neighbor (NN)363

decision rule. In numerical experiments on visual concept manifolds in trained DNNs (Fig. 8a), we find that prototype learning364

outperforms NN when D is large and the number of training examples m is small, while NN outperforms prototype learning in365

the opposite regime where D is small and the number of training examples m is large. Here we offer a theoretical justification366

for this behavior. We begin with an intuitive summary, and proceed to a more detailed derivation in the following section.367

A. Identifying the joint role of dimensionality D and number of training examples m. The joint role of D and m arises because368

NN learning involves taking a minimum over the distances from each training example to the test example. However, as369

we have seen, in high dimensions these distances concentrate around their means with variance 1/D. Under fairly general370

conditions, the minimum over m independent random variables with variance 1/D scales as ∼
√

logm/D. When all other371

geometric quantities are held constant, the signal of NN learning scales as
√

logm/D, while the signal of prototype learning372

is constant. Hence when logm is large compared to D, NN learning outperforms prototype learning, and when D is large373

compared to logm, prototype learning outperforms NN learning.374

We now derive the few-shot learning signal for NN learning, analogous to the few-shot learning signal we derived for375

prototoype learning, Eq. 1. The setup for NN learning is the same as for prototype learning: we draw m training examples376

each from two concept manifolds, a and b,377
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xaµ = xa0 +
Dtot
a∑
i=1

Rai u
a
i s
aµ
i , xbµ = xb0 +

Dtot
b∑
i=1

Rbiu
b
is
bµ
i , [SI.73] 378

Where saµ ∼ Unif(SD
tot
a −1), sbµ ∼ Unif(SD

tot
b
−1). We then draw a test example, 379

ξa = xa0 +
Dtot
a∑
i=1

Rai u
a
i σ

a
i . [SI.74] 380

Where σa ∼ Unif(SD
tot
a −1). Rather than averaging the training examples into concept prototypes, to perform NN learning 381

we simply compute the Euclidean distance from the test example to each of the training examples of concept a, 382

dµa ≡
1
2‖ξ

a − xaµ‖2 [SI.75]

= 1
2‖

Dtot
a∑
i=1

Rai u
a
i σ

a
i −

Dtot
a∑
i=1

Rai u
a
i s
aµ
i ‖

2 [SI.76]

= 1
2

Dtot
a∑
i=1

(Rai )2(saµi )2 + 1
2

Dtot
a∑
i=1

(Rai )2(σai )2 −
Dtot
a∑
i=1

(Rai )2saµi σai , [SI.77]

And the distance to each of the training examples of concept b, 383

dµb ≡
1
2‖ξ

a − xbµ‖2 [SI.78]

= 1
2‖x

a
0 − xb0 +

Dtot
a∑
i=1

Rai u
a
i σ

a
i −

Dtot
a∑
i=1

Rbiu
b
is
bµ
i ‖

2 [SI.79]

= 1
2

Dtot
b∑
i=1

(Rbi )2(sbµi )2 + 1
2

Dtot
a∑
i=1

(Rai )2(σai )2 +R2
a

Dtot
a∑
i=1

Rai ∆x0 · uai σai [SI.80]

−R2
a

Dtot
b∑
i=1

Rbi∆x0 · ubisbµi +
∑
ij

RaiR
b
ju

a
i · ubjσai sbµi [SI.81]

Then the generalization error is the probability that minµ dµa is less than minµ dµb , ε
NN
a = Psaµ,sbµ,σa [hNN < 0], where 384

hNN = −minµ dµa + minµ dµb . As we found in prototype learning, when concept manifolds are high-dimensional, dµa , dµb 385

are approximately Gaussian-distributed. Again, in order to obtain dimensionless quantities we renormalize, d̃µa = dµa/R
2
a, 386

d̃µb = dµb /R
2
a. We define the mean µa = E[d̃µa ] and variance σ2

a = Var[d̃µa ], given by 387

µa = 1
2 , σ2

a = 1
2

1
Da

, [SI.82] 388

which follow from eqs. SI.23, SI.28, and SI.22. Similarly, we define µb = E[d̃µb ] and σ2
b = Var[d̃µb ], given by 389

µb = 1
2‖∆x0‖2 + 1

2R
2
bR
−2
a , [SI.83] 390

σ2
b = 1

2
1
Da

+ 1
2

(R2
b)2

(R2
a)2

1
Db

+ ‖∆x0 ·Ua‖2 + ‖∆x0 ·Ub‖2 + ‖UT
a Ub‖2F , [SI.84] 391

which follow from eqs. SI.23, SI.28, SI.31, and SI.33. Now we must evaluate the minimum over µ. The expected value of the 392

minimum of m i.i.d. Gaussian random variables is given by E[miniXi] ≈ µa −
√

2 logmσa − γ, where Xi ∼ N (µa, σ2
a), i = 393

1, . . . ,m and γ is the Euler-Mascheroni constant. Using this we can obtain the expected value of h̃NN = −minµ d̃µa + minµ d̃µb , 394

E[h̃NN] = µb − µa +
√

2 logm(σa − σb) [SI.85]

= 1
2‖∆x0‖2 + 1

2(R2
bR
−2
a − 1) +

√
2 logm
Da

C [SI.86]

PNAS | September 20, 2022 | vol. XXX | no. XX | 21



Where we have pulled the dependence on D−1
a out of σa, σb to define C ≡ (σa − σb)

√
Da. C is greater than zero, since the395

signal-noise and noise-noise overlaps are much smaller than D−1
a , and therefore σa > σb. Neglecting the bias term 1

2 (R2
bR
−2
a −1),396

we have that the signal of prototype learning is given by397

signalNN = 1
2‖∆x0‖2 +

√
2 logm
Da

C [SI.87]398

Compare this to the signal we found for prototype learning,399

signalproto = 1
2‖∆x0‖2 [SI.88]400

The NN signal is larger than the prototype learning signal. However the NN noise is also larger than the prototype learning401

noise. Hence when logm is large compared to Da, NN outperforms prototype learning, and when Da is large compared to402

logm, protoype learning outperforms NN. We stop short of computing a full SNR for NN, since the random variables minµ h̃µa403

and minµ h̃µb are not independent, and computing their correlation is not straightforward. However, the D ∼ logm relationship404

we have identified here seems to reliably capture the behavior we observe in experiments on concept manifolds in a trained405

DNN (Fig. 8a), where we vary the dimensionality by projecting each concept manifold onto its top D principal components.406

7. Geometry of DNN concept manifolds encodes a rich semantic structure.407

The ImageNet21k dataset is organized into a semantic tree, with each of the 1k visual concepts in our evaluation set representing408

a leaf on this tree (see Methods J). To investigate the effect of semantic structure on concept learning, we sort the generalization409

error pattern of prototype learning in a trained ResNet50 to obey the structure of the semantic tree, so that semantically410

related concepts are adjacent, and semantically unrelated concepts are distant. The sorted error matrix (Supp. Fig. 1a)411

exhibits a prominent block diagonal structure, suggesting that most of the errors occur between concepts on the same branch of412

the semantic tree, and errors between two different branches of the semantic tree are exceedingly unlikely. In other words, the413

trained ResNet may confuse two types of Passerine birds, like songbirds and sparrows, but will almost never confuse a sparrow414

for a mammal or a fish. The sorted error matrix exhibits structure across many scales: some branches reveal very fine-grained415

discriminations (e.g. aquatic birds), while other branches reveal only coarser discriminations (e.g. Passerines). We suspect416

that the resolution with which the trained DNN represents different branches of the tree depends on the composition of the417

visual concepts seen during training, which we discuss further below. Finally, the sorted error pattern exhibits a pronounced418

asymmetry, with much larger errors above the diagonal than below. In particular, food and artifacts are more likely to be419

classified as plants and animals than plants and animals are to be classified as food and artifacts.420

We additionally sort the patterns of individual geometric quantities: signal, bias, and signal-noise overlap, to reflect the421

semantic structure of the dataset (Supp. Fig. 1a, right). Signal exhibits a clear block diagonal structure, similar to the422

error pattern. Bias reveals a clear asymmetry: plants and animals have significantly higher bias than food and artifacts do,423

indicating that the radii of plant and animal concept manifolds are significantly smaller than the radii of food and artifact424

concept manifolds. Intriguingly, this suggests that the trained ResNet50 has learned more compact representations for plants425

and animals than for food and artifacts.426

To quantify the extent to which each of these quantities depends on the semantic organization of visual concepts, we compute427

the average few-shot accuracy, signal, bias, and signal noise overlap across all pairs of concepts, as a function of the distance428

between the two concepts on the semantic tree, defined by the number of hops required to travel from one concept to the other429

(Supp. Fig. 1b). We find that few-shot learning accuracy, signal, and bias all increase significantly with semantic distance,430

while signal-noise overlaps decrease.431

A related question is the effect of distribution shift between trained and novel concepts. The composition of the 1, 000432

heldout visual concepts in our evaluation set is quite different from that of the 1, 000 concepts seen during training. For433

instance, 10% of the training concepts are different breeds of dogs, while only 0.5% of the novel concepts are breeds of dogs.434

To quantify the effect of distribution shift, we measure the tree distance from each of the 1k novel concepts as the distance to435

its nearest neighbor among the 1k training concepts in ImageNet1k. In Supp. Fig. 1c we plot the average few-shot learning436

accuracy as a function of tree distance to the training set. Few-shot learning accuracy degrades slightly with distance from the437

training set, but the effect is not dramatic.438
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