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Abstract 24 

Background 25 

The biodiversity crisis and increasing impact of wildlife disease on animal and human health provides 26 

impetus for studying immune genes in wildlife. Despite the recent boom in genomes for wildlife 27 

species, immune genes are poorly annotated in non-model species owing to their high level of 28 

polymorphism and complex genomic organisation. Our research over the past decade and a half on 29 

Tasmanian devils and koalas highlights the importance of genomics and accurate immune annotations 30 

to investigate disease in wildlife. Given this, we have increasingly been asked the minimum levels of 31 

genome quality required to effectively annotate immune genes in order to study immunogenetic 32 

diversity. Here we set out to answer this question by manually annotating immune genes in five 33 

marsupial genomes and one monotreme genome to determine the impact of sequencing data type, 34 

assembly quality and automated annotation on accurate immune annotation.  35 

Results 36 

Genome quality is directly linked to our ability to annotate complex immune gene families, with long 37 

reads and scaffolding technologies required to reassemble immune gene clusters and elucidate 38 

evolution, organisation and true gene content of the immune repertoire. Draft quality genomes 39 

generated from short-reads with HiC or 10x Chromium linked-reads were unable to achieve this. 40 

Despite mammalian BUSCOv5 scores of up to 94.1 % amongst the six genomes, automated annotation 41 

pipelines incorrectly annotated up to 60% of manually annotated immune genes regardless of 42 

assembly quality or method of automated annotation.  43 

Conclusions 44 

Our results demonstrate that long-reads and scaffolding technologies, alongside manual annotation, 45 

are required to accurately study the immune gene repertoire of wildlife species.  46 

Keywords: immune gene, genome, quality, annotation, MHC, wildlife, disease 47 
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Background 48 

Globally we are facing a biodiversity crisis, with 25% of known plant and animal species under threat 49 

and one million species facing extinction [1]. Disease is one of many drivers of global wildlife decline 50 

and extinction, with recent devastating examples such as chytridiomycosis in amphibians [2], white 51 

nose syndrome in bats [3] and devil facial tumour disease (DFTD) in Tasmanian devils (Sarcophilus 52 

harrisii) [4]. Habitat loss, fragmentation and climate change lead to population decline and subsequent 53 

loss of genetic diversity, which increases susceptibility of populations to new and existing disease 54 

threats [5].  55 

Genomics is increasingly applied in conservation [6] facilitated by a boom in genomes for wildlife 56 

species [7-10], with over 4,000 vertebrate genomes currently accessioned with the National Center 57 

for Biotechnology Information (NCBI) (March 2022). Genomics in conservation typically involves 58 

technologies such as reduced representation sequencing which capture single nucleotide 59 

polymorphisms (SNPs) with a bias towards neutral regions of the genome [11, 12]. This can be used 60 

to investigate population genetic metrics such as heterozygosity, inbreeding and relatedness to inform 61 

conservation management. This is a cost-effective approach for conservation and has been used in a 62 

range of taxa to inform conservation actions, for examples see Tasmanian devils [13], gorillas (Gorillia 63 

gorilla gorilla and Gorilla beringei graueri) [14], helmeted honeyeaters (Lichenostomus melanops 64 

cassidix) [15] and bilbies (Macrotis lagotis) [16]. 65 

The COVID-19 pandemic is one of many examples which highlight the ever-increasing importance of 66 

understanding wildlife immunity and disease to better understand and manage disease spill over [17]. 67 

In the case of wildlife threatened by disease, conservation questions are more challenging to answer 68 

and typically involve immunogenetic diversity which relies on accurate immune gene annotations. 69 

Immune genes are some of the most polymorphic regions of the genome, owing to the need to 70 

generate diversity in response to ever-changing pathogenic pressures [18, 19]. Diversity within these 71 

gene families is generated through gene duplication, gene copy number variation, SNPs and rapid 72 
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evolution, resulting in a complex genomic organisation and high level of pseudogenization [18]. 73 

Generally, immune genes are encoded within clusters in the genome, especially highly duplicated 74 

families such as the major histocompatibility complex (MHC) and natural killer cell (NK) receptors [20]. 75 

Given these factors, accurate assembly and annotation of genomic regions encoding immune genes 76 

can be challenging [21-23], especially in wildlife.  77 

Automated annotation pipelines such as MAKER [24] and Fgenesh++ [25] are accurate at identifying 78 

the majority of protein-coding genes within a genome [26, 27]. However, they are less effective at 79 

characterising complex and highly variable gene families such as immune genes [28, 29] which are 80 

misassembled even in the high-quality human genome [21]. As such, manual annotation and curation 81 

of immune genes is required, which is conducted for model organism genomes accessioned with 82 

Ensembl [30]. Wildlife are not currently included in this scope, and hence immune genes are poorly 83 

annotated, or not annotated at all, in many species. 84 

Advances in sequencing technology means chromosome-length genomes are now achievable for a 85 

range of species [8]. Use of multiple sequencing, scaffolding, chromatin conformation and optical 86 

mapping technologies leads to accurate assembly of complex and variable genomic regions, such as 87 

immune genes [8]. However, the high input sample quantity and quality requirements are not always 88 

feasible for wildlife [31]. This leads to the use of lower-input short-read sequencing to generate a 89 

draft-quality genome assembled into scaffolds. However, short-read sequencing is well known to be 90 

incompetent at resolving highly repetitive and complex gene regions [32, 33]. While scaffolding 91 

technologies can improve contiguity of these assemblies, complex and variable regions often remain 92 

fragmented. The need to balance budget, sample and genome assembly quality against accurate 93 

immune gene annotation is essential to answer questions around disease and immunity.  94 

Over the past decade and a half our research has focused on immunity and disease in two iconic 95 

marsupial species; the Tasmanian devil and koala (Phascolarctos cinereus). During this period, we have 96 

worked with bacterial artificial chromosome (BAC) and complementary DNA (cDNA) libraries and draft 97 
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genomes of varying qualities. Our research, and that of others, has been crucial for understanding, 98 

managing and preventing disease-induced decline [4, 34-36]. As the cost of sequencing has dropped, 99 

and the appreciation of the power of genetics and genomics for population management has 100 

increased, we have increasingly been asked about the minimum levels of genome quality required to 101 

be able to effectively annotate immune genes in order to study levels of diversity in wild populations. 102 

Here we set out to answer that question.   103 

Tasmanian devils are threatened by DFTD, a contagious cancer which has decimated over 80% of the 104 

population since it was first documented in 1996 [4]. The Tasmanian devil reference genome was 105 

sequenced using illumina short-reads  in 2012 [37], generating a 3.17 Gbp genome with a scaffold N50 106 

of 1.8 Mbp and contig N50 of 20kbp. The Major Histocompatibility Complex was not able to be 107 

annotated in the draft genome due to the high levels of fragmentation, scattered across at least 15 108 

scaffolds. But manual annotation was possible alongside transcriptomes [38-40] and targeted 109 

sequencing of MHC-positive BAC clones [38, 41-45]. Development of MHC markers led to 110 

determination of gene copy number and nucleotide variation amongst the devil population, revealing 111 

devils have low MHC diversity, much of which is shared with DFTD [43, 46]. The low histocompatibility 112 

barriers, coupled with downregulation of tumour MHC expression, allows DFTD to transmit between 113 

individuals and evade the host immune response [44]. Recent MHC genotyping using long-read 114 

sequencing enabled the identification of full-phased MHC alleles and separation of highly similar 115 

alleles (1bp difference), resulting in the identification of new functional MHC diversity within the devil 116 

population [47].  117 

The koala is another iconic Australian marsupial where disease is a major contributing factor to 118 

population decline [48]. Chlamydiosis is one of many threatening processes affecting koalas, a disease 119 

caused by infection with the intracellular bacterium Chlamydia pecorum [48]. A chromosome-length 120 

koala reference genome was sequenced in 2018 using Pacfici Biosciences (PacBio) long-reads, Illumina 121 

short-reads and BioNano optical maps [49]. This generated a 3.19 Gbp assembly with a scaffold N50 122 
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of 480 Mbp and contig N50 of 11.4 Mbp [49], a 400-fold increase in scaffold contiguity compared to 123 

the Tasmanian devil genome assembly [37]. This high-quality koala genome enabled accurate 124 

annotation of immune gene families, including the first complete reconstruction of MHC and T cell 125 

receptor gene clusters from a genome sequence in marsupials [35, 50-52]. Preliminary genome 126 

resequencing identified that variants within IFNγ, TNFα and MHC genes are essential for clearance of 127 

Chlamydia in koalas [34]. MHC genotype has also been linked to disease susceptibility and severity in 128 

different koala populations [53, 54].  129 

Understanding the role of immunogenetics in DFTD and chlamydiosis formed the basis for the 130 

development of vaccines in devils [55] and koalas [56] respectively. Several chlamydial vaccines have 131 

been developed for koalas over the past decade, culminating in a multivalent vaccine that induces a 132 

strong and protective immune response which may be therapeutic [34, 56]. Current DFTD vaccines in 133 

devils similarly hinge upon the host immune response and are based on IFNγ-treated DFTD cells which 134 

result in MHC expression on the cell surface resulting in immune recognition and clearance of the 135 

tumour [55].  136 

In this study, our aim was to determine the impact of sequence data type, assembly quality and 137 

automated annotation on accurate immune annotation. To achieve this, we manually annotated 138 

immune genes in the genomes of five marsupials and one monotreme.  These include recent published 139 

genome assemblies of five marsupials; koala (Phascolarctos cinereus) [49, 57, 58], woylie (Bettongia 140 

penicillata) [59], common wombat (Vombatus ursinus) [57, 58], brown antechinus (Antechinus 141 

stuartii) [60] and numbat (Myrmecobius fasciatus) [61], and previous immune gene annotations from 142 

one monotreme, the platypus [33]. These six genomes differ in quality, from scaffold assemblies 143 

generated using only 10x Chromium linked-reads (numbat, antechinus), short-read with high-144 

throughput chromosome conformation capture (HiC) (wombat), long and short-read (woylie), to high-145 

quality chromosome-length genomes generated using multiple data types (koala and platypus) (Table 146 

1). In addition, we assess the accuracy of automated immune gene annotation by Fgenesh++, MAKER 147 
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and NCBI pipelines in these non-model species. Although this is not a perfect comparison given 148 

species-specific immune gene expansion/contraction, it provides a guide of the impact of genome 149 

quality on immune gene annotation. Here we show that high quality chromosome-length genomes 150 

are necessary for accurate immune annotation in the context of wildlife disease.  151 

Analyses 152 

Immune genes were annotated in the koala, woylie, wombat, antechinus, and numbat genomes and 153 

transcriptomes using similarity-based search methods such as BLAST [62] and HMMER [63] with 154 

known marsupial immune gene sequences as queries. This resulted in the manual characterisation of 155 

over 2,700 immune genes amongst the five species, from six immune gene families or groups: toll-like 156 

receptors (TLR), T cell receptors (TCR), immunoglobulins (IG), major histocompatibility complex 157 

(MHC), natural killer (NK) cell receptors and cytokines (Table 2). Platypus immune gene families have 158 

previously been annotated [33, 64-75], some of which had already been mapped within the current 159 

genome assembly (MHC and TCR) [33] and the remainder were mapped in this study. Genomic 160 

coordinates of all immune genes annotated in this study are available in Additional file 1. A 161 

comprehensive summary of results for each immune gene family are available in Additional file 2.  162 

Table 1. Assembly metrics for the five marsupial and one monotreme genome used in this study.  163 

 Koala 
[49, 57, 58] 

Woylie 
[59] 

Wombat 
[57, 58] 

Antechinus 
[60] 

Numbat 
[61] 

Platypus 
[33] 

Data types PacBio RS II 
Illumina 
BioNano 
HiC (DNAzoo) 
RNAseq (16 
transcriptomes) 
 

PacBio HiFi 
Illumina 
RNAseq (4 
transcriptomes) 

Illumina 
HiC (DNAzoo) 
 

10x Chromium 
RNAseq (12 
transcriptomes) 

10x Chromium 
RNAseq (3 
transcriptomes) 

PacBio 
10x Chromium 
BioNano 
HiC (Phase 
genomics & 
Dovetail) 
RNAseq (19 
transcriptomes) 

Genome size 
(Gbp) 

3.19 3.39 3.34 3.31 3.42 2.13 

GC (%) 39.05 38.64 38.89 36.20 36.3 46.23 

No. scaffolds 1,318 1,116 633,737 30,876 112,299 322 

No. contigs 1,935 3,016 685,859 106,199 219,447 834 
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Scaffold N50 
(Mbp) 

480.11 6.94 576.1 72.7 0.223 83.33 

Contig N50 
(Mbp) 

11.4 1.995 0.07 0.08 0.038 15.1 

Gaps (%) 0.01 0.403 0.54 2.75 3.52 0.81 

Complete 
mammalian  
BUSCOv5.2.2  

94.1% 94.1%  89.3% 92.5%  76.4%  83.0% 

 164 

Table 2. Number of annotated immune genes in each of the five marsupials and one monotreme in 165 

this study.  166 

 Koala Woylie Wombat Antechinus Numbat Platypus 

TLR 10 10 10 10 10 10 

TCR constant 10 12 10 11 9 19 

TCR variable 103 122 95 126 104 252 

IG constant 15 20 10 7 6 14 

IG variable 289 226 98 145 121 118 

MHC I 19 17 5 7 3 6 

MHC II 16 23 7 14 8 5 

MHC III 37 37 41 32 34 58 

Ext. MHC & 
framework 
genes 

27 28 31 25 32 20 

NKC 17 17 11 11 17 122 

LRC 25 60 32 49 38 4 

Extended LRC 6 24 9 15 11 11 

Cytokines 83 76 76 68 70 49 

Total 657 672 435 520 463 678 

 167 

Table 2 legend. Includes complete and partial gene sequences. A more detailed comparison of 168 

immune genes annotated in this study, with those identified in other marsupials and humans is 169 

available in Supplementary Table 2 within Additional file 2. 170 

Overall, the immune gene repertoire of the koala, woylie, wombat, antechinus, and numbat was 171 

similar to other marsupials [50, 76], with marsupial-specific genes and eutherian orthologs identified. 172 

Relatively conserved immune genes such as TLRs and constant regions of TCR and IG, as well as 173 

polymorphic genes such as MHC and NK receptors, were identified in all five species. Numerous koala 174 

immune gene sequences have been characterised previously due to their involvement in chlamydiosis 175 
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and koala retrovirus which threaten populations [48]. These include MHC [49, 77-79], IG [50], TCR 176 

[49], NK receptors [51] and selected cytokines [50, 80-83] (Supplementary Table S2 in Additional file 177 

2). We mapped the location of these genes within the current version of the genome, and identified 178 

additional new sequences within the LRC, IG and cytokine families (Table 2, Supplementary Table S2 179 

in Additional file 2). Immune genes unique to the marsupial lineage were also characterised in the five 180 

species studied here. These included MHC class II genes DA, DB and DC, TLR1/6 and TCRμ. Large 181 

marsupial-specific gene expansions within the LRC NK receptors were characterised in all five species, 182 

as well as reduced gene content within the NKC cluster of NK receptors. Consistent with other 183 

marsupials investigated to date Igδ was not found in any of the five assemblies [84]. A detailed outline 184 

of immune genes annotated in this study compared to those of other marsupials and humans is 185 

provided in Supplementary Table S2 within Additional file 2.  186 

Automated versus manual immune gene annotation 187 

For woylie, wombat, antechinus, numbat, and platypus genomes, we assessed how well our manual 188 

immune gene annotation aligned with automated annotations by Fgenesh++ (woylie, antechinus, and 189 

numbat), MAKER (wombat) and the NCBI pipeline (platypus). The koala was not included in the 190 

comparison as the genome available on DNAzoo 191 

(https://www.dnazoo.org/assemblies/Phascolarctos_cinereus) has not been annotated.  Inclusion of 192 

the platypus NCBI annotation ensures that any differences in automated and manual immune gene 193 

annotation are not due to deficiencies within the Fgenesh++ annotation pipeline, as the woylie, 194 

antechinus and numbat genomes were all annotated with Fgenesh++ using the same parameters.  195 

Automated annotation pipelines failed to characterise the complete immune repertoire of the 196 

platypus or any of the four marsupial species (Figure 1). Only 24.65%, 21.32%, 21.32%, 29.66%, 30.97% 197 

of immune genes were correctly annotated by the automated pipeline in platypus, woylie, wombat, 198 

antechinus, and numbat respectively, defined as ≥90% overlap in genomic coordinates of immune 199 

genes between our manual annotations and the automated annotations (Figure 1). Interestingly, more 200 
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immune genes were correctly annotated by the automated software in the low-quality wombat, 201 

antechinus, and numbat genomes than the high-quality platypus and woylie genomes. This inverse 202 

relationship between genome quality and proportion of correctly annotated immune genes is likely 203 

related to the characterisation of additional divergent and polymorphic genes such as MHC class I and 204 

II in woylie and platypus, which could not be identified by automated or manual annotation in the 205 

wombat, antechinus, and numbat due to genome fragmentation (Table 3). The platypus and all four 206 

marsupial genomes displayed a high proportion of immune genes which were very poorly annotated 207 

by automated pipelines (≤10% overlap between immune gene coordinates from manual versus 208 

automated annotation); 34.48%, 47.46%, 69.98%, 31.79% and 31.17% for platypus, woylie, wombat, 209 

antechinus, and numbat respectively (Figure 1). Most of these genes comprised immunoglobulin and 210 

T cell receptor variable gene segments, and species-specific gene expansions in NKC and LRC families, 211 

indicating the difficulty in automated annotation of these regions (Figure 3).  212 

Figure 1. Percentage overlap of genomic coordinates between manual and automated annotations of 213 

immune genes in five genomes.  214 

Figure 1 legend. Colours indicate proportion of immune genes with 0 to 100% overlap between manual 215 

and automated annotations, with 0 indicating manually annotated genes with no overlap of genomic 216 

coordinates with the automated annotation.  217 

Relationship between genome quality and manual immune gene annotation 218 

Manual annotation of immune genes across the koala, woylie, wombat, antechinus and numbat 219 

genomes, and mapping of previous annotations to the new platypus genome, highlighted a clear 220 

relationship between immune gene fragmentation and genome quality (Figure 2). Overall, the high-221 

quality koala, platypus and woylie genomes all contained complete immune gene family clusters, 222 

which were highly fragmented in the lower quality wombat, antechinus, and numbat genomes. 223 

Fragmentation was particularly evident within families which contain genes that do not share 224 

orthology to those in eutherians, such as LRC NK receptors and TCRμ, and highly duplicated families 225 
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such as MHC (Figure 3). To investigate this relationship further, we calculated the number of scaffolds 226 

which encoded 50% (L50) and 90% (L90) of manually annotated immune genes in each of the five 227 

species studied (Figure 2). 228 

Figure 2. L50 and L90 immune gene metric for six genomes, compared to log10 contig N50.  229 

The platypus, koala and woylie had an L90 of 10, 9 and 36 respectively, which suggests immune gene 230 

families were highly contiguous within all three genomes (Figure 2). Complete coding sequences were 231 

identified for 98% and 95% of immune genes in koala and woylie respectively. In addition, 90% of 232 

annotated immune genes were located on scaffolds greater than 33.3 Mbp, 75 Mbp and 1 Mbp in 233 

platypus, koala, and woylie respectively. Complex multi-gene immune families such as MHC, NK 234 

receptors and TCR were highly intact in all three species. The koala and woylie MHC regions were both 235 

located on a single scaffold (Figure 3). Class I and II genes were interspersed, and flanked by class III, 236 

framework and extended class I and II gene clusters, which reflected the MHC organisation of other 237 

marsupials (Figure 3) [49, 85]. Unlike marsupials, the platypus MHC is encoded within a 238 

pseudoautosomal region of two sex chromosomes. MHC class I and II genes were interspersed in a 239 

single cluster on chromosome X3, and class III, extended class I and II, and framework genes located 240 

in a single cluster on chromosome X5 (Figure 3) [33]. Large gene expansions within the LRC NK 241 

receptors were encoded on a single scaffold in koala and six scaffolds in woylie (Figure 3). The number 242 

and type of monotreme NK receptor genes differs to marsupials, as they have a large expansion within 243 

the NKC gene cluster and reduction within the LRC gene cluster [66]. More than 80% of platypus NKC 244 

genes were located in a single cluster on chromosome 17, with LRC genes located on 5 different 245 

chromosomes [66]. Fragmentation of the LRC cluster is not a factor of genome quality but reflects the 246 

evolutionary history of this immune family [66].  The four TCR loci (α/δ, β, γ and μ) were encoded in 247 

single clusters on three chromosomes in platypus and single scaffolds in koala. The TCR loci were 248 

fragmented across up to three scaffolds in woylie. This includes genes known to flank these loci in 249 
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other marsupials, which enabled resolution of TCR locus organisation in these species, and confirmed 250 

gene synteny across marsupials, human and mouse as identified previously [85]. 251 

Figure 3. Genomic organisation and gene content of the LRC (A) and MHC region (B) in five genomes.  252 

Figure 3 legend. The number of genes within each cluster are given, as well as scaffold counts of 253 

orphan genes (genes on single scaffolds). In A, LRC genes are purple, extended LRC genes are teal. In 254 

B, MHC class I genes are red, class II blue, class III green, extended class I pink, extended class II yellow 255 

and framework genes orange. Large distances between genes are given below the scaffold, otherwise 256 

the distance between genes and/or clusters was within the expected range for each family. Figure 257 

created with BioRender.com. 258 

Fragmentation of immune genes in the wombat genome differed between immune families, with an 259 

L90 of 56 (Figure 2). 22% of scaffolds encoding immune genes were shorter than 100Kb and partial 260 

coding sequences were identified for 7% of annotated immune genes. The MHC region was relatively 261 

contiguous in the wombat, with 92% of genes encoded on a single scaffold (Figure 3). Although, a 262 

number of MHC genes were encoded as orphan genes to the main MHC cluster, indicating this family 263 

is misassembled in the wombat genome. In addition, some MHC genes could not be identified in the 264 

wombat genome, while only single copies could be identified for others which are known to be 265 

duplicated in all other marsupials studied to date (Additional file 2). While this reduced MHC gene 266 

content in the wombat may reflect the true MHC gene repertoire of this species, it is likely MHC genes 267 

could not be annotated due to assembly error. The LRC cluster was highly fragmented across 16 268 

scaffolds (Figure 3), of which more than 80% encoded a single gene and were less than 10kb in length. 269 

Extended LRC and LRC genes were interspersed, likely due to mis-assembly of the region as these 270 

genes should be located in separate clusters as observed in koala and woylie (Figure 3). TCRα, β and γ 271 

loci were encoded on individual scaffolds, however TCRμ was fragmented across 10 scaffolds, with 272 

34% of genes located on individual scaffolds of less than 15Kb. While the TCRβ locus was encoded in 273 
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a single cluster in the wombat, half of the locus was in the reverse orientation. This organisation is 274 

unusual amongst mammalian TCR and is likely a result of the HiC scaffolding.  275 

Immune gene families were highly fragmented in the antechinus and numbat genomes, with an L90 276 

of 156 and 218 respectively (Figure 2). 29% and 43% of immune genes were located on scaffolds less 277 

than 100Kb, and partial coding sequences were identified for 5.7% and 10.8% of immune genes, in 278 

antechinus and numbat respectively. Complex multi-gene families such as MHC, NK receptors and TCR 279 

were highly fragmented, with individual genes or exons located on short scaffolds. While 86% of MHC 280 

genes were located on a single scaffold in antechinus (Figure 3), genome fragmentation prevented the 281 

identification of additional MHC genes, hence the true MHC gene content could not be determined. 282 

The numbat MHC region was highly fragmented across 52 scaffolds, 63% of which were less than 283 

100Kb in length (Figure 3). Large gene expansions of LRC NK receptors were fragmented across 34 284 

scaffolds in antechinus and numbat, of which 67% (antechinus) and 35% (numbat) were less than 285 

10Kb, and 76% of scaffolds encoded individual LRC genes in both species (Figure 3). Similar to wombat, 286 

extended LRC and LRC genes were interspersed, likely a mis-assembly as these genes should be 287 

encoded within separate clusters as observed in koala and woylie. All four TCR loci were fragmented 288 

in numbat, and all except TCRα in antechinus, with individual loci encoded across up to 6 scaffolds in 289 

numbat and 19 in antechinus. Low contiguity within genomic regions encoding immune gene families 290 

in the antechinus and numbat limited investigation of genomic organisation, synteny and evolution in 291 

these species.  292 

Discussion 293 

By manually annotating immune genes in five marsupial and one monotreme genome of varying 294 

qualities, we have confirmed that genome quality is directly linked to our ability to annotate complex 295 

immune gene families. Without long reads and scaffolding technologies, immune genes are scattered 296 

across many individual scaffolds and gene family organisation and evolution cannot be elucidated. We 297 
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conclude that a kitchen sink approach, that uses long-read data combined with HiC technology, to 298 

generate a high-quality genome assembly is required to investigate immunity and disease in wildlife.   299 

The immune gene repertoire of the koala, woylie, wombat, antechinus and numbat was similar to 300 

other marsupials such as Tasmanian devil [38, 41, 45], tammar wallaby (Macropus eugenii) [68, 86-89] 301 

and grey short-tailed opossum (Monodelphis domestica) [76]. The platypus immune gene repertoire 302 

has been characterised previously [33], and we identified their location within the current genome 303 

assembly. Fewer MHC genes were identified in the wombat, antechinus, and numbat, compared to 304 

the platypus, koala, and woylie (Table 2, Supplementary Table S2 in Additional file 2). This is likely due 305 

to poor read assembly within this highly variable and duplicated region of the genome, rather than a 306 

true reduction in MHC gene content within these three species. The assembly of a complete MHC 307 

cluster in the platypus, koala and woylie is due to the ability of long reads to span duplicated and 308 

variable sequences, which enables assembly algorithms to accurately reconstruct this complex region 309 

of the genome.  310 

Automated annotation poorly characterises immune genes in non-model species 311 

Despite mammalian BUSCOv5 scores of up to 94.1% amongst the six genomes in this study, indicating 312 

that the genomes were “functionally complete”, on average 42% of immune genes were not 313 

accurately annotated and up to 61% of genes were not annotated by the automated software 314 

Fgenesh++ and MAKER, nor the NCBI pipeline, compared to our manual annotations (Figure 3). The 315 

majority of immune genes incorrectly annotated or missing from the automated annotations were 316 

variable segments of TCR and IG, or divergent genes such as MHC with low or no BLAST homology to 317 

nucleotide or protein databases. Gene models generated by automated annotation software are 318 

hypotheses based on supporting evidence such as RNAseq data, which was used as evidence for the 319 

automated annotation in the four marsupial and platypus genomes. While immune transcripts were 320 

identified in the transcriptomes from these species, RNAseq data did not provide enough evidence to 321 

support gene models for ~40% of immune genes within the genome. Some immune genes may not 322 
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have been expressed in the tissue sequenced, were expressed at low levels, or were fragmented. For 323 

human and mouse, comprehensive and curated gene sets such as GENCODE and RefSeq are available 324 

to guide gene model predictions, comprising data from more than 10,000 RNA experiments and 325 

decades of dedicated work in this field [90, 91]. Given time, budget and sample constraints for wildlife, 326 

these curated gene sets are not available, hence RNAseq evidence is incomplete resulting in deficient 327 

gene models by automated annotation software.  328 

It is not surprising that TCR and IG V segments were not automatically annotated in the genomes in 329 

this study. These genes are notoriously difficult to characterise and are manually annotated in the 330 

human and mouse genome on Ensembl using the International Immunogenetics Information System 331 

(IMGT) database [30, 92]. Alignment of mature IG and TCR sequences from RNAseq data to the 332 

genome results in poor automated annotation, as V segments utilize different sequence signal splice 333 

sites to introns, which are not recognized by the open reading frame prediction algorithms. V 334 

sequences from three marsupials and two monotremes are available in IMGT, however as non-model 335 

species, they are not included in the scope for manual annotation by Ensembl or NCBI, so these 336 

important functional features are not annotated.  337 

Our results highlight the importance of manual annotation of complex and variable immune genes, 338 

and caution reliance on BUSCO metrics to assess functional completeness of a genome. If this pattern 339 

is observed more widely across non-model species and other complex gene families, functionally 340 

important genes may not be accurately represented in genome annotations, which will flow on to 341 

downstream applications [28, 93]. While automated annotation is required to keep pace with the 342 

rapid sequencing of genome assemblies, manual gene characterisation is still the gold standard for 343 

genome annotation [90] and is conducted for the human, mouse, zebrafish and rat genomes on 344 

Ensembl [94]. For non-model species, manual annotation is conducted by individual research groups 345 

following genome assembly accession with NCBI or Ensembl, which conduct in-house automated 346 

annotation for some but not all species [95, 96]. These highly valuable manual gene annotations are 347 
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not incorporated into the Ensembl annotation release but are often listed in the supplementary 348 

materials of multiple individual publications. NCBI does have some capacity to incorporate manual 349 

changes to existing annotation records [97]. Changes to multiple annotations, such as adding new 350 

genes as is the case in this study, require the genome to be re-annotated, which is not feasible for all 351 

research groups. In addition, it is not a requirement for manual changes to annotations to be tracked 352 

between genome versions, hence this information could easily be lost. Given NCBI and Ensembl 353 

annotations are widely used by the scientific community, these institutions should consider 354 

incorporating manual gene annotations into the annotation record or provide scope for permanently 355 

storing this valuable data alongside the respective assembly.  356 

Genome quality correlates with immune gene fragmentation 357 

As expected, we found that genome quality directly correlates with likelihood that an immune gene 358 

family was assembled and annotated correctly. Immune genes fragment as genome quality declines 359 

(Figure 2 and 3). This highlights the importance of long reads and HiC scaffolding to re-assemble 360 

complex gene families (platypus, koala, woylie), which are poorly assembled in short read and linked-361 

read assemblies (wombat, antechinus, numbat). Figure 4 provides a graphical representation of the 362 

impact of different sequencing technologies on the assembly and fragmentation of immune gene 363 

clusters. When the average read or contig length is shorter than the gene length, the assembly 364 

algorithm is unable to reconstruct genes, which are fragmented across multiple short contigs [93]. The 365 

average immune gene in this study was ~10 kbp in length. Long reads greater than 10 kbp in the 366 

platypus, koala and woylie genomes were able to span these genes, whereas the ~150 bp short reads 367 

in the wombat, antechinus and numbat genomes were insufficient to re-assemble the entire gene, 368 

resulting in gene fragments on short scaffolds. Gene families with copy number variation such as MHC 369 

and NK receptors are notoriously difficult to assemble and annotate [18, 21], so it is not surprising 370 

these gene families were highly fragmented in the antechinus and numbat genomes. Gene copies 371 

within these families can contain almost identical domains, may be pseudogenes and are encoded in 372 

clusters within the genome [28]. For example, koala NK LRC genes share up to 96% amino acid 373 
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sequence identity and are encoded within a single cluster. For these reasons, assembly and annotation 374 

of MHC and NK receptors have been used to illustrate improvements in assembly quality. For example, 375 

MHC class I genes were located on a single contig in a recent release of the human genome [21], 376 

however the highly repetitive MHC class II locus remains unresolved [21].  377 

Figure 4. Impact of different sequencing technologies on the assembly of immune gene clusters such 378 

as the MHC.  379 

Figure 4 legend. The impact of long-read (A – platypus, koala and woylie), short-read (B – wombat) 380 

and 10x Chromium linked read (C – antechinus and numbat) sequencing technologies, alone or in 381 

combination with HiC scaffolding (i – koala & platypus, and ii – wombat), on the assembly of complex 382 

and repetitive immune gene clusters such as the MHC. Colour gradient represents gene orientation 383 

(A) Long read sequencing generates reads which span complex and repetitive sequences, resulting in 384 

long contigs and scaffolds which contain multiple immune genes with complete coding sequences. (B) 385 

Short-read sequencing generated reads which are unable to span immune genes, hence reads are 386 

assembled into multiple short contigs which end when the algorithm is unable to assemble a repetitive 387 

and complex immune gene sequence. (C) In linked-read sequencing, individual DNA molecules are 388 

partitioned into gel beads and identical barcodes attached, then sequenced using short-read 389 

technology resulting in read clouds [98]. As no individual read within the cloud spans the entire length 390 

of the DNA molecule, the algorithm is unable to assemble repetitive and complex sequences, resulting 391 

in multiple short contigs similar to a short-read assembly. Short contigs in B and C result in 392 

fragmentation of immune genes, leading to false pseudogenization and “missing” genes. (i) HiC 393 

sequencing provides contact information for DNA sequences located in close proximity within the 394 

nucleus, as frequency decreases with increasing linear distance within the genome assembly [99]. This 395 

contact information can be used to cluster, order and orient contigs into chromosome-size scaffolds 396 

[100]. Long contigs scaffolded with HiC result in near-complete reconstruction of immune gene 397 

clusters. (ii) Short contigs scaffolded with HiC generates what appears to be long scaffolds, however 398 
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complex immune gene clusters are incomplete. As multiple HiC contacts can span the length of the 399 

contig, the correct contig orientation is not apparent leading to inversions and mis-placed contigs 400 

during scaffolding. This leads to incorrect orientation of genes, which can cause pseudogenization 401 

and/or gene fragmentation. Manual immune gene annotation reveals that the true gene complement 402 

of the immune cluster is not contained within the scaffolded sequence. Figure created with 403 

BioRender.com.  404 

HiC scaffolding of contigs derived from platypus and koala long reads resulted in complete and 405 

accurate reassembly of immune gene clusters in both genomes (Figure 4 A). Conversely, HiC 406 

scaffolding of contigs from wombat short reads resulted in immune gene fragmentation (Figure 4 B), 407 

reflected in the high immune gene L90 for the wombat genome (Figure 2). Both the koala and wombat 408 

genomes were scaffolded with DNAzoo HiC data using the same 3D-DNA pipeline [57, 58, 101]. This 409 

result underscores the importance of assessing annotations when determining genome quality, as the 410 

wombat genome is classified as chromosome-length yet is highly fragmented within functionally 411 

important genomic regions. Input genome assembly contiguity is known to influence HiC scaffolding 412 

ordering and orientation errors [102], despite claims that HiC scaffolding with 3D-DNA generates 413 

chromosome-length scaffolds from US$1,000 short read contigs [57]. Problems with HiC scaffolding 414 

within repetitive and duplicated regions are well documented [23, 102, 103], which is exacerbated by 415 

short contigs [102]. Modelling of human genome scaffolding performance using 3D-DNA revealed 416 

scaffold chimeras, ordering and orientation errors increased as contig length decreased [102]. While 417 

the koala and platypus genomes used as input to HiC scaffolding benefited from polishing with short 418 

read data and optical mapping [49], HiC scaffolding is insufficient to recover the majority of immune 419 

clusters from a fragmented genome.  420 

The 3D-DNA pipeline orientates contigs within scaffolds by maximizing contact frequency between 421 

contig ends [58]. Short contigs, such as those from the wombat, would have multiple contacts that 422 

span the length of the contig. This means both true and false contig orientations would have a similar 423 
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frequency, resulting in errors such as the partial inversion of the TCRB locus which is likely false 424 

(Additional file 2). At a gene level, these errors lead to the misplacement of genes on short scaffolds 425 

outside the main immune cluster and false pseudogenisation (Figure 4 B). Long contigs, such as those 426 

from the koala, would have fewer contacts that span the length of the contig, hence the true 427 

orientation of the contig would be clear from the higher contact frequency at the correct joining end. 428 

The combination of long contigs which span repetitive and highly heterozygous regions with HiC 429 

scaffolding maximizes contiguity within immune gene clusters (Figure 4 A).  430 

10x Chromium linked-read sequencing was insufficient to accurately re-assemble immune gene 431 

clusters in our study (Figure 4 C). Complete marsupial immune gene clusters can span hundreds of 432 

kilobases to megabases, as shown by annotation of the complete MHC, NK receptor and TCR regions 433 

in the koala (Additional file 2). DNA molecules input to 10x library preparation were on average 74 434 

kbp and 23 kbp in antechinus and numbat respectively. For most immune gene clusters, these 435 

molecules would not span an entire cluster, nor even multiple immune genes in the case of the 436 

numbat. This is reflected in our results, where smaller immune clusters such as the 70 kbp TRG locus 437 

were intact in the antechinus, while no cluster was intact in the numbat. Interestingly, the antechinus 438 

MHC cluster appears to be intact (Figure 3), however manual annotation revealed multiple genes were 439 

“missing” within the scaffold and instead were located on individual short scaffolds. Even in humans, 440 

10x linked reads are unable to resolve repetitive sequences which are larger than the input DNA 441 

molecule [104]. Molecule length is influenced by input DNA quality [105], which was >40 kbp for both 442 

antechinus [60] and numbat. DNA from human blood and cell lines routinely achieve molecule lengths 443 

greater than 100 Mbp [106]. Given the challenges surrounding sampling of wildlife, this outcome 444 

would be unlikely for many wildlife genomics projects using 10x linked read sequencing.  445 

Regardless of input DNA molecule length, 10x libraries are still subject to the limitations of short-read 446 

sequencing regarding assembly of complex sequences. Antechinus and numbat 10x libraries were 447 

sequenced as short ~150 bp reads, hence while reads can be assigned back to the corresponding input 448 
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DNA molecule, no single read spans the molecule length. Gaps between the reads make de novo 449 

assembly of repetitive and complex immune sequences difficult, often resulting in termination of 450 

contig extension and gene fragments scattered across short scaffolds [104, 107, 108]. These gene 451 

fragments can be misinterpreted as pseudogenes owing to loss of up/downstream coding regions 452 

(Figure 4C). For example, antechinus and numbat NK LRC genes share up to 97% and 98% amino acid 453 

sequence identity amongst the 91 and 70 immunoglobulin superfamily (IGSF) domains identified in 454 

each species respectively. The LRC should be encoded within a single cluster, as in the koala genome 455 

(Figure 3). Instead, the antechinus and numbat LRC clusters are fragmented across 33 and 34 scaffolds 456 

respectively.  457 

As the global biodiversity crisis deepens, the need to sequence eukaryotic life while it remains is 458 

imperative [1, 7, 8]. High quality genomes, using a combination of long-read and HiC, have recently 459 

been generated for a number of wildlife species [8], which have been used to answer questions 460 

involving chromosome evolution [109], comparative genomics [110] and runs of homozygosity [111] 461 

amongst others. Our results show that high-quality genomes are also necessary to study immune 462 

genes in wildlife.  463 

Draft quality de novo genomes, in this study the antechinus and numbat (linked reads), have limited 464 

capacity for usefully informing immunogenetics studies as only partial sequences will be identified for 465 

most immune genes. A scaffold-quality genome, in this study the woylie (long-reads) or wombat 466 

(short-reads with HiC), would be suitable for immune marker development targeting most immune 467 

gene families, and studying TCR and IG diversity. Long-reads will provide contiguity within duplicated 468 

MHC and NK families, which should reassemble into complete clusters. HiC data may resolve some 469 

immune gene clusters from a short-read assembly, however, may introduce errors as discussed 470 

earlier. Finally, the kitchen sink approach, in this study the platypus and koala genomes (multiple data 471 

types), will accurately assemble immune gene clusters, which is essential for investigating genomic 472 

organisation, synteny and evolution. In the context of wildlife disease, it may be necessary to wait for 473 
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an opportunistic sample from an individual that is euthanised, or acquire ethics to euthanise an 474 

individual, in order to obtain sufficient sample quantity and quality to generate high-quality 475 

chromosome-length genome assemblies and associated transcriptomes [7, 9, 112-114].  476 

Potential implications 477 

The biodiversity crisis and increasing impact of wildlife disease on animal and human health provides 478 

impetus for studying immune genes in wildlife. Genomes are now available for many wildlife species, 479 

however utility of these assemblies for annotating complex immune gene families is unknown. We 480 

have provided an assessment of complex immune gene annotation across genomes of varying quality, 481 

using immune genes in five marsupials and one monotreme as an example. Genome quality directly 482 

influenced the reassembly of immune gene clusters, and ability to investigate evolution, organisation, 483 

and true gene content of the immune repertoire. A high-quality genome generated from long-reads 484 

with HiC accurately assembles immune gene clusters. However, draft-quality genomes generated 485 

from short-reads with HiC or 10x Chromium linked-reads were unable to achieve this. Aside from 486 

genome quality, manual annotation of immune genes is required to cover the shortfall in deficient 487 

gene models used by automated annotation software. Our results highlight the limitations of different 488 

sequencing technologies and established workflows for genome annotation and quality assessment, 489 

when applied to non-model species and the investigation of wildlife disease and immunity.  490 

Methods 491 

Five published marsupial genomes, koala [49, 57, 58], woylie [59], wombat [57], antechinus [60] and 492 

numbat [61] (Table 1), and one monotreme genome, platypus [33], were selected for this study based 493 

on use of different sequencing technologies (alone and in combination) and variation in assembly 494 

quality. These include assemblies generated using multiple data types (koala and platypus), long and 495 

short-reads (woylie), short-reads and HiC (wombat) or 10x Chromium linked-reads (antechinus and 496 

numbat). BUSCO scores were generated by uploading the six genome assemblies to the Galaxy web 497 
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platform [115], where the public server at galaxy.org was used to run BUSCOv5.2.2 [27]  against the 498 

mammalian database.  499 

Immune genes were annotated in the koala (phaCin_unsw_v4.1_HiC) [49, 57, 58], antechinus 500 

(anrechinusM_pseudohap2.1) [60], woylie (mBetpen1.pri.20210916) [59], wombat (vu-2k) [57, 58] 501 

and numbat genome (mMyrfas1.pri.20210917) [61] using multiple search strategies. BLAST was used 502 

to search genome assemblies, associated annotation files and/or transcriptomes using published 503 

marsupial, monotreme and eutherian immune gene sequences as queries, with default parameters 504 

and an e-value threshold of 10 so as not to exclude any potential gene candidates. HMMERv3.2 [116] 505 

was also used to identify putative genes within immune families that are known to contain 506 

duplications in other marsupials, such as NK receptors. Hidden markov models (HMM) were 507 

constructed using ClustalW alignments of published marsupial and eutherian immune gene sequences 508 

constructed in BioEditv7.2.5 [117], which were then used to search all genomes and transcriptomes 509 

using HMMER v3.2 with an e-value threshold of 10. For variable segments of T cell receptor and 510 

Immunoglobulin families, recombination signal sequences (RSS) downloaded from the IMGT database 511 

[92] and published koala sequences [49], were aligned using ClustalW in BioEditv7.2.5 [117]and used 512 

to construct HMM. These RSS HMM were then used to search each genome using HMMERv3.2 [116], 513 

to identify conserved RSS which flank each variable segment. For NK receptors, putative NKC and LRC 514 

sequences from BLAST+v2.7.1 [62] and HMMERv3.2 [116] searches were queried against the swissprot 515 

nonredundant database, and any sequences with top hits to swissprot NK genes, marsupial-specific 516 

NK genes or the protein families database (Pfam)  [118]immunoglobulin domain PF00047 or C-type 517 

lectin domain PF00059 HMM model were retained. IGSF domains within putative NK sequences from 518 

each species were identified using the simple modular architecture research tool (SMART) database 519 

[119], and IGSF domains within 5 kbp were considered exons of a single LRC gene. Putative immune 520 

genes were named following the appropriate nomenclature for each family, with duplicated genes 521 

named according to their genomic location from the 5’ to 3’ end of the locus. For each immune gene 522 

family, amino acid sequences from all five species, in addition to other marsupial, monotreme and 523 
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eutherian sequences, were aligned using ClustalW in BioEditv7.2.5 [117]. This alignment was then 524 

used to construct neighbour-joining phylogenetic trees in MEGAXv10.2.4 [120] using the p-distance 525 

method, pairwise deletion and 1000 bootstrap replicates.  526 

Additional files 527 

File name: Additional file 1 528 

File format: .xls 529 

Title of data: Supplementary Table S1 530 

Description of data: Genomic coordinates of manually annotated immune genes in the koala, woylie, 531 

wombat, antechinus and numbat genomes. The genomic coordinates of published platypus immune 532 

genes used in this study are also included.  533 

File name: Additional file 2 534 

File format: .doc 535 

Title of data: Supplementary results 536 

Description of data: A comprehensive comparison of manually annotated immune genes in this 537 

study to those in other marsupials and humans is provided in Supplementary Table 2. For each 538 

immune gene family characterised in this study, a summary of results and phylogenetic analysis is 539 

provided. This includes genes encoding toll-like receptors, natural killer receptors, cytokines 540 

(interferons, interleukins and tumour necrosis factors), T cell receptor constant and variable regions 541 

(all five chains in marsupials and monotremes), immunoglobulin constant and variable regions 542 

(heavy and light chains) and major histocompatibility complex class I, II and III genes. Additional file 2 543 

contains 7 tables and 14 figures.  544 
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Data availability 545 

The published woylie and numbat genome and global transcriptome assemblies are available through 546 

Amazon Web Services Open Datasets Program https://registry.opendata.aws/australasian-547 

genomics/, NCBI under BioProject accession PRJNA763700 and GigaDB for woylie and PRJNA786364 548 

and GigaDB [121] for numbat. The published koala genome assembly and annotation 549 

(phaCin_unsw_v4.1_HiC.fasta) are available from the DNAzoo website  550 

https://www.dnazoo.org/assemblies/Phascolarctos_cinereus. The published wombat genome 551 

assembly and annotation (vu-2k.fasta) are also available from the DNAzoo website 552 

https://www.dnazoo.org/assemblies/Vombatus_ursinus. The published antechinus genome 553 

assembly and annotation (anrechinusM_pseudohap2.1.fasta) are available from NCBI under 554 

BioProject accession PRJNA664282 and GigaDB [122], and published platypus genome assembly and 555 

annotation (mOrnAna1.pri.v4) under BioProject accession PRJNA489114. Genomic coordinates for all 556 

immune gene sequences annotated in this study are available in Additional file 1. Supporting 557 

information for this study is available in Additional file 2.  558 
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Globally we are in the midst of a biodiversity crisis and infectious diseases are a major 
driver of wildlife decline. The COVID-19 pandemic highlights the impact of wildlife 
disease on animal and human health, and provides impetus for studying immune genes 
in wildlife. Despite the recent increase in genomes for wildlife species, our 
understanding of immune genes in these species is limited owing to their high level of 
polymorphism and complex genomic organisation which makes assembly and 
annotation notoriously difficult.  
 
Our research over the past decade and a half on Tasmanian devils and koalas highlights 
the importance of genomics and accurate immune annotation for wildlife disease 
investigations. As such, we are increasingly asked the minimum genome quality 
required to effectively annotate immune genes which underpin wildlife disease 
investigations. In this manuscript we aim to answer this question by manually 
annotating immune genes in five marsupial genomes and one monotreme genome of 
different qualities to determine the impact of sequencing strategy and automated 
annotation on accurate immune annotation.  
 
We determined that high-quality chromosome-length genome assemblies generated 
using long-reads and scaffolding technologies are required to accurately annotate 
immune genes. Draft-quality genomes generated using short-reads and HiC 
technology, or 10x Chromium linked-read technology, resulted in highly fragmented 
immune genes which led to incorrect annotation and prevented interpretation of 
genomic organisation and gene family evolution.  
 
While the six genomes in this study displayed BUSCO scores of up to 94.1% indicating 
functional completeness, we also show that automated annotation programs need 
improvement, as up to 60% of manually annotated immune genes were not accurately 
annotated by automated programs. Deficient annotations within functionally 
important immune gene families will flow through to downstream analysis and result 
in spurious results.  
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