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1. Experimental Methods 

 

1.1 High-throughput AgN-DNA synthesis is performed with a Tecan Freedom Evo 150 robotic 

liquid handler equipped with a 96 MultiChannel Arm in 384 well microplates. DNA is ordered with 

standard desalting from Integrated DNA Technologies, pre-suspended in DNase-free water at 40 

μM in 384 well plates. 10 wells contain a control oligomer 5’-TTCCCACCCACCCCGGCCCGTT-

3’ that produces two bright AgN-DNA products at 540 nm and 636 nm.1 The green product’s highly 

reproducible fluorescence intensity is used to normalize fluorescence brightness values to the 

experiments from which training data was taken (described elsewhere2). Normalization accounts 

for differences in plate reader sensitivities across the decade of past experiments and is described 

in past works.2–5  

 

To synthesize AgN-DNAs, DNA is mixed via pipetting with an aqueous solution of AgNO3 and 

NH4AcO (Sigma Aldrich), pH 7 in low volume 384 well clear bottom polystyrene microplates with 

a nonbinding surface (Corning #3540). After 18 minutes, solutions are reduced by a freshly 

prepared solution of NaBH4 in ultrapure H2O, followed by mixing via pipetting. Finally, microplates 

are centrifuged at low speed for < 60 seconds to remove any small bubbles in microplate wells; 

these infrequent bubbles may scatter light and are problematic for quantitative spectroscopy. Final 

stoichiometries match conditions used for training data collection: 20 μM DNA, 100 μM AgNO3, 

and 50 μM NaBH4 for measurements in the visible spectrum and 20 μM DNA, 140 μM AgNO3, 

and 70 μM NaBH4 for NIR measurements (10 mM NH4OAc in both cases). Well plates are stored 

in the dark at 4 °C and measured 7 days after synthesis. Full experimental details are provided in 

freely available supporting information of past publications.2,6 

 

1.2 Experimental spectroscopy and data processing.  Fluorescence emission spectra in the 

400-850 nm range are collected using a Tecan Spark, in 2 nm steps with 20 µs integration time 

and excitation centered at 280 nm to universally excite all products.7 For fluorescence emission 

spectra collected on the Tecan Spark, the peak fluorescence emission wavelength, λp, and 

fluorescence brightness of each AgN-DNA product detected are determined by spectral fitting 

(described in detail previously2). To summarize briefly, a peak-finding routine implemented with a 

custom script determines the number of peaks in the spectrum, up to a maximum of three peaks. 

Then, the spectrum is fitted to a sum of Gaussians of the form 𝑓!(𝑥) = 	𝑎" + 𝐴! ∗

exp	(−(𝐸 − 𝐸!)#/𝑤!#) where 𝐸 is photon energy and 𝐸! is the energy at the center of the Gaussian 

peak. 𝑎" is an offset due to background signal (“dark” spectrum). Fitting is performed with 
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constraints 𝐴! > 0 and peak width 𝑤! > 0.05 (avoids fitting to noise). Peak energies are converted 

to peak wavelength: 𝜆$ = ℎ𝑐/𝐸!, where ℎ is Planck’s constant and 𝑐 is the speed of light in 

vacuum. Fits are excluded as non-physical if λp is outside of the instrument detection window, and 

for extremely broad peaks, 𝑤! > 0.5	eV, which can correspond to multiple fluorescent products. 

Finally, fits are verified by eye and corrected or, in the rare case that no reasonable fit is possible, 

the sequence is excluded from analysis. Peaks are then annotated by their peak wavelength, λp, 

and peak brightness, defined as 𝐴 =	𝐴! ∗ 𝑤! (proportional to peak area). We report peak 

brightnesses that are normalized to previous experiments using the control AgN-DNA described 

in Section 1.1 

 

Fluorescence emission data in the NIR spectral region are collected using a customized well plate 

reader described previously, with the same excitation source as the Tecan Spark.8 This NIR plate 

reader is equipped with a custom InGaAs detector, whose output is digitized by an analog to 

digital converter (ADC). Because the software controlling the well plate reader’s motor and 

excitation source is separate from the acquisition software for the ADC, a mixture of PbS quantum 

dots that emit across the entire NIR wavelength range (Sigma Aldrich) is used as an indicator of 

the time of measurement of the first well (A1) in the file recorded by the ADC. The entire plate is 

measured for each bandpass filter (50 nm bandpass filters, spanning a spectral range from 675 

– 1,325 nm in 50 nm increments). The raw data (voltage as a function of time) is processed for 

each of the 384 wells using a custom script in Igor Pro (Wavemetrics), including correction for 

detector spectral responsivity. Finally, we reconstruct the fluorescence intensity of each well in 50 

nm steps corresponding to each bandpass filter.  

 
 

2. Computational Methods 

2.1 k-means clustering 
K-means clustering was implemented using the sci-kit learn in python. All peak wavelengths in 

our dataset were clustered into 4 distinct bins. The optimal number of clusters was determined 

using the elbow method, which identifies the inflection point in the plot of inertia as a function of 

the number of clusters to be the appropriate number of clusters in a dataset; this inflection point 

corresponds to the point beyond which adding additional clusters results in “diminishing returns,” 

or begins to contribute less to the performance of the k-means clustering model (Fig. S1b). Using 

the elbow test, the point of inflection on the graph corresponds to four color classes, which aligns 

with the previously expected number of classes (note that the Dark class is inherently absent from 
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this k-means clustering). The centroids for the Green, Red, Far Red, and NIR  classes were 

placed at 547, 637, 687, and 797 nm, respectively, represented by the colored dots in Figure S1. 

The boundaries or midway points between these four centroids are therefore at 592, 662, and 

750 nm (e.g. the boundary between the centroids at 637 nm and 687 nm is at (687-637)/2 = 662 

nm). These boundaries align with the wavelength cutoffs for the previously identified color classes 

and provided a starting point for finding an optimal upper wavelength cutoff for the NIR class. The 

centroid for the NIR class is likely to be shifted towards the Far Red class due to the artificial peak 

that forms around 750 nm and is a result of combining together two different fluorescence 

detectors (Methods).  

 

 
Figure S1. a) Distribution of peaks in the training data set, with the centroids of each class color 
class represented by colored dots and the cutoffs between each color class represented by 
vertical black lines (cutoffs defined to be the midway point between centroids). B) Elbow plot of 
inertia vs. number of clusters, indicating that the optimal number of clusters for the k-means 
clustering is four.  
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Figure S2. Average 10-fold cross-validation score of a set of 10 SVMs trained to discriminate Far 
Red vs. NIR, using sub-sampling to balance class sizes. 
 
2.2 Definitions of intensity thresholds for Dark class and bright color classes 
In our past work, sequences associated with the bottom 30% of integrated intensities were defined 

to be Dark, and sequences associated with the top 30% of integrated intensities were defined to 

be “bright.”4 The fluorescence intensity values corresponding to these initial definitions were 

preserved in later work to define the Dark, Green, Red, and Far Red classes.2,5 To improve ML 

classification accuracies, here we refined the metrics used to define Dark (based on total 

integrated intensity) and bright (based on peak area 𝐴 = 𝐴! ∗ 𝑤! of a fitted Gaussian, as described 

in 2.1) based on our past studies to better capture the sequence features that encode AgN-DNA 

color. To increase selectivity against Dark sequences by ML-enabled DNA ligand sequence 

design, we reduced the Dark integrated intensity threshold to 0.8 times the original definition, 

which increased average cross-validation scores for the majority of the 10 color class pairs. We 

also lowered the “brightness” threshold, i.e. the minimum A corresponding to a brightly fluorescent 

AgN-DNA product, as our past work found that many Green AgN-DNA products are “right on the 

cusp” of being classified as bright by the previous metrics. Lowering the brightness threshold to 

0.8 times its prior value2 increases the size of the Green class by 17%. Together, these changes 

also improve class balance by bolstering the size of the Green class and reducing the size of the 

Dark class.  

 

2.3 Generation of training data classes 
Definitions of color classes are described in detail in the main text. Here, we summarize how DNA 

sequences are sorted into these classes. All sequences and associated integrated intensities Iint, 
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peak wavelengths λp, and peak areas A (“brightness” metrics) and NIR integrated intensities Inir 

are provided in Supporting Data 1. These metrics have been described in detail in past studies.2,4 

Definitions are as follows: 

• “Dark” defined as sequence whose Iint < 0.8 

• “Green” as λp < 580 nm, A > 0.8, Iint > 0.8, and Inir <0.01 

• “Red” as 600 nm < λp < 660 nm, A > 0.8, Iint > 0.8, and Inir <0.01 

• “Far Red” as 660 nm < λp < 800 nm, A > 0.8, Iint > 0.8, and Inir <0.01 

• “NIR” as λp > 800 nm and Inir > 0.01 or  Iint > 0.8 

Any sequences in the training data with normalized integrated intensity less than 0.8 and all peak 

areas less than 0.8 were excluded from the training data set. Furthermore, sequences associated 

with multiple bright fluorescence peaks in two color classes were excluded from training data. 

One exception to this rule is that any sequence with a brightly fluorescent NIR peak was placed 

into the NIR class regardless of any secondary peak, as there are very few identified sequences 

that produce NIR products, and it was necessary to include all NIR-forming DNA sequences to 

learn the NIR color-sequence correlations.  

 

2.4 Example of one-hot encoding 
 

 
Figure S3. Example of one “hot-encoded” positional features. The 4x10 matrix is converted into 
a 1x40 vector and provides a unique representation of each 10-base sequence.   
 
2.5 Machine learning parameters. Support vector machines (SVMs) were implemented using 

scikit-learn, a machine learning package written in Python. An L1 regularization was used as the 

loss function, and the optimal parameterization value was found to be 0.1. The regularization 

parameter value (C) was selected by training the SVM with all 184 features and comparing the 

cross-validation accuracies as a function of C values ranging from 0.001 to 5 (Fig. S4). All other 

parameters for the SVM were set to default values of scikit-learn.   

T C C G G G T G G C 
1 2 3 4 5 6 7 8 9 10

A 0 0 0 0 0 0 0 0 0 0

C 0 1 1 0 0 0 0 0 0 1

G 0 0 0 1 1 1 0 1 1 0

T 1 0 0 0 0 0 1 0 0 0
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Figure S4. Average 10-fold cross-validation accuracy for all 1v1 SVMs in the ML model at 
different regularization parameters (C), e.g. the value for C = 0.1 is the average of all scores in 
Figure 3b.   
 
2.6 Cross-validation heatmaps of 1v1 classifier ensembles. Random subsampling of the more 

abundant color class is used to balance class size when training each 1v1 classifier. Because 

random subsampling also alters the training data set, our model consists of a set of 10 1v1 

classifiers per color class pair. To assess the accuracy of our model at mapping DNA sequence 

onto AgN-DNA color class, classifier performance was assessed by 10-fold cross-validation. This 

method splits training data into 10 folds, using 9 folds for training and one fold to assess classifier 

accuracy, and averages the accuracy from these 10 trained classifiers. For each 1v1 classifier, 

we performed 10-fold cross-validation process 100 times, to capture the variability in a large 

number of random data subsamples. The average and standard deviations of these cross-

validation scores are reported in accuracy heatmaps (below). 
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Figure S5. Accuracy heatmap for SVM-based model using only one-hot encoded positional 
features. 
 

 
Figure S6. Accuracy heatmap for SVM-based model using only staple features. Note that Figure 

S6 is identical to Figure 3b and is provided here for easy comparison to Figures S5 and S7. 
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Figure S7. Accuracy heatmap for SVM-based model using both staple features and positional 
features.  
 

 
Figure S8. Accuracy heatmap for RF model using the top features selected for each classifier by 
BorutaShap.  
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2.7 Feature analysis 
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Figure S9. Average 10-fold cross-validation accuracies of each 1v1 SVM as a function of the 
number of staple features included in the feature vector. Features are ranked based on the 
average importance score assigned by BorutaShap; the horizontal axis lists features from left-to-
right in order of this rank. Each cross-validation accuracy is calculated from a set of 10 SVMs 
trained on random subsamples of the training data and for feature vectors corresponding to all 
staple features listed to the left of the location on the horizontal axis. Features that scored greater 
than the maximum shadow feature (i.e. sufficiently greater than random) are to the left of the 
vertical blue lines. For color class pairs including the NIR class, features to the left of the brown 
line have average scores within a standard deviation of the maximum shadow feature. 
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2.8 Supporting Note 1: Definition of net importance score (NIS) 

 
We implemented BorutaShap,9 a wrapper for random forest (RF) ML algorithms, using Python.10 

BorutaShap assigns each feature a maximum importance score compared to shadow attributes 

(MISA). Shadow features are randomly generated and are therefore meaningless for 

classification. Thus, MISA provides a metric that can be used to compare the importance of real 

features to random noise. Because MISA are relevant to the comparison of two classes and not 

correlated to a single class, we defined a Net Importance Score to calculate the importance of a 

single motif for a single color class. 

BorutaShap assigns an importance score to a specific staple feature m for each pair of color 

classes Ci	and Cj, corresponding to a 1v1 classifier trained to discriminate Ci	and Cj. Because there 

are five color classes (Dark, Green, Red, Far Red, and NIR), i,	j	=	1,	2,	3,	4,	5	and there exist ten 

BorutaShap-assigned importance scores Iij (j	≠	i and i, j = 1, 2, 3, 4, 5) relevant to staple feature 

m. Consider the four BorutaShap-assigned importance scores for all color class pairs containing 

Ci. We define a quantity εij, where εij	=	1 if the frequency of staple feature m is greater in Ci	than in 

Cj and εij	=	-1 if the frequency of staple feature m is smaller in Ci	than Cj. Then, the net importance 

score for motif m in class Ci is defined by the following expression:  

 

𝑁𝐼𝑆! = ∑ 𝐼!%𝜀!%&
%'!       (Supporting Equation 1) 

 

In this expression, the importance score Iij is added to NISi	if motif m occurs more frequently in 

sequences in Ci	than in sequences Cj (accounting for class imbalance between Ci	and Cj) because 

εij	=	1 supports that m is selective for Ci and against	Cj. Vic versa, Iij is subtracted from NISi	if m 

occurs less frequently in sequences in Ci	than in sequences Cj because εij	=	-1 supports that m is 

selective against Ci and for	Cj. For classifiers with no Iij	assigned for a staple feature m, the score 

of 	Iij	is assigned to a value of zero because it does not contribute to the overall score. 	 

 

The NIS reported in Figure 4 and Figure S10 are calculated using Iij that are averaged for ten 

applications of BorutaShap that are applied to each  RF 1v1 classifier trained on ten different 

training data sets balanced by random subsampling of the more abundant class.  
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2.9 Net importance scores

 
 

 
 

Figure S10. Net importance scores (NIS) for all 23 features whose average BorutaShap scores 
are greater than the maximum random shadow feature (for NIR-correlated features, features 
shown have average BorutaShap scores within one standard deviation of the maximum random 
shadow feature).  NIS for Dark (black), Green (green), Red (red), Far Red (dark red), and NIR 
(blue).  Bottom: zoom-in on NIS of low absolute magnitude from top graph. 
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Figure S11. Radar graphs of normalized number of occurrences of staple features in Dark, 
Green, Red, Far Red, and NIR classes, as normalized by (total # of sequences)*(# of times the 
staple feature can occur in a 10-base sequence) Dark (black), Green (green), Red (red), Far Red 
(dark red), and NIR (blue). Dotted line represents frequency for all 10-base sequences. The center 
of the radar corresponds to zero, and the scale of each graph is indicated by the number pointing 
to the outermost line.  
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Figure S11. Continued, caption on previous page. 
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3. Experimental Validation of ML Model 
 

3.1 Supplementary Note 2: NIR AgN-DNA identification 
 

Our training data includes NIR AgN-DNAs reported by Swasey, et al., which were identified by 

NIR integrated intensities Inir > 0.01 in the 700 – 1,300 nm range,6 as measured by voltage output 

of a InGaAs photoreceiver on a custom plate reader.8 Here, we make two corrections to this 

method to ensure that brightly fluorescent NIR AgN-DNAs are properly identified and peak 

wavelength λp is accurately assigned. First, our plate reader has the same photoreceiver, but we 

cannot a priori assume the same spectral responsivity. To correct for potential variance in the 

responsivity of our well plate reader compared to the studies that produced our training data,2,5,6 

we normalize Inir to past experiments by Swasey, et al. The ratio of total average integrated 

intensity of the control AgN-DNAs for experiments performed here to Swasey, et al.,6 is 3.085. 

Therefore, we scale Inir by this ratio, and the brightness threshold is increased to a new value of 

3.085*0.01. 

 

Our second correction is as follows. Swasey, et al., assigned λp for AgN-DNAs measured on the 

NIR plate reader as the intensity-weighted wavelength average for all 50 nm bandpass filters from 

700 – 1300 nm.6 However, analysis of the spectra we collected on our NIR plate reader shows 

that many sequences have clearly defined NIR products with spectral “shoulders” from Far Red 

peaks detected for 50 nm bandpass filters at 700 nm and 750 nm that blueshift λp for some 

samples. In the visible spectral region, we account for sequences that produce multiple AgN-DNA 

products by multi-Gaussian spectral fitting, but this is infeasible with fluorescence intensities 

measured only every 50 nm. Therefore, we identify NIR peaks as follows. (1) Samples with 

increasing voltage signal for increasing bandpass filter wavelength above 800 nm are flagged. (2) 

Sequences whose integrated intensity in the range 850 nm to 1,300 nm is greater than Inir = 

3.085*0.01 are identified as “bright NIR.” (Note that this metric of brightness is actually more 

stringent than used previously because we only consider intensities measured for 800 nm and 

above, excluding signals from 700 nm and 750 nm bandpass filters). This method identifies all 

but two of the NIR sequences that are identified by the simpler intensity-weighted wavelength 

average used by Swasey, et al.,6 and finds an additional 15 sequences that are “multipeaked” 

with both Far Red and NIR peaks. (3) To more accurately capture peak wavelength in the NIR, 

we calculate λp as the local intensity weighted average of the bandpass filter with maximum signal 

(selected from filters 800 nm and above) and its two neighboring filters. Compared to the simpler 
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method used in the training data,6 this method better approximates λp without blue-shifting due to 

a second peak in the Far Red region.  

 

Experimentally tested sequences are assigned a color class as follows. Note that Iint is normalized 

to the control strand (Section 1.1). To be as clear as possible, we list Inir as the normalized value 

(Section 3.1). 

 

• “Dark” defined as sequence whose Iint < 0.8 

• “Green” as λp < 580 nm, A > 0.8, Iint > 0.8, and Inir < 0.03085 

• “Red” as 600 nm < λp < 660 nm, A > 0.8, Iint > 0.8, and Inir < 0.03085 

• “Far Red” as 660 nm < λp < 800 nm, A > 0.8, Iint > 0.8, and Inir < 0.03085 

• “NIR” as λp > 800 nm and Inir > 0.03085 (or Iint > 0.8 if a NIR peak is detected on the visible 

well plate reader) 

 

For DNA sequences associated with more than one bright peak, color class is assigned as follows. 

If the sequence is associated with peaks in two or more of the Green, Red, and Far Red classes, 

the brightest peak in the Green to Far Red range is used to assign color class. This approach is 

rational because Green, Red, and Far Red peaks are detected using the same Tecan Spark plate 

reader. In contrast, NIR peaks are almost exclusively detected using the separate NIR plate 

reader, and no information was available in the training data to quantitatively compare 

brightnesses between the data we have reported2,4,5 and NIR products reported by Swasey, et al, 

with this different well plate reader.6 Therefore, we assign a sequence to two color classes if a 

NIR peak and a Green/Red/Far Red peak is detected. This approach is necessary to compare 

our designed sequences to those available in the training data. 

 

Supporting Data 2 lists all designed sequences with measured normalized integrated intensities 

Iint, peak wavelengths λp, normalized peak areas A (“brightness” metrics), and normalized NIR 

integrated intensities Inir. These values are used to generate Figures 5, S13, S14. 
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Figure S12. DNA strands that exhibit both Far Red and NIR and Far Red peaks. Red dots above 
bars for 700-800 nm indicate signals that extend above the y-axis range shown.  



Supporting Information - Chemistry-informed machine learning enables discovery of DNA-
stabilized silver nanoclusters with near-infrared fluorescence 

 19 

 
Figure S13. Fractional composition of each class for a) the “pristine training data” of 1,443 
sequences, b) Green-designed sequences, c) Far Red-designed sequences, and d) NIR-
designed sequences.  
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Figure S14. Probability density of bright peak wavelengths of the entire training dataset (black) 
as compared to the distribution of all experimentally measured bright peaks for predicted a) Green 
sequences b) Far Red sequences c) and NIR sequences. Note that if two or more bright peaks 
are detected for a single DNA sequence, all of these bright peaks are represented in this 
histogram. 
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4. Data Library Information 
This section describes the associated Supporting Data Files for the training data used in this study 

and for the experimental tests of the developed ML model. 

 
4.1 Supporting Data 1: Training Dataset   
Training_Dataset.xlsx contains data for 2,661 sequences (Column A), aggregated from past 

studies,2–6 with experimentally measured values for normalized total integrated intensity (Norm I) 

and the peak wavelength position(s) (peak 1, peak 2, peak 3) and associated normalized peak 

areas (“brightness”) measured using a UV-Vis spectrometer. Additionally, sequences that were 

studied using high-throughput NIR spectroscopy6 have information listed in the NIR bright peak 

and NIR normalized spectroscopy columns.   

 
4.2 Supporting Data 2: Results.xlsx lists experimental results for designed DNA ligand 

sequences.  The file contains sequences with their associated experimentally measured values 

for normalized total integrated intensity (Norm I) and the peak wavelength position(s) (peak 1, 

peak 2, peak 3) and associated normalized peak areas (“brightness”) for each peak (Peak 1 Norm 

area, Peak 2 Norm area, Peak 3 Norm area), as measured using the Tecan Spark. NIR Norm 

Intensity is the normalized intensity identified using the NIR well plate fluorimeter, and NIR Peak 

lists all NIR peaks above 750 nm peaks with a weighted average above 750 nm (range chosen 

because the detection range for the fluorimeter is from 675-1325 nm and any sequence with a 

peak less than 750 nm is better described by the Tecan Spark).  

 
4.3 Supporting Data 3: Boruta Results 

The average MISA for staple features for each 1v1 RF classifier are listed in Boruta.xlsx. Staple 

features are listed in decreasing order by the average MISA for each feature using 10 different 

subsamples. The average MISA (“average”), standard deviation (“stdev”), and the number of 

times the feature was selected using different subsamples (“occurrences”) are all listed. 
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