1 Supplemental Information

Supplementary Fig. S1 (Related to Fig. 1). Gli1⁺ cell enlargement appears differently in different damage models.

a The distribution of Gli1⁺ cells were evaluated in situ in X-gal-stained sections of livers from 4 Gli1-LacZ mice. Scale bar, 50 μ m. **b** Immunofluorescence co-staining for β -gal (green) with 5 KRT19 and OPN (cholangiocyte marker, red), Alb and GS (hepatocyte marker, red), VE-CAD 6 (endothelial marker, red) and F4/80 (macrophage marker, red) in liver sections. Slides were 7 8 counterstained with DAPI (blue). Scale bar, 50 μ m. **c** Immunostaining for β -gal (green), EpCAM (cholangiocyte marker, red), and α -SMA (activated HSC marker, red) in liver sections. 9 Scale bar, 50 µm. Right panels: Quantification of the percentage of Gli1⁺ cells expressing 10 EpCAM and α -SMA. Means ± SEM (n = 3). **d** Experimental design and representative 11 12 histological images of X-gal⁺ cells in sections of sham or PH livers. Scale bar, 50 µm. Right panels: Quantification of the number of X-gal⁺ cells in sham or PH livers. Means \pm SEM (n = 5). 13 e Representative histological images of X-gal⁺ cells in liver sections and the number of X-gal⁺ 14 liver cells from control or CCl₄-treated mice. Scale bar, 50 µm. Right panels: Quantification of 15 the number of X-gal⁺ cells. Means \pm SEM (n = 5). **f** Representative histological images of X-16 gal⁺ cells in liver sections from control or 10× CCl₄-treated mice. Scale bar, 50 µm. Right 17 panels: Quantification of the number of X-gal⁺ cells. Means \pm SEM (n = 5). *p < 0.05. g, h 18 Representative histological images of X-gal⁺ cells in liver sections from mice fed a normal diet 19 20 and a 3-week CDE (g) or MCD (h) diet. Scale bar, 50 µm. Right panels: Quantification of the number of X-gal⁺ cells. Means \pm SEM (n = 5). *p < 0.05. **p < 0.01. i Immunofluorescence 21 staining for β -gal (green) in liver sections from mice fed a normal diet and a 4-week DDC, CDE 22 or MCD diet. Scale bar, 50 µm. 23

Supplementary Fig. S2 (Related to Fig. 1). Cell labeling in Gli1-CreER; Ai9 mice with Oil. a Schematic showing the experimental design. b Immunostaining for tdTomato (red) in liver sections from Gli1-CreER; Ai9 mice treated with Oil at various time points. Scale bar, 200 µm.

27 Supplementary Fig. S3 (Related to Fig. 1). Gli1⁺ cells differentiate into hepatocytes 28 during liver damage.

a Schematic illustration of the experimental design. **b-e** Immunostaining for tdTomato (red) in 29 liver sections at various time points after TAM administration. Scale bar, 100 µm. f 30 Quantification of the percentage of tdTomato⁺ cells in liver sections. Means \pm SEM (n = 5). **q** 31 Schematic showing the experimental design. h, i Immunostaining for tdTomato (red) in liver 32 sections at various time points after DDC-induced injury. Scale bar, 100 µm. j Quantification of 33 the percentage of tdTomato⁺ cells in liver sections. Means \pm SEM (n = 5). *p < 0.05. k 34 Immunostaining for tdTomato (red) and HNF4a (green) in serial liver sections after DDC-35 induced injury. Scale bar, 50 µm. I Immunostaining for tdTomato (red) and KRT19 (green) or 36 EpCAM in 50 µm liver sections after 4 weeks of a normal diet or DDC diet. Scale bar, 50 µm. 37 **m** Quantification of the percentage of tdTomato⁺ hepatocyte adjacent to the PV. Means ± SEM 38 39 (n = 4)

40 Supplementary Fig. S4 (Related to Fig. 3). The cellular source of Gli1.

a RNAscope analysis of hepatic expression of *Gli1* (red) and EpCAM (green) co-staining on 8week-old WT mice. PV, portal vein. Scale bar, 50 μm. b Immunofluorescence staining for
tdTomato (red) and KRT19 (green) or Sox9 (green) in liver sections from Gli1-CreERt2; Ai9
mice after TAM administration. Scale bar, 50 μm. c Immunofluorescence staining for tdTomato
(red) and F4/80 (green), HNF4α (green), Alb (green) or VE-CAD (green) in liver sections from
Gli1-CreERt2; Ai9 mice after TAM administration. Scale bar, 50 μm. d Flow cytometric analysis
of the percentage of tdTomato⁺ cells among EpCAM⁺ cells.

48 Supplementary Fig. S5 (Related to Fig. 4). Analysis of scRNA-seq data.

a Doublets were identified and filtered by DoubletDecon and DoubletFinder. **b** Principal component analysis (PCA) of the transcriptome data. **c-f** Violin plots showing the expression of select specific lineage-associated genes from the scRNA-seq data. **g** Signaling pathways that were significantly enriched in EpCAM⁺Gli1⁺ cells using BioCarta gene sets for GSEA (p < 0.05).

53 Supplementary Fig. S6 (Related to Fig. 5). Gli1⁺ cells differentiate into hepatocytes 54 during chronic injury.

a Experimental design for lineage tracing of EpCAM⁺ cells using EpCAM-CreERt2; Ai9 mice. b 55 Schematic showing the experimental strategy. c Immunostaining for tdTomato (red) and 56 EpCAM (green) in intestinal sections. Scale bar, 50 µm. Right panels: Quantification of the 57 percentage of tdTomato⁺ cells expressing EpCAM. Means ± SEM (n = 3). d Immunostaining 58 for tdTomato (red) and EpCAM (green) in intestinal sections and liver sections. PV, portal vein. 59 Scale bar, 50 µm. Right panels: Quantification of the percentage of tdTomato⁺ cells expressing 60 EpCAM. Means ± SEM (n = 3). e Immunostaining for GFP (red) in liver sections from Tmprss2-61 CreERt2; R26-YFP mice. Scale bar, 50 µm. f Immunostaining for tdTomato (red) in liver 62 sections from Tmprss2-DreERt2; R26-RSR-tdTomato mice treated with or without TAM. Scale 63 bar, 50 µm. g Immunostaining for tdTomato (red) and EpCAM (Green) or HNF4a(Green) in 64 65 tissue sections from livers after EpCAM-CreERt2; Ai9 mice received a DDC diet for 4 weeks. Scale bar, 50 µm. h Quantification of the percentage of tdTomato⁺ cells expressing HNF4a. 66 Means \pm SEM (n = 5). i Immunostaining for PDGFR α (Green), tdTomato (red) and HNF4 α 67 (brilliant blue), in tissue sections from livers after PDGFRα-CreERt2; Ai9 mice received a DDC 68 diet for 4 weeks. Scale bar, 50 µm. j Quantification of the percentage of tdTomato⁺ cells 69 expressing HNF4 α . Means ± SEM (n = 5). 70

Supplementary Fig. S7 (Related to Fig. 6). Organoids cultured from single EpCAM⁺Gli1⁺ cells from Gli1-LacZ mice.

a FACS gating strategy to isolate EpCAM⁺ and tdTomato⁺ cells. **b** Table showing the numbers used to calculate the % colony formation. **c** Schematic representation of organoid-development from EpCAM⁻Gli1⁻, EpCAM⁺Gli1⁻, EpCAM⁻Gli1⁺ and EpCAM⁺Gli1⁺ single cells from Gli1-LacZ mice sorted by FACS. **d** FACS plot showing the expression of EpCAM and Gli1 in the liver in Gli1-LacZ mice stained with CUG and EpCAM. **e** Representative images showing 5,000 sorted cells that grew into liver organoids 5 days after sorting. **f** Table showing the numbers used to calculate the % colony formation for Gli1-LacZ mice. **g** Numbers of organoids formed per 5,000 single cells (left) and percentage of colony formation efficiency (right). Means \pm SEM (n = 3). ***p* < 0.01.

82

MCD diet 3w

CDE diet 3w

EPCRM-CHT EPCRM-CHT

EPCAN

83	Supplementary Table 1: List of primary antibodies used for immunostaining
84	experiments

Primary antibody	Species	Dilution	Source	Catalog
				number
HNF4α	rabbit	1/250	CST	3113S
E-cadherin	mouse	1/200	BD Biosciences	610182
CK19	rabbit	1/500	Abcam	ab52625
CK19 (Troma III)	rat	1/500	DSHB	AB_2133570
Osteopontin(OPN)	goat	1/100	R&D Systems	AF808
Sox9	rabbit	1/500	Millipore	AB5535
DsRed	rabbit	1/500	Clontech	632496
mcherry	goat	1/500	SICGEN	AB0081-200
PDGFRα	goat	1/100	R&D Systems	AF1062
VE-CAD	goat	1/100	R&D Systems	AF1002
EpCAM	rabbit	1/250	Abcam	ab71916
GS	mouse	1/1000	BD Biosciences	610517
Alb	mouse	1/250	Sigma	SAB3500217
β-gal	rabbit	1/250	Abcam	ab221199
α-SMA	mouse	1/1000	Sigma	C6198
(Cy3-conjugated)				
EpCAM	rat	1/100	eBioscience	14-5791-82
(APC-conjugated)				

Gene	Pimer sequences (5'-3')
EpCAM	Fw - TGTGGACATAGCTGATGTGGCTTAC
	Rv - CACCCTCAGGTCCATGCTCTTA
Krt19	Fw - GTCCTACAGATTGACAATGC
	Rv - CACGCTCTGGATCTGTGACA
GAPDH	Fw - AGGTCGGTGTGAACGGATTTG
	Rv - TGTAGACCATGTAGTTGAGGTCA
HNF4α	Fw - AGCTCGAGGCTCCGTAGTGTTT
	Rv - GAAAATGTGCAGGTGTTGACCA
Alb	Fw - GCTGAGACCTTCACCTTCCA
	Rv - TCTTCAGTTGCTCCGCTGTA

86 Supplementary Table 2: List of primer sequences used for RT-qPCR