Supplementary Materials

Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts

- 4 Tian-Wei Song¹, Cong Xu¹, Zhu-Tao Sheng², Hui-Kun Yan¹, Lei Tong¹, Jun Liu^{3,4}, Wei-Jie Zeng¹,
- 5 Lu-Jie Zuo¹, Peng Yin¹, Ming Zuo¹, Sheng-Qi Chu⁵, Ping Chen⁶, Hai-Wei Liang¹*
- ⁶ ¹Hefei National Research Center for Physical Sciences at the Microscale, Department of
- 7 Chemistry, University of Science and Technology of China, Hefei 230026, China
- ⁸ ²College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
- 9 ³Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of
- 10 Sciences, Hefei 230031, China
- ⁴Anhui Contango New Energy Technology Co., Ltd, Hefei 230088, China
- ⁵Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- ¹³ ⁶School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
- 14

- 15 *email: hwliang@ustc.edu.cn
- 16

17 Chemicals and materials

Vanadium trichloride (VCl₃, 97%) and perchloric acid (HClO₄, 70%) were purchased from Sigma-18 Aldrich. Germanium chloride (GeCl₄, 99.9999%) were purchased from Alfa Aesar. 19 Dicyandiamide (DCDA, 99%) was purchased from J&K Scientific Ltd. Indium chloride (InCl₃, 20 99.9%), gallium chloride (GaCl₃, 99.999%), 2,3-Benzofuran (99%), glucose (98%), 2-21 acetylpyrrole (99%), 11-Mercaptoundecanoic acid (95%), and 2-Mercaptobenzimidazole (98%) 22 were purchased from Shanghai Macklin Biochemical Co., Ltd., China. All other chemicals were 23 purchased from Sinopharm Chemical Reagent Co. Ltd., China, including hexachloroplatinic 24 hexahydrate (H2PtCl6·6H2O, 99%), aluminium chloride (AlCl3·6H2O, 97%), titanium 25 tetrachloride (TiCl₄, 98%), chromium chloride hexahydrate (CrCl₃·6H₂O, 99%), manganous 26 chloride tetrahydrate (MnCl₂·4H₂O, 99%), ferric chloride hexahydrate (FeCl₃, 97%), cobalt 27 chloride hexahydrate (CoCl₂·6H₂O, 99%), nickel chloride hexahydrate (NiCl₂·6H₂O, 98%), 28 copper nitrate trihydrate (Cu(NO₃)₂·3H₂O, 99%), zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O, 29 99%), stannous chloride dihydrate (SnCl₂·2H₂O, 98%), sodium acetate (99.99%), sodium 30 glycinate (98%), 1-mercaptopropane (99.5%), sodium thioglycolate (97%), and sulfuric acid 31 (H₂SO₄, 95%~98%). All the chemicals were used as received without further purification. 32 Deionized water (18.2 M Ω /cm) used in all experiments was prepared by passing through an ultra-33 pure purification system. 34

37 Supplementary Figure 1. XRD patterns of the PtCo catalysts prepared with different molecule

additives. The total metal loading of all the samples were controlled to be 30 wt%.

40 Supplementary Figure 2. Particle size distribution histograms of the PtCo catalysts prepared

41 with different molecule additives, which were obtained through statistic of more than 500 particles

42 in HAADF-STEM images.

Supplementary Figure 4. EDS elemental mapping and EDS spectra of the PtFe IMCs catalyst.

55 Supplementary Figure 5. EDS elemental mapping

- **Supplementary Figure 8.** EDS elemental mapping and EDS spectra of the PtCu IMCs catalyst.
- 69 Molybdenum microgrid was used instead of cooper microgrid for the EDS measurements.

Supplementary Figure 9. FFT patterns of PtCo (a), Pt₃Co (b), and PtCu (c) catalysts whose
 atomic-resolution HAADF-STEM images were shown in Fig 4.

Supplementary Figure 10. (a) Photograph showing the large-scale synthesis of the PtCo IMCs

- catalyst with STG as additives, the one-batch production could exceeded 6 grams. (b) XRD
- 78 patterns and (c) HAADF-STEM image of the PtCo IMCs catalyst synthesized in grams scale.

79

- 82 Supplementary Figure 11. (a) XRD patterns and (b) HAADF-STEM image of 45 wt% PtCo
- 83 prepared with STG additives.

87 Supplementary Figure 12. Photographs showing the discoloration of $H_2PtCl_6 \cdot 6H_2O$ solution 88 when adding STG.

92 Supplementary Figure 13. R space of the XAFS results for the samples obtained after annealing

93 of STG-H₂PtCl₆-CoCl₂/C precursor at different temperatures for 10 min.

97 Supplementary Figure 14. High-resolution bright-field STEM images of the PtCo IMCs catalyst

98 prepared with STG additives, showing the formation of thin carbon coating around PtCo particle.

- 102 Supplementary Figure 15. High-resolution bright-field STEM images of PtFe, PtNi, Pt₃Ti, and
- 103 Pt₃In IMCs catalyst prepared with STG additives.

106 Supplementary Figure 16. High-resolution bright-field STEM images of STG-assisted PtFe,

107 PtNi, Pt₃Ti, and Pt₃In IMCs catalyst after air oxidation.

- 110 Supplementary Figure 17. Atomic-resolution HAADF-STEM image of the post-treated PtCo
- 111 IMCs catalyst that was composed of an intermetallic PtCo core and two to three atomic layers of
- 112 Pt shell.
- 113

Supplementary Figure 18. The I/C ratio optimization process of TKK-30 wt% Pt/C (a), TKK-30 wt% Pt/C-700 (b), Umic-30 wt% PtCo (c), and STG-assisted PtCo (d) catalysts. The I/C ratio ranged from 0.6 to 0.9, and the MEAs made with catalysts of TKK-30 wt% Pt/C, TKK-30 wt% Pt/C-700, and STG-assisted PtCo exhibited the optimal performance with the I/C ratio of 0.8, while the Umic-30 wt% PtCo exhibited the optimal performance when the I/C is 0.9.

Supplementary Figure 19. H₂-air polarization curves and power density plots of STG-assisted
PtCo (a), Umic-30 wt% PtCo (b), TKK-30 wt% Pt/C (c), and TKK-30 wt% Pt/C-700 (d) at the
beginning and after 30,000 cycles' ADT in the single-cell tests. All the catalysts used the optimal
I/C ratio. Test conditions: 80 °C, 100% RH, 150 kPa_{abs}, or 94 °C, 65% RH, 250 kPa_{abs}.

128 Supplementary Figure 20. XRD patterns of the PtCo catalysts prepared with STG additive at

different temperatures, showing the gradually increased average particle size and ordering degreewith temperature.

- 133 Supplementary Figure 21. (a) Crystal structure of *fct*-PtM, yellow balls represent Pt, blue balls
- 134 correspond M (M is Mn, Fe, Co, Ni, or Zn). (b) Schematic illustration of lattice mismatch of (111)
- 135 facet, yellow circles represent Pt and blue circles represent M.

Supplementary Figure 22. RDE polarization curves of the five L1₀ PtM IMCs, the L1₁ PtCu
IMCs, and the commercial TKK-30 wt% Pt/C.

- - -

Supplementary Figure 23. CO-stripping curves of the IMCs catalysts for the ECSA
 measurements. The corresponding values of ECSA were listed in Supplementary Table 6.

Sample	XRD size (nm)	STEM size (nm)
PtCo-Additive free	14.9	12.9
PtCo-BZF	12.4	9.5
PtCo-GLU	9.6	8.8
PtCo-SAc	8.3	7.7
PtCo-APR	6.4	5.7
PtCo-SGC	4.8	5.5
PtCo-DCDA	5.5	5.4
PtCo-MUA	4.3	3.4
PtCo-MBM	3.5	3.0
PtCo-MPA	2.4	2.3
PtCo-STG	2.8	2.5

Supplementary Table 1. Average particle sizes of the PtCo samples prepared with different
 molecule additives at 700 °C.

Supplementary Table 2. Average particle sizes of the 18 Pt-IMCs catalysts prepared with and without STG additive from XRD results. The optimal annealing procedure and ordering degree of the Pt-IMCs prepared with STG additive were also listed.

Sample -	XRD siz	ze (nm)	Optimal annealing	Ordering degree	
Sample —	With STG	STG-free	procedure	(%)	
Pt ₃ A1	4.9	9.7	900/2h	27 ^a	
Pt ₃ Ti	4.3	8.8	900/2h-600/6h	35 ^a	
Pt ₃ V	5.4	10.4	1000/2h-600/6h	35 ^a	
Pt ₃ Cr	4.3	8.7	900/2h-600/6h	82 ^a	
Pt ₃ Mn	4.1	8.3	800/2h-600/6h	75 ^a	
PtMn	4.5	10.0	900/2h-600/6h	49 ^b	
Pt ₃ Fe	4.8	8.5	900/2h-600/6h	73 ^a	
PtFe	3.5	8.9	900/2h-700/6h	76°	
Pt ₃ Co	5.2	8.2	900/2h-600/6h	82 ^a	
PtCo	3.3	9.2	900/2h-600/6h	72°	
PtNi	3.4	8.6	900/2h-550/6h	53°	
PtCu	3.0	8.7	800/2h-600/6h	—	
PtCu ₃	3.5	12.2	900/2h-600/6h	34 ^d	
PtZn	4.7	9.5	900/2h-600/6h	51 ^b	
Pt ₃ Ga	5.4	11.1	900/2h	77 ^a	
Pt ₃ Ge	5.6	11.3	900/2h	—	
Pt ₃ In	4.2	11.5	900/2h	96 ^a	
Pt ₃ Sn	4.7	8.3	900/2h	94 ^a	

 ${}^{a}S_{(110)}/S_{(111)}$

 ${}^{b}S_{(110)}/[S_{(111)}+S_{(200)}]$

 ${}^{c}S_{(110)}/[S_{(111)}+S_{(200)}+S_{(002)}]$

 ${}^{d}I_{(110)}/I_{(111)}$

Samula	Pt pr	ecursor	Non-Pt precursor			
Sample	Туре	Dosage (mmol)	Туре	Dosage (mmol)		
Pt ₃ Al		0.13	AlCl ₃ ·6H ₂ O	0.052		
Pt ₃ Ti		0.203	TiCl ₄	0.068		
Pt ₃ V		0.202	VCl ₃	0.067		
Pt ₃ Cr		0.202	CrCl ₃ ·6H ₂ O	0.067		
Pt ₃ Mn		0.131	$MnCl_2 \cdot 4H_2O$	0.052		
PtMn		0.171	$MnCl_2 \cdot 4H_2O$	0.206		
Pt ₃ Fe	H ₂ PtCl ₆ ·6H ₂ O	0.2	FeCl ₃	0.067		
PtFe		0.171	FeCl ₃	0.205		
Pt ₃ Co		0.2	CoCl ₂ ·6H ₂ O	0.067		
PtCo		0.168	CoCl ₂ ·6H ₂ O	0.252		
PtNi		0.169	NiCl ₂ ·6H ₂ O	0.203		
PtCu		0.166	$Cu(NO_3)_2 \cdot 3H_2O$	0.182		
PtCu ₃		0.111	$Cu(NO_3)_2 \cdot 3H_2O$	0.4		
PtZn		0.165	$Zn(NO_3)_2 \cdot 6H_2O$	0.197		
Pt ₃ Ga		0.132	GaCl ₃	0.053		
Pt ₃ Ge		0.132	GeCl ₄	0.053		
Pt ₃ In		0.135	InCl ₃	0.054		
Pt ₃ Sn		0.135	$SnCl_2 \cdot 2H_2O$	0.054		

Supplementary Table 3. Type and dosage of Pt and non-Pt precursors used for the synthesis of
 Pt-IMCs libraries.

170	Supplementary	Table 4.	The at	comic ratio	results	obtained b	by EDS	mapping	of Supplementa	ry

171 Figures 4-8.

Sample		Atomic ratio (%	(o)	
	Pt	М	S	
PtFe	47.4	42.5	10.1	
PtCo	47.5	45.2	7.3	
PtNi	47.2	44.1	8.7	
Pt ₃ Co	71.8	23.7	4.5	
PtCu	54.8	45.2		

Supplementary Table 5. Average particle sizes from XRD and the ordering degree of additional
PtCo IMCs catalysts prepared with STG additives, including the ones prepared at different
temperatures, the one synthesized in grams scale, and the one with a high metal loading of 45
wt%.

Sample	XRD size (nm)	Ordering degree (%)
PtCo-750°C	2.3	53
PtCo-800°C	2.5	63
PtCo-900°C	3.6	72
PtCo-1000°C	4.5	79
Large-scale PtCo	4.3	65
45 wt% PtCo	4.7	56

180	Supplementary Table 6. ECSA, mass activity, and specific activity of the commercial TKK-30
181	wt% Pt/C and the STG-assisted PtM IMCs catalysts. The mass activity and specific activity were
182	obtained at 0.9 V vs RHE, and the electrochemical tests were measured in thin film-RDE (10 µg
183	catalyst on 0.196 cm ² disk).

Sample	$ECSA(m^2g_{Pt}^{-1})$	Mass activity $(A mg_{Pt}^{-1})$	Specific activity (mA cm ⁻²)
Pt/C	72.5	0.35	0.48
PtMn	75.1	1.12	1.49
PtFe	86.7	2.18	2.51
PtCo	70.1	2.25	3.21
PtNi	63.4	2.11	3.33
PtCu	74.8	1.18	1.57
PtZn	78.8	0.88	1.12

Sample	Surface strain (%)
PtMn	-1.83%
PtFe	-3.84%
PtCo	-8.24%
PtNi	-8.97%
PtZn	-2.74%

Supplementary Table 7. Calculated surface strain of the five L1₀ PtM IMCs catalysts. Negative
values indicate compression strain.

Supplementary Table 8. A detailed comparison of MEA performance of STG-assisted PtCo, Umic-30 wt% PtCo, TKK-30 wt% Pt/C, and TKK-30 wt% Pt/C-700 in H₂-air single-cell test.

Sample	Curren (mA 80 °C/100 kP	t density cm ⁻²) %RH/150 a _{abs}	Power (W 0 80 °C/100 kP	density cm ⁻²) %RH/150 a _{abs}		Mass activity (A mg _P	r at 0.9 V t ⁻¹)	Voltage loss at 0.8 A cm ⁻² (mV)		Rated power density (W cm ⁻²) 94 °C/65%RH/250 kPa _{abs}	
	at 0.8 V	at 0.6 V	at 0.8 V	at 0.6 V	initial	After ADT	DOE 2025 target			initial	ADT
TKK-30 wt% Pt/C	250	1470	0.20	0.88	0.32	0.15		83		0.79	0.49
TKK-30 wt% Pt/C -700	216	1390	0.17	0.83	0.28	0.19	$\geq 0.44~A~mg_{Pt}^{-1}$	81	DOE 2025 target: ≤ 30 mV	0.73	0.51
Umic-30 wt% PtCo	395	1659	0.32	0.99	0.86	0.58	≤ 40% loss after ADT	76	loss after ADT	0.94	0.71
STG-assisted PtCo	412	1821	0.33	1.09	1.08	0.81		21		1.17	1.03