Supporting Information for

A Cytotoxic Heterodimeric Cyclic Diarylheptanoid with a Rearranged Benzene Ring from the Seagrass Zostera marina

Laura Grauso,^{§,‡} Yan Li,^{†,‡} Silvia Scarpato,[⊥] Nunzio Antonio Cacciola,[#] Paola De Cicco,^{⊥,#} Christian Zidorn,[†] and Alfonso Mangoni*,⊥

- [§] Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici (NA), Italy
 [†] Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany

Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
 Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Via F. Delpino, 80137 Napoli, Italy

Table of Contents

Chart S1	Diarylheptanoids found in Zostera marina	2
Computation	al details (including Figures S1-S2)	3
Figure S3	Deviations of calculated ¹³ C and ¹ H NMR chemical shifts of zosterabisphenone C (1) and its C-9 epimer <i>epi-</i> 1	5
Figure S4	High-resolution ESI mass spectrum of zosterabisphenone C (1)	6
Figure S5	1 H NMR spectrum of zosterabisphenone C (1) recorded at 298 K and 253 K (700 MHz, CDCl ₃)	7
Figure S6	¹³ C NMR spectrum of zosterabisphenone C (1) recorded at 253 K (175 MHz, CDCl ₃)	8
Figure S7	HSQC spectrum of zosterabisphenone C (1) recorded at 253 K (700 MHz, CDCl ₃)	9
Figure S8	HMBC spectrum of zosterabisphenone C (1) recorded at 253 K (700 MHz, $CDCI_3$)	10
Figure S9	Expansion of the HMBC spectrum of zosterabisphenone C (1) recorded at 253 K (700 MHz, $CDCI_3$)	11
Figure S10	COSY spectrum of zosterabisphenone C (1) recorded at 253 K (700 MHz, CDCl ₃)	12
Figure S11	ROESY spectrum of zosterabisphenone C (1) recorded at 253 K (700 MHz, $CDCI_3$)	13
Figure S12	Calculated and experimental UV and ECD spectra of zosterabisphenone C (1) in acetonitrile	14
Figure S13	IR spectrum of zosterabisphenone C (1) (solid film)	15
Table S1	Cartesian coordinates of the lowest-energy conformer of zosterabisphenone C (1)	16
Table S2	Cartesian coordinates of the lowest-energy conformers of the C-9 epimer of zosterabisphenone C (epi-1)	17
Table S3	Experimental and predicted chemical shifts of zosterabisphenone C (1)	18
Table S4	Experimental and predicted chemical shifts of the two conformers of the C-9 epimer of zosterabisphenone C (epi-1)	19
Table S5	Experimental multiplicity of ¹ H NMR signals and predicted ¹ H- ¹ H J couplings of zosterabisphenone C (1)	20
Table S6	Rotatory strengths (length formalism) calculated for zosterabisphenone C (1)	21
Table S7	Effects of zosterabisphenone A (4), B (5), and C (1) on the viability of HCT116 and Hep G2 cells after 48 hours of treatment	22
References		22

Additional Computational Details

A simplified model (1n) of the northern diarylheptanoid unit of zosterabisphenone C, with the southern unit replaced by a phenyl ring and with the relative configuration at C-2', and C-3' as determined by NMR studies (the 2'*S*,3'*S* enantiomer was tentatively used, Figure S1) was subjected to molecular dynamics (MD) conformational search. The MD simulation was set at 2000 K to allow possible slow conformational changes to occur in the 10-ns duration of the simulation.³ This identified 5 unique conformers in a range of 6.93 kcal/mol, whose geometry was optimized by DFT at the B3LYP/6-31+G(d,p) level. The lowest-energy conformer was in full agreement with the ROESY data (Table 1, main text), while the remaining 4 conformers had remarkably higher energies ($\Delta E > 2.2$ kcal/mol compared to the lowest-energy conformer) and were not considered further.

Figure S1. The simplified model compound 2n for the northern diarylheptanoid unit of unit of zosterabisphenone C and its lowest-energy conformation at the B3LYP/6-31+G(d,p) level.

The favored conformation of the southern diarylheptanoid unit, which is identical for all zosterabisphenones, was known from our previous study³ and confirmed by ROESY data (Figure 1 and Table 1 in the main text).

Therefore, the two possible diastereomers of zosterabisphenone C were generated by replacing the phenyl group of **1n** with either enantiomer of the southern unit, to give 1 (the 9R,2'S,3'S stereoisomer) and *epi*-1 (the 9S,2'S,3'S stereoisomer). The torsion angle around the C-8/C-3' bond was unknown, so a conformational search for this degree of freedom was performed using a relaxed energy surface scan in Gaussian 16 (ModRedundant keyword). The dihedral angle C-9/C-8/C-3'/C-2' was incremented in steps of 10° and kept fixed while the geometry of the rest of the molecule was optimized at the B3LYP/6-31G(d) level. The resulting graph of the potential energy vs. dihedral angle (Figure S2) showed one low energy conformer for 1 and two low-energy conformers for *epi*-1.

Finally, the conformers of 1 and *epi*-1 were reoptimized at the B3LYP/6-31+G(d,p) level, and the resulting geometries (Tables S1 and S2) were used for NMR (Tables S3-S5, Figure S3) and ECD (Table S6, Figure S12) prediction. The results are discussed in the main text.

Figure S2. DFT energy of zosterabisphenone C (1) and its C-9 epimer *epi*-1 as a function of the torsion angle about the C-9/C-8/C-3'/C-2' bond, i.e. the bond that connects the two cyclic diarylheptanoid units. The significantly populated minimum energy conformations are shown above the graphs.

Figure S3. Deviations from experimental values of calculated ¹³C (top panel) and ¹H (bottom panel) NMR chemical shifts of zosterabisphenone C (1) and its C-9 epimer *epi*-1.

Figure S4. High-resolution ESI mass spectrum of zosterabisphenone C (1) (positive ion mode, MeOH/0.1% aqueous HCOOH).

Figure S5. ¹H NMR spectrum of zosterabisphenone C (1) recorded at 298 K and 253 K (700 MHz, CDCl₃)

Figure S6. ¹³C NMR spectrum of zosterabisphenone C (1) recorded at 253 K (700 MHz, CDCl₃)

Figure S7. HSQC spectrum of zosterabisphenone C (1) recorded at 253 K (700 MHz, CDCl₃)

Figure S8. HMBC spectrum of zosterabisphenone C (1) recorded at 253 K (700 MHz, $CDCI_3$)

Figure S9. Expansion of the HMBC spectrum of zosterabisphenone C (1) recorded at 253 K (700 MHz, CDCl₃)

Figure S10. COSY spectrum of zosterabisphenone C (1) recorded at 253 K (700 MHz, CDCl₃)

Figure S11. ROESY spectrum of zosterabisphenone C (1) recorded at 253 K (700 MHz, CDCl₃)

Figure S12. Top panel: calculated and experimental UV spectra of zosterabisphenone C (1) in acetonitrile; bottom panel: calculated and experimental ECD spectra of zosterabisphenone C (1) in acetonitrile.

Figure S13. IR spectrum of zosterabisphenone C (1) (solid film)

Table S1. Cartesian coordinates of the lowest-energy	conformer of zosterabisphenone C	(1) optimized at the B3LYP/	6-31+G(d.p) level.
	-		

		-	
	conforme	er 1, E = -1956.7878077 H	arthrees
С	4 86191	-99% population -0 78656	-0.06881
č	3.76849	0.09374	-0.05490
č	2.48645	-0.50162	0.04945
С	2.35377	-1.89793	0.17152
С	3.45983	-2.75697	0.16403
С	4.71884	-2.18321	0.03475
С	0.94158	-2.24190	0.28924
C	0.18166	-1.12891	0.21438
C	1.06885	0.10289	0.00780
ĉ	0.73993	2 4 7 6 5 0	0.90197
č	0.18062	3 11477	-0 70597
č	1.31461	4.15034	-1.03143
Č	4.77193	2.31901	0.76982
С	3.92352	1.57729	-0.08883
С	2.97607	2.29553	-0.82689
C	2.66870	3.63318	-0.58698
C	3.49800	4.33565	0.29544
C	4.57089	3.69748	0.91726
ĉ	-1 31628	-4.20027	-2 37871
C C	-2 08899	-1 23252	-1 11567
č	-1.32505	-1.03058	0.25962
č	-1.92672	-2.13710	1.12009
С	-2.50378	-3.09943	0.37241
С	-2.50791	-2.73419	-1.05487
С	-1.88009	-2.05928	2.62758
C	-2.55511	-0.77671	3.09464
C	-3.86527	-0.52703	2.91673
Ċ	-4.400/0	0.77709	3.11332 2.54813
C C	-6.56782	0.44336	1 63712
č	-6.61792	0.97824	0.18164
С	-3.12888	0.50842	-2.30164
С	-3.30191	-0.33377	-1.21077
С	-4.42894	-0.20443	-0.40867
C	-5.36316	0.81077	-0.66536
C	-5.13925	1.65851	-1.76494
U U	-4.02922	1.51597	-2.60988
н	0 57438	-3.02940	0.24950
н	0.88107	0 43539	-1 02080
H	0.84513	0.97991	2.01658
н	0.12910	3.14286	1.49907
Н	-0.78526	3.63218	-0.76979
Н	0.16469	2.35069	-1.48895
н	1.10859	5.09565	-0.51604
н	1.27589	4.36526	-2.10744
н	-4.57051	-0.88370	0.41939
н	-5 85343	2 45077	-1.97538
н	3.29239	5.37929	0.52277
н	-3.87421	2.17000	-3.46100
н	5.23135	4.23626	1.58932
Н	-1.58958	-0.04708	0.66039
Н	-2.95015	-4.02046	0.73128
Н	-2.37079	-2.94330	3.05016
н	-0.83819	-2.07260	2.96602
н	-1.90998	0.01340	3.47583
н	-4.40910	-1.32034 1 49090	2.01900
н	-5.93002	2 23574	2 74019
н	-7.58719	0.52688	2.03758
н	-6.33926	-0.62676	1.63281
Н	-6.88506	2.04230	0.20541
н	-7.45311	0.47334	-0.32414
н	6.75853	-1.02224	-0.19801
Н	6.09777	0.96909	1.09570
H	6.92876 5.22407	-4.60/57	-0.01/84
н	5.32197 5.45606	-4.09808 -4 63578	-0.79490 0.99247
0	6 13846	-4.03376	-0 18933
õ	5.91512	-2.86223	-0.00480
õ	5.74182	1.75594	1.54854
0	-0.29981	-1.28964	-2.82295
0	-2.85224	-3.40984	-2.00330
0	-1.96295	0.22950	-3.00005

Table S2. Cartesian coordinates of the lowest-energy conformers of the C-9 epimer of zosterabisphenone C (epi-1) optimiz	ed at the B3LYP/6-
31+G(d,p) level.	

-	Conformer	1 F = -1956 7858667	' Harthrees		Conformer	2 F = -1956 784983	Harthrees
	$\Delta F = 0.0$	0 kcal/mol_populatio	n 75 1%		$\Delta F = 0.5$	5 kcal/mol_population	24.9%
С	-0.8087401805	3 4323325795	-3 8001763021	C	-4.382483687	-1 9000824549	0 4303581234
č	-0 7365996568	3 0896488225	-2 4404684911	č	-3 7108803418	-0.6891417801	0 1968336442
č	-0.4063811209	1 7410024612	-2.1524962647	Č	-2 3018194796	-0.7705861213	0.0503736753
č	0.137306124	0.8308571017	3 103/170075	č	1 655997671	2 0204720785	0.0000700700
č	0.107090124	1 1008250101	4 5420277148	Č	-1.033007071	2.0204720703	0.0992393021
č	-0.2013230004	0.5140001401	4.0429277140	C	-2.3474003173	-3.210021403	0.0170040720
Č	-0.5453354499	2.3140621401	-4.0344403920	C	-3.7233452932	-3.1424090449	0.4904734000
Č	0.1906200139	-0.4723696931	-2.02//0940/1	C	-0.2255116274	-1.0240223222	-0.0040092004
C	0.1314438002	-0.4234573879	-1.2808572787	C	0.06575218	-0.5119877554	-0.2249334597
C	-0.3029086083	0.9719943198	-0.8212769268	C	-1.2210558186	0.3205481105	-0.12/9/48819
С	0.5831752081	1.5358402034	0.2732978614	С	-1.4298369774	1.3068229932	-1.2640841456
С	0.2256949998	1.8850964511	1.5220196623	С	-1.547018718	2.6429798042	-1.1786769879
С	-1.1571468112	1.9261741215	2.1326713984	С	-1.5644193191	3.5087147516	0.0609800449
С	-1.728589073	3.3794939088	2.2904384418	С	-2.9846945255	4.0874449513	0.3959588132
С	-0.2748401978	5.3369127273	-1.2616052471	С	-5.5345296383	0.8343996497	-0.7979532323
С	-0.9298798765	4.0826575314	-1.3430346411	С	-4.4282512797	0.6116465143	0.0590511414
С	-1.587713377	3.6329519431	-0.1922628474	С	-3.8052272899	1.7391622275	0.6052203791
С	-1.434976239	4.218806821	1.062280311	С	-4.0567817867	3.0394655404	0.17151808
Ċ	-0.7499179279	5.4383277492	1,1222936536	Ċ	-5.1344234618	3.2305171001	-0.701116037
ĉ	-0 2308963722	6 0148294992	-0.0359639842	Č	-5 8977090831	2 1452483369	-1 1309289962
č	-0.381265226	2 2288924263	-7 2187135408	č	-4 0040129889	-5 5059960753	0.845274567
č	2 9535838642	-0.068//50058	-0 3011323956	č	1 /17213881	0.5/8788832	2 260/023020
č	1 9597950914	2 0179564044	0.0662544509	č	2 1069772004	0.340700032	0.0150240015
č	1.0007009014	-2.0170304044	-0.0002344308	C	2.1000//2094	0.7596560520	0.9100349910
Č	0.3030010073	-1.0400040090	-0.294/044433	C	1.4911940009	-0.0117191000	-0.3200/43433
C	-0.3070653573	-2.831/850531	-0.7701391556	C	1.7718803498	0.9618933036	-1.4/24884/86
C	0.5895476161	-3.7355942052	-1.2145498503	С	2.0997096364	2.1928688033	-1.0346418219
С	1.9690100815	-3.2742228237	-0.9849193153	С	2.1544503296	2.2414210201	0.4333292297
С	-1.8042520019	-3.0044948115	-0.6732740571	С	1.7661693318	0.477900597	-2.9022167516
С	-2.252207878	-2.8349656944	0.7727219691	С	2.7608946344	-0.6652539587	-3.0629017984
С	-1.8594607009	-3.6513235843	1.7678997043	С	4.0832747459	-0.5312344995	-2.8503270027
С	-2.0521377277	-3.373183526	3.1867500587	С	5.0160667585	-1.6473758586	-2.7384430221
С	-1.3319395259	-3.8889048819	4.2051578126	С	6.2157885704	-1.6287546137	-2.1198157101
С	-0.2156089113	-4.9002442241	4.1453459307	С	6.9128713584	-0.4667207955	-1.4585242339
Ċ	1,1793807495	-4.3441182481	4.5358412748	Ċ	7.0563069818	-0.5906006383	0.0817793732
ĉ	3 0946123863	-1 5461076764	1 8746622278	Č	3 497518627	-0.2883809932	2 4931080056
č	2 0006658713	-2 3803107070	1 3816650870	č	3 /075026026	0.2442468048	1 2113371008
č	1 492911341	3 2072006102	2 2231612206	č	1 6421561047	0.2442400340	0.4283578075
č	1.402011341	-3.2972000192	2.2231012200	C	4.0421301047 5 7000401445	0.1090719097	0.4203370073
č	1.0220009200	-3.3443100242	3.3033914070	C	5.7000401445	-0.4942301003	0.906/032409
Č	2.0177397493	-2.400/004/2/	4.0503364065	C	5.7 340092510	-1.0410532271	2.2040997577
C	3.4801182049	-1.5638506951	3.206188075	C	4.6012620666	-0.9374954669	3.0240020123
н	0.0184776758	0.481/0010/	-5.3241565911	н	-1.8195166503	-4.1646769274	0.3563027642
н	0.4465209753	-1.3422595238	-3.223/142926	н	0.5039561102	-2.6297630298	-0.0696260404
н	-1.3181514899	0.8472443901	-0.4192898213	Н	-1.1365903821	0.8713198621	0.8147944346
н	1.6297027584	1.6434895791	-0.0056452467	Н	-1.5006976125	0.8534829856	-2.2526785181
н	1.0222548026	2.2600041017	2.1653345538	Н	-1.7072490378	3.1764039182	-2.1168315199
н	-1.1351245118	1.4566954989	3.1247180808	н	-0.8712814509	4.3497993628	-0.0685371823
н	-1.8586197889	1.3350173964	1.534758133	Н	-1.1956233511	2.9497251983	0.9254035195
н	-2.8032464871	3.3001064958	2.5028405628	Н	-2.9629604544	4.4586333385	1.4286973171
н	-1.2731183206	3.8588414741	3.1646255002	Н	-3.1934419165	4.9525484747	-0.2441459384
н	-2.1303482084	2.6993026899	-0.26440391	н	-2.9884071662	1.5726523209	1.2958411969
н	-0.5930499801	5.9292372648	2.0801043555	н	-5.3630512632	4.2262450396	-1.0745114768
н	0.2886542477	6.9672242341	-0.0042505203	Н	-6.745323592	2.2825223341	-1.7949443043
н	-0.0457277626	-1 2356687281	0.6708304861	н	2 0998610937	-0.9075574722	-0.4850098985
н	0.37239205	-4 7010229258	-1 6584983245	н	2 3044664064	3 0638857842	-1 6471374059
н	-2 0804031919	-3 0011/0/801	-1.0622524837	н	2.0011001001	1 3136/33283	-3 5601720505
н	-2.0004001919	-2 25008/5782	-1 3036084412	н	0 7626855075	0 120027008/	-3 1600278556
ц	-2.8207625308	-1 0381/88300	1 015512872	н	2 3/0/20576/	-1 657702506	-3 2/210528/6
и Ц	1 20/207025500	-1.9301400399 A E27E00EEAE	1.013312072		2.3494203704 1 1701151001	-1.037702300	-3.2421932040
	-1.2043073377	-4.33/ 3003343	1.5047050447		4.4724431004	0.4001903140	-2.0030239414
н	-2.7952581513	-2.0125048104	3.4240504127	н	4.6596771963	-2.6025205266	-3.1234619112
н	-1.5559849	-3.51/08/385	5.2052461304	н	6.7546713468	-2.5747559102	-2.0616605302
н	-0.4438033998	-5.7038103647	4.8585699784	Н	7.9318371594	-0.4044399975	-1.8638578789
н	-0.1630170543	-5.3828256435	3.1646840839	н	6.4364839787	0.4848956034	-1.7131867862
н	1.1115547914	-3.8872828901	5.5313567284	н	7.5559587053	-1.539254428	0.3156079001
н	1.8536192976	-5.2047364312	4.6494064161	Н	7.7476494411	0.1981996599	0.4103318513
н	0.7318650328	-3.9618304938	1.8218577734	Н	4.6390665887	0.612121366	-0.5567042491
н	3.091148228	-2.4895466174	5.1024353495	н	6.6087414267	-1.5594205253	2.5904826786
н	4.251883932	-0.898962566	3.5782864739	н	4.582539315	-1.3565397738	4.024073687
н	-1.1439423747	4.7739036983	-5.1251535975	н	-6.0364248351	-2.8011039941	0.7793130806
Н	-0.0044969575	5.6376043474	-3,1383641591	н	-6.2479505166	-0.9474377807	-0.8224827619
н	-0.5237717051	2.8588796532	-8.0970941126	н	-4.8392590856	-6.1775281661	1.0459459455
н	0 6534463794	1 8686664347	-7 1877210935	н	-3 5101071162	-5 8036367187	-0 0872499591
H	-1 0695849725	1 3767390082	-7 2624756836	н	-3 2881151392	-5 5511199846	1 6743496609
0	-1 1480465204	4 7231335601	_4 1548868734	0	-5 7507521//2	-1 8875/38388	0 6138733/72
0	-1.1-00400234	3 0562674400	-A U033438400	0	-0.1001021440	-1.007 0400000	0.0100700472
0	-0.0009920003 0.0009920003	5 007/12550/	-0.0300400100	0	-4.001 0012011	-4.202031021	-1 1062177105
0	0.4001403122	0.0014100004	-2.230121403	0	-0.2000911/01	0.10/2/03092	-1.40001//195
0	3.2390293384	-0.40/1202445	-1.3132902497	0	0.312910033	0.0/010/000	2.010/120401
0	3.0051608641	-3.194/356412	-1.34038903	0	2.2949048193	3.2114/05422	1.151815932
	3 0 100 / 8 /0 35				/ //// / החעאא		5 I 5 I 4 / 4 / 4 / 10

Table S3. Experimental chemical shifts,	calculated isotropic shielding consta	nts, and predicted chemical sh	hifts of zosterabisphenone C (1).
Calculations were performed at the PBE	0/6-311+G(2d,p)/PCM(CHCl ₃)//B3LY	P/6-31+G(d,p) level.	

	exp. δ _c	shielding constants	calcd. δ _{C^[a]}	$\Delta \delta_{C}$
C-1	138.2	42.61	137.38	-0.82
C-2	122.2	58.12	122.66	0.46
C-3	140.4	39.42	140.41	0.01
C-4	137.3	43.79	136.26	-1.04
C-5	103.4	81.30	100.65	-2.75
C-6	145.8	35.62	144.01	-1.79
C-7	130.1	48.25	132.02	1.92
C-8	144.0	33.42	146.10	2.10
C-9	53.0	128.56	55.78	2.78
C-10	125.9	52.04	128.43	2.53
C-11	135.0	42.57	137.42	2.42
C-12	26.5	156.84	28.93	2.43
C-13	34.0	149.06	36.31	2.31
C-14	151.8	26.77	152.42	0.62
C-15	122.8	57.96	122.81	0.01
C-16	135.1	45.90	134.25	-0.85
C-17	132.1	49.57	130.77	-1.33
C-18	129.5	52.19	128.28	-1.22
C-19	116.4	65.69	115.47	-0.93
6-OMe	56.2	131.23	53.25	-2.95
C-1'	171.8	6.74	171.44	-0.36
C-2'	65.4	114.54	69.09	3.69
C-3'	54.7	126.26	57.96	3.26
C-4'	181.2	-7.32	184.78	3.58
C-5'	127.5	52.39	128.10	0.60
C-6'	200.1	-20.92	197.70	-2.40
C-7'	31.2	152.55	33.00	1.80
C-8'	125.5	52.92	127.59	2.09
C-9'	133.5	45.32	134.80	1.30
C-10'	127.9	52.05	128.41	0.51
C-11'	131.0	46.86	133.34	2.34
C-12'	24.3	160.13	25.81	1.51
C-13'	31.7	152.02	33.51	1.81
C-14'	150.3	29.82	149.52	-0.78
C-15'	128.3	51.72	128.73	0.43
C-16'	119.4	61.85	119.12	-0.28
C-17'	135.8	44.94	135.17	-0.63
C-18'	130.2	51.61	128.83	-1.37
C-19'	110.1	72.98	108.55	-1.55
			RMSD ¹³ C	1.86

	exp. δ _H	shielding constants	calcd. δ _H ^[b]	Δδ _Η
H-5	6.89	24.46	6.65	-0.24
H-7	6.52	24.68	6.46	-0.06
H-9	4.58	26.90	4.43	-0.15
H-10	4.41	26.86	4.46	0.05
H-11	5.08	26.08	5.18	0.10
H-12	2.01	29.62	1.95	-0.06
H-12	2.70	28.84	2.66	-0.04
H-13	2.50	29.03	2.48	-0.02
H-13	3.30	28.19	3.25	-0.05
H-16	7.56	23.65	7.39	-0.17
H-18	6.80	24.47	6.65	-0.15
H-19	6.78	24.54	6.59	-0.19
H-3'	3.68	27.65	3.75	0.07
H-5'	6.43	25.14	6.03	-0.40
H-7'	3.51	27.97	3.45	-0.06
H-7'	3.00	28.43	3.03	0.03
H-8'	5.53	25.64	5.58	0.05
H-9'	6.72	24.36	6.75	0.03
H-10'	5.89	25.29	5.89	0.00
H-11'	5.34	25.88	5.36	0.02
H-12'	2.33	29.31	2.23	-0.10
H-12'	2.95	28.46	3.01	0.06
H-13'	2.66	28.88	2.62	-0.04
H-13'	3.02	28.50	2.97	-0.05
H-16'	7.06	24.16	6.93	-0.13
H-18'	7.06	24.12	6.96	-0.10
H-19'	7.01	24.33	6.77	-0.24
		27.44		
6-OMe	3.95	27.75	3.75	-0.20
		27.73		
			RMSD ¹ H	0.134

[a] ¹³C chemical shifts were obtained from the isotropic shielding constants according to ref. 9, using the equation: δ = (187.3123 – shielding)/1.0533 [b] ¹H chemical shifts were obtained from the isotropic shielding constants according to ref. 9, using the equation: δ = (31.7532 – shielding)/1.0958

			isotropic shieldings			
		Conformer 1	Conformer 2			
	exp. δ _C	$\Delta E = 0.00 \text{ kcal/mol}$	$\Delta E = 0.55 \text{ kcal/mol}$	average	calcd. δ _{C^[a]}	$\Delta\delta_{C}$
	400.0	population 75.1%	population 24.9%	10.05	107.01	
C-1	138.2	42.65	42.65	42.65	137.34	-0.86
C-2	122.2	50.22 40.41	37.36	30.12 39.65	122.00	-0.21
C-4	137.3	42.89	45.15	43.45	136.58	-0.72
C-5	103.4	81.44	82.09	81.60	100.36	-3.04
C-6	145.8	35.56	35.95	35.65	143.98	-1.82
C-7	130.1	47.42	43.97	46.56	133.63	3.53
C-8	144.0	35.08	36.39	35.41	144.22	0.22
C-9	53.0	126.98	129.94	127.72	56.58	3.58
C-10	125.9	42 49	41 42	42 22	120.90	2 75
C-12	26.5	156.98	155 64	156 64	29.12	2.70
C-13	34.0	148.94	148.98	148.95	36.43	2.43
C-14	151.8	26.42	26.97	26.56	152.62	0.82
C-15	122.8	58.22	58.03	58.17	122.61	-0.19
C-16	135.1	46.40	45.58	46.19	133.98	-1.12
C-17	132.1	50.10	48.55	49.71	130.64	-1.46
C-10	129.5	51.67 65.51	52.33 65.93	51.90 65.61	120.40	-1.02
6-OMe	56.2	131.24	131.36	131.27	53.21	-2.99
C-1'	171.8	7.05	5.57	6.68	171.49	-0.31
C-2'	65.4	115.62	113.81	115.17	68.49	3.09
C-3'	54.7	125.26	120.26	124.01	60.09	5.39
C-4'	181.2	-8.19	-8.48	-8.26	185.68	4.48
C-5'	127.5	53.21	50.26	52.47	128.02	0.52
C-6'	200.1	-21.29	-20.33	-21.05	197.82	-2.28
C-8'	31.Z 125.5	52.83	52 57	152.54 52.76	127 74	2.24
C-9'	133.5	44 82	45 10	44 89	135.22	1 72
C-10'	127.9	52.06	52.03	52.05	128.41	0.51
C-11'	131.0	46.35	46.78	46.46	133.73	2.73
C-12'	24.3	160.12	160.23	160.15	25.79	1.49
C-13'	31.7	152.00	152.06	152.02	33.51	1.81
C-14'	150.3	29.65	29.67	29.65	149.68	-0.62
C-15'	128.3	51.70	50.76	51.46	128.98	0.68
C-16 C 17	119.4	62.57 45.58	62.75 44 71	62.62 45.37	118.39	-1.01
C-18'	130.2	43.38 52.11	51.96	43.37	128 40	-1.80
C-19'	110.1	72.43	72.86	72.54	108.97	-1.13
					RMSD ¹³ C	2.10
	exp. δ _H	Conformer 1	Conformer 2	average	calcd. δ _H ^[b]	Δδ _Η
H-5	6.89	24.48	24.60	24.51	6.61	-0.28
H-7	6.52	24.63	24.74	24.66	6.48	-0.04
H-9	4.58	26.82	25.74	26.55	4.74	0.16
H-10	4.41	26.90	26.81	26.88	4.45	0.04
	5.06 2.01	20.15	20.00	20.13	5.13	0.05
H-12	2.01	28.80	29.34	23.47	2.00	0.07
H-13	2.50	29.01	28.95	29.00	2.52	0.02
H-13	3.30	28.23	28.09	28.20	3.25	-0.05
H-16	7.56	23.64	23.44	23.59	7.45	-0.11
H-18	6.80	24.45	24.42	24.45	6.67	-0.13
H-19	6.78	24.53	24.52	24.53	6.60	-0.18
H-3'	3.68	27.75	27.26	27.63	3.76	0.08
п-э ц 7'	0.43	20.10	25.39	23.23	5.95 3.47	-0.46
H-7'	3.00	27.91	28.00	28.48	2 99	-0.04
H-8'	5.53	25.37	25.43	25.39	5.81	0.28
H-9'	6.72	24.23	24.33	24.25	6.84	0.12
H-10'	5.89	25.14	25.20	25.15	6.02	0.13
H-11'	5.34	25.78	25.81	25.79	5.44	0.10
H-12'	2.33	29.28	29.28	29.28	2.26	-0.07
H-12'	2.95	28.44	28.46	28.45	3.02	0.07
H-13' Li 42'	2.66	28.85	28.83	28.84	2.65	-0.01
H-16'	3.0∠ 7.06	20.04 2 <u>4</u> 12	20.01 24 15	20.00 24 18	2.94 6 Q1	-0.08
H-18'	7.00	24.10	24.15	24.10	6 85	-0.13
H-19'	7.01	24.48	24.39	24.46	6.66	-0.35
-	-	27.44	27.45			
6-OMe	3.95	27.76	27.75	27.65	3.74	-0.21
		27.75	27.79			

Table S4. Experimental chemical shifts, calculated isotropic shielding constants, and predicted chemical shifts of the two conformers of the C-9 epimer of zosterabisphenone C (epi-1). Calculations were performed at the PBE0/6-311+G(2d,p)/PCM(CHCl₃)//B3LYP/6-31+G(d,p) level.

[a] ¹³C chemical shifts were obtained from the isotropic shielding constants according to ref. 9, using the equation: $\delta = (187.3123 - \text{shielding})/1.0533$ [b] ¹H chemical shifts were obtained from the isotropic shielding constants according to ref. 9, using the equation: $\delta = (31.7532 - \text{shielding})/1.0958$

Table S5. Experimental multiplicity of ¹H NMR signals and predicted ¹H-¹H *J* couplings (Hz) of zosterabisphenone C (1). Predicted couplings whose magnitude is smaller than 0.2 Hz are not reported.

						pred	dicted 1	I- ¹ H J co	uplings	(Hz)				
	southern unit	H-5	H-7	H-9	H-10	H-11	H-12 proR	H-12 proS	H-13 proR	H-13 proS	H-16	H-18	H-19	H-3'
Position	δ _H , mult (<i>J</i> in Hz)						•	•	•	•				
H-5	6.89, s		-0.3											
H-7	6.52, s	-0.3		-2.2										-0.9
H-9	4.58, br. d (11.1)		-2.2		11.0	-0.8	-0.7				-0.4			-0.5
H-10	4.41, t (11.1)			11.0		11.4	-0.9	-1.7		0.4				
H-11	5.08, ddd (11.8, 11.1, 4.6)			-0.8	11.4		12.2	5.1		-0.5				
H-12 proR	2.70, overlapped			-0.7	-0.9	12.2		-13.5	11.7	7.2				
H-12 proS	2.01, ddd (13.6, 6.1, 4.6)				-1.7	5.1	-13.5		6.0	1.0				
H-13 proR	2.50, ddd (14.4, 12.1, 6.1)						11.7	6.0		-14.3		-0.4		
H-13 proS	3.30, dd (14.4, 6.7)				0.4	-0.5	7.2	1.0	-14.3		-1.2	-1.1	0.6	
H-16	7.56, br. s			-0.4						-1.2		2.0	0.4	
H-18	6.80, br. d (8.0)								-0.4	-1.1	2.0		8.0	
H-19	6.78, d (8.0)									0.6	0.4	8.0		

							pred	icted 1	l- ¹ H <i>J</i> c	ouplings	s (Hz)					
	northern unit	H-3'	H-5'	H-7' proR	H-7' proS	H-8'	H-9'	H-10'	H-11'	H-12' proR	H-12' proS	H-13' proR	H-13' proS	H-16'	H-18'	H-19'
Position	δ _H , mult (<i>J</i> in Hz)			•	•						•	•	•			
H-3'	3.68, s		-0.9	-0.4	-0.8											
H-5'	6.43, s	-0.9		-0.4	-1.9											
H-7' proR	3.51, dd (14.4, 6.5)	-0.4	-0.4		-14.2	7.0	-2.0	0.7	-1.1		1.1					
H-7' proS	3.00, overlapped	-0.8	-1.9	-14.2		8.7	-0.3									
H-8'	5.53, ddd (15.7, 8.3, 6.5)			7.0	8.7		16.0	-0.9	1.1		-1.1					
H-9'	6.72, dd (15.7, 10.8)			-2.0	-0.3	16.0		11.2	-1.3	-0.4	0.8			-0.4		
H-10'	5.89, t (10.8)			0.7		-0.9	11.2		11.5	-0.8	-2.3		0.4			
H-11'	5.34, ddd (11.8, 10.8, 4.8)			-1.1		1.1	-1.3	11.5		12.0	5.4	-0.2	-0.2			
H-12' proR	2.95, dddd (14.2,13.2, 11.8, 2.9)						-0.4	-0.8	12.0		-14.2	13.2	2.8	-0.4		
H-12' proS	2.33, m			1.1		-1.1	0.8	-2.3	5.4	-14.2		2.8	4.9			
H-13' proR	2.66, ddd (16.7, 13.2, 2.9)								-0.2	13.2	2.8		-16.7	-0.6	-0.7	0.2
H-13' proR	3.02, overlapped							0.4	-0.2	2.8	4.9	-16.7		-1.4	-1.4	0.6
H-16'	7.06, overlapped						-0.4			-0.4		-0.6	-1.4		1.8	0.5
H-18'	7.06, overlapped											-0.7	-1.4	1.8		8.2
H-19'	7.01, d (8.6)											0.2	0.6	0.5	8.2	

Wavelength	Rotatory strength	Wavelength	Rotatory strength
(nm)	(10 ⁻⁴⁰ erg esu cm Gauss⁻¹)	(nm)	(10 ⁻⁴⁰ erg esu cm Gauss ⁻¹)
155.1	-11.824400	175.9	28,147200
155.2	-0.549600	176.0	-37 723400
155.4	-58 492000	176.1	-6.586400
155 5	0.407900	176.8	-0.875400
155.7	-10 351/00	177.1	-8.281600
156.0	-3 91/100	177.3	41 302600
150.0	-3.314100	177.6	41.302000
150.2	10.242900	177.0	-4.430300
150.0	-10.343000	170.2	-141.712300
150.9	0.907300 5.900300	170.4	-3.944500
157.2	5.609300	170.7	25.953900
157.4	1.440000	179.2	107.632700
157.5	4.993900	1/9./	178.839100
157.6	17.903200	180.5	20.428800
157.9	0.886100	180.7	14.690600
158.0	-22.715300	181.2	-20.485600
158.2	-18.245600	181.6	-166.726800
158.6	-4.862300	182.5	-61.378200
158.7	-17.094800	183.1	1.425700
159.4	-22.768600	184.0	-49.186700
159.6	9.065700	184.4	86.901700
159.7	19.937700	184.8	90.135300
160.0	-8.192400	185.6	-45.600000
160.4	-18.206300	186.0	131.392900
160.7	13.402200	186.7	6.265300
160.8	-2.194600	186.9	4.795800
160.9	-8.593000	187.4	-10.217400
161.4	-48.900200	187.6	56.857400
161.5	-9.330500	188.6	17 003700
161.8	-16 234700	189.2	-3 718800
162.2	-67.387200	190.9	0.364000
162.4	-14 694900	191.2	-11 475800
162.4	-10.421500	107.2	-68 4/1900
163.1	-23 597500	103.2	-44 054300
162.0	-23.397300	103.0	-44.034300
103.2	-9.400400	195.9	-30.032200
103.4	-4.122900	194.5	-0.320400
163.0	-4.523500	195.1 105.5	-55.919100
164.0	-8.353300	195.5	-4.458300
164.3	-16.411900	196.0	-7.330300
164.8	10.372200	196.6	-34.964100
165.3	51.086300	198.0	58.268000
165.6	38.202900	199.4	28.486300
166.2	-5.377800	200.1	69.846900
166.3	-67.985600	200.5	35.995400
166.4	6.629000	201.8	-56.860600
166.6	9.726500	202.4	-53.673400
167.0	-39.385300	204.8	216.230500
167.3	-30.166300	205.1	311.004800
167.4	2.613600	207.1	-119.681400
167.5	47.430400	209.4	-61.978100
167.6	79.768200	210.8	-31.345700
167.7	-19.769800	211.9	-50.502400
168.6	21.649400	212.6	-3.900800
168.8	-61.798300	213.9	-137.694400
169.0	17.982200	217.0	8.910600
169.2	4.062100	217.3	-28.152000
169.6	-89.753000	218.9	60.494300
169.9	-6.852100	220.6	-84.518700
170.1	59.244800	227.3	56.223600
170.4	-11.999800	227.5	-40.834000
170.5	-7.473500	233.1	-207.239400
170.8	-39.386200	235.2	136.177500
171.5	-69.614900	237.2	23.257900
171.8	-4.079800	239 7	29.133300
172.3	36 183800	250.6	-74 630300
173.2	-83.347900	258.2	9 080400
173.6	102 615500	260.2	-73 029000
173.0	28.350900	203.0 270 <i>A</i>	128 473100
177.1	-19 464000	270. 4 275 0	33 057700
174 7	_0.836700	210.0	8 636000
175.6	-60.436800	202.0	17 373700
110.0	-00.+00000	JUJ.2	11.010100

 $\label{eq:second} \begin{array}{l} \textbf{Table S6.} \ \text{Rotatory strengths (length formalism) calculated for zosterabisphenone C (1).} \ \text{Calculations were performed at the ωB97XD/6-31+G(d,p)//B3LYP/6-31+G(d,p) level.} \end{array}$

Table S7. Effects of zosterabisphenone A (4), B (5), and C (1) on the viability of HCT116 and Hep G2 cells after 48 hours of treatment. The results are expressed as percentage of cell viability. Each value represents the mean \pm SEM of 3 experiments including 5–6 replicates for each treatment. Viability of 20% DMSO, used as positive control, was 13.32 \pm 0.90 for HCT116 and 1.65 \pm 0.32 for Hep G2. ** P < 0.0001

concentration [µM]	zosterabisphenone A (4) ^a		zosterabisphenone B (5) ^a		zosterabisphenone C (1)	
	HCT116	Hep G2	HCT116	Hep G2	HCT116	Hep G2
Ctrl	100.0±1.5	100.0±3.0	100.0±3.0	100.0±2.9	100.0±1.7	100.0±2.2
0.1	97.6±1.5	103.0±4.0	102.0±2.8	97.4±3.4	97.5±1.6	101.0±2.6
0.3	95.2±1.8	112.0±4.5	79.4±3.3 **	91.7±2.0	96.0±1.4	97.6±2.4
1	96.0±1.6	105.0±2.8	76.0±3.7 **	91.6±3.7	95.6±0.9	97.0±2.7
3	95.3±2.1	114.0±3.6	42.9±1.7 **	89.0±4.3	95.5±1.2	105.0±2.4
10	77.3±1.4 **	111.0±2.4	2.6±0.7 **	61.2±6.2 **	27.1±1.2 **	106.0±3.6

^a Data from Ref. 3

References

(1) Li, Y.; Mangoni, A.; Shulha, O.; Çiçek, S. S.; Zidorn, C. Cyclic Diarylheptanoids Deoxycymodienol and Isotedarene A from Zostera Marina (Zosteraceae). *Tetrahedron Lett.* **2019**, *60* (32), 150930. https://doi.org/10.1016/j.tetlet.2019.07.021

(2) Grauso, L.; Li, Y.; Scarpato, S.; Shulha, O.; Rárová, L.; Strnad, M.; Teta, R.; Mangoni, A.; Zidorn, C. Structure and Conformation of Zosteraphenols, Tetracyclic Diarylheptanoids from the Seagrass Zostera Marina: An NMR and DFT Study. *Org. Lett.* 2020, *22* (1), 78–82. https://doi.org/10.1021/acs.orglett.9b03964

(3) Li, Y.; Grauso, L.; Scarpato, S.; Cacciola, N. A.; Borrelli, F.; Zidorn, C.; Mangoni, A. Stable Catechol Keto Tautomers in Cytotoxic Heterodimeric Cyclic Diarylheptanoids from the Seagrass Zostera Marina. *Org. Lett.* **2021**, *23*(18), 7134–7138. https://doi.org/10.1021/acs.orglett.1c02537

(4) Li, Y.; Mangoni, A.; Zidorn, C. Seasonal Variation of Diarylheptanoids in Zostera Marina (Zosteraceae) from the Baltic Sea, Impact of Drying on Diarylheptanoids and Phenolics, and First Report of 3-Keto-Steroids. *Biochem. Syst. Ecol.* 2022, *103*, 104446. https://doi.org/10.1016/j.bse.2022.104446

(5) Bally, T.; Rablen, P. R. Quantum-Chemical Simulation of 1H NMR Spectra. 2. Comparison of DFT-Based Procedures for Computing Proton–Proton Coupling Constants in Organic Molecules. *J. Org. Chem.* 2011, *76* (12), 4818–4830. https://doi.org/10.1021/jo200513q

(6) Lodewyk, M. W.; Siebert, M. R.; Tantillo, D. J. Computational Prediction of ¹H and ¹³C Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry. *Chem. Rev.* 2012, *112* (3), 1839–1862. https://doi.org/10.1021/cr200106v. Scaling factors are also available at http://cheshirenmr.info

(7) Grimblat, N.; Zanardi, M. M.; Sarotti, A. M. Beyond DP4: An Improved Probability for the Stereochemical Assignment of Isomeric Compounds Using Quantum Chemical Calculations of NMR Shifts. *J. Org. Chem.* **2015**, *80* (24), 12526–12534. https://doi.org/10.1021/acs.joc.Sb02396

(8) Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the Comparison of Calculated and Experimental Electronic Circular Dichroism Spectra. *Chirality* 2013, 25 (4), 243–249. https://doi.org/10.1002/chir.22138

(9) Edwards, J. M.; Mangion, M.; Anderson, J. B.; Rapposch, M.; Hite, G. Lachnanthospirone, a Dimeric 9-Phenylphenalenone from the Seeds of Ell. *Tetrahedron Lett.* **1979**, *20*(46), 4453–4456. https://doi.org/10.1016/S0040-4039(01)86616-8

(10) Yang, L.; Qin, L. H.; Bligh, S. W. A.; Bashall, A.; Zhang, C. F.; Zhang, M.; Wang, Z. T.; Xu, L. S. A New Phenanthrene with a Spirolactone from Dendrobium Chrysanthum and Its Anti-Inflammatory Activities. *Bioorganic Med. Chem.* 2006, *14* (10), 3496–3501. https://doi.org/10.1016/j.bmc.2006.01.004

(11) Katsuki, N.; Isshiki, S.; Fukatsu, D.; Okamura, J.; Kuramochi, K.; Kawabata, T.; Tsubaki, K. Total Synthesis of Dendrochrysanene through a Frame Rearrangement. *J. Org. Chem.* 2017, *82* (21), 11573–11584. https://doi.org/10.1021/acs.joc.7b02223

(12) Sue, D.; Kawabata, T.; Sasamori, T.; Tokitoh, N.; Tsubaki, K. Synthesis of Spiro Compounds through Tandem Oxidative Coupling and a Framework Rearrangement Reaction. *Org. Lett.* **2010**, *12* (2), 256–258. https://doi.org/10.1021/ol902571p

(13) Pérez-Lloréns, J. L.; Acosta, Y.; Brun, F. G. Seafood in Mediterranean Countries: A Culinary Journey through History. *Int. J. Gastron. Food Sci.* 2021, *26*, 100437. https://doi.org/10.1016/j.ijgfs.2021.100437