Supplemental Information for:

Crannenols A-D, Sesquiterpenoids from the Irish Deep-Sea Soft Coral *Acanella arbuscula*

Joshua T. Welsch,[†] Ryan M. Young,[‡] A. Louise Allcock,[‡] Mark P. Johnson,[‡] Bill J. Baker[†]

[†]Department of Chemistry, University of South Florida, Tampa, FL, USA.

[‡]School of Natural Sciences and Ryan Institute, University of Galway, University Road, Galway,

H91 TK33, Ireland

•

	Page
Figure S1: Crannenol A (1) ¹ H NMR spectrum (600 MHz, CDCl ₃).	2
Figure S2: Crannenol A (1) ¹³ C NMR spectrum (150 MHz, CDCl ₃).	3
Figure S3: Crannenol A (1) HSQC NMR spectrum (500 MHz, CDCl ₃).	3
Figure S4: Crannenol A (1) HMBC NMR spectrum (600 MHz, CDCl ₃).	4
Figure S5: Crannenol A (1) COSY NMR spectrum (600 MHz, CDCl ₃).	4
Figure S6: Crannenol A (1) NOESY NMR spectrum (600 MHz, CDCl ₃).	5
Figure S7: Crannenol A (1) HREIMS.	5
Figure S8: Crannenol A (1) UV λ_{max} (CH ₃ OH).	6
Figure S9: Crannenol A (1) IR spectrum (thin film).	6
Figure S10: Crannenol B (2) ¹ H NMR spectrum (600 MHz, CDCl ₃).	7
Figure S11: Crannenol B (2) ¹³ C NMR spectrum (150 MHz, CDCl ₃).	7
Figure S12: Crannenol B (2) ¹³ C NMR spectrum zoomed (150 MHz, CDCl ₃).	8
Figure S13: Crannenol B (2) DEPT135 NMR spectrum (600 MHz, CDCl3).	8
Figure S14: Crannenol B (2) HSQC NMR spectrum (600 MHz, CDCl ₃).	9
Figure S15: Crannenol B (2) HMBC NMR spectrum (500 MHz, CDCl ₃).	9
Figure S16: Crannenol B (2) COSY NMR spectrum (600 MHz, CDCl ₃).	10
Figure S17: Crannenol B (2) NOESY NMR spectrum (500 MHz, CDCl ₃).	10
Figure S18: Crannenol B (2) 1D NOE irradiating protons at 4.58ppm (400 MHz, CDCl ₃).	11
Figure S19: Crannenol B (2) 1D NOE irradiating protons at 1.75ppm (400 MHz, CDCl ₃).	11
Figure S20: Crannenol B (2) HREIMS.	12

Figure S21: Crannenol B (2) UV λ_{max} (CH ₃ OH).	12
Figure S22: Crannenol B (2) IR spectrum (thin film).	13
Figure S23: Crannenol C (3) ¹ H NMR spectrum (600 MHz, CDCl ₃).	13
Figure S24: Crannenol C (3) ¹³ C NMR spectrum (150 MHz, CDCl ₃).	14
Figure S25: Crannenol C (3) HSCQ NMR spectrum (500 MHz, CDCl ₃).	14
Figure S26: Crannenol C (3) HMBC NMR spectrum (500 MHz, CDCl ₃).	15
Figure S27: Crannenol C (3) COSY NMR spectrum (500 MHz, CDCl ₃).	15
Figure S28: Crannenol C (3) NOESY NMR spectrum (500 MHz, CDCl ₃).	16
Figure S29: Crannenol C (3) HRESIMS.	16
Figure S30: Crannenol C (3) UV λ_{max} (CH ₃ OH).	17
Figure S31: Crannenol C (3) IR spectrum (thin film).	17
Figure S32: Crannenol D (4) ¹ H NMR spectrum (600 MHz, CDCl ₃).	18
Figure S33: Crannenol D (4) ¹³ C NMR spectrum (150 MHz, CDCl ₃).	18
Figure S34: Crannenol D (4) HSCQ NMR spectrum (500 MHz, CDCl ₃).	19
Figure S35: Crannenol D (4) HMBC NMR spectrum (500 MHz, CDCl ₃)	19
Figure S36: Crannenol D (4) COSY NMR spectrum (600 MHz, CDCl ₃).	20
Figure S37: Crannenol D (4) NOESY NMR spectrum (500 MHz, CDCl ₃).	20
Figure S38: Crannenol D (4) HRESIMS.	21
Figure S39: Crannenol D (4) UV λ_{max} (CH ₃ OH).	21
Figure S40: Crannenol D (4) IR spectrum (thin film).	22

Figure S1: Crannenol A (1) ¹H NMR spectrum (600 MHz, CDCl₃).

Figure S3: Crannenol A (1) HSQC spectrum (500 MHz, CDCl₃).

Figure S4: Crannenol A (1) HMBC spectrum (600 MHz, CDCl₃).

Figure S5: Crannenol A (1) COSY spectrum (600 MHz, CDCl₃).

 $\begin{array}{c|cccc} \hline F2 \ Chemical \ Shift \ (ppm) \end{array} & \begin{array}{c} 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 \\ \hline Figure \ S6: \ Crannenol \ A \ (1) \ NOESY \ spectrum \ (600 \ MHz, \ CDCl_3). \end{array}$

Figure S8: Crannenol A (1) UV λ_{max} (CH₃OH).

Figure S9: Crannenol A (1) IR spectrum (thin film).

Figure S10: Crannenol B (2) ¹H NMR spectrum (600 MHz, CDCl₃).

 $\begin{array}{c|cccc} \hline F2 \ Chemical \ Shift \ (ppm) \end{array} & \begin{array}{c} 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 \end{array} \\ \hline Figure \ S14: \ Crannenol \ B \ (\textbf{2}) \ HSQC \ NMR \ spectrum \ (600 \ MHz, \ CDCl_3). \end{array}$

 $\begin{array}{cccc} \hline F2 \ Chemical \ Shift \ (ppm) \end{array} \begin{array}{cccc} 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 \\ \hline Figure \ S16: \ Crannenol \ B \ (\textbf{2}) \ COSY \ NMR \ spectrum \ (600 \ MHz, \ CDCl_3). \end{array}$

Figure S18: Crannenol B (2) 1D NOE NMR spectrum irradiating protons at 4.58ppm (400 MHz, CDCl₃).

Figure S19: Crannenol B (2) 1D NOE NMR spectrum irradiating protons at 1.75ppm (400 MHz, CDCl₃).

Figure S21: Crannenol B (2) UV λ_{max} (CH₃OH).

Figure S22: Crannenol B (2) IR spectrum (thin film).

Figure S25: Crannenol C (3) HSQC NMR (500 MHz, CDCl₃).

Figure S27: Crannenol C (**3**) COSY NMR spectrum (500 MHz, CDCl₃).

 $\begin{array}{cccc} \hline F2 \ Chemical \ Shift \ (ppm) \end{array} & \begin{array}{cccc} 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 \end{array} \\ \hline Figure \ S28: \ Crannenol \ C \ \textbf{(3)} \ NOESY \ NMR \ spectrum \ \textbf{(500 \ MHz, \ CDCl_3)}. \end{array}$

Figure S30: Crannenol C (**3**) UV λ_{max} (CH₃OH).

Figure S31: Crannenol C (3) IR spectrum (thin film).

Figure S32: Crannenol D (4) ¹H NMR spectrum (600 MHz, CDCl₃).

Figure S34: Crannenol D (4) HSQC NMR spectrum (500 MHz, CDCl₃).

Figure S36: Crannenol D (4) COSY NMR spectrum (600 MHz, CDCl₃).

Figure S39: Crannenol D (4) UV λ_{max} (CH₃OH).

Figure S40: Crannenol D (4) IR spectrum (thin film).