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1. S-1. We establish weak consistency in this section. Let ΘΛ,ΘΣ,ΘE

be the parameter spaces of Λ,Σ and E, respectively, Θ be the set of p × p
positive semidefinite matrices corresponding to the parameter space of H,
and Qj be the parameter space of Qj . Let ΠΛ,ΠΣ,ΠE ,ΠQ be the priors
for Λ,Σ, E and Qj ’s. We restate some of the results from Bhattacharya and
Dunson (2011) for our modified factor model. With minor modification, the
proofs will remain the same.

Let g : ΘΛ×ΘΣ×ΘE → ΘH be a continuous map such that g(Λ,Σ, E) =
ΛTEΛ + Σ.

Lemma 1. For any (Λ,Σ, E) ∈ ΘΛ×ΘΣ×ΘE, we have g(Λ,Σ, E) ∈ ΘH .

The proof is similar to Lemma 1 of Bhattacharya and Dunson (2011).
In our Bayesian approach, we choose independent priors for Λ, Σ and E
and that induces a prior on H through the map g. We also have following
proposition.

Proposition 2. If (Λ,Σ, E) ∼ ΠΛ⊗ΠΣ⊗ΠE, then ΠΛ⊗ΠΣ⊗ΠE(ΘΛ×
ΘΣ ×ΘE) = 1.

The proof is similar to Proposition 1 of Bhattacharya and Dunson (2011)
with minor modifications. Now, we proceed to establish that the poste-
rior of our multigroup model is weakly consistent under a fixed p and in-
creasing n regime. Let us assume that the complete parameter space is
κ = (Λ,Σ, E,Q2, . . . , Qj) and let κ0 be the truth for κ.

Assumptions:

1. For some M > 0, the true perturbation matrices are Qj0 ∈ CM , with
CM defined in Section 2.1.1.

2. There exists some E > 0, F1 > 0 and F2 > 0 such that maxij |Λ0| < E
and F1 < e0k < F2 for all k = 1, . . . r.
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Theorem 3. Under Assumptions 1-2, the posterior for κ is weakly con-
sistent at κ0.

We first show that our proposed prior has large support in the sense that
the truth belongs to the Kullback-Leibler support of the prior. Thus the
posterior probability of any neighbourhood around the truth converges to

one in P
(n)
κ0 -probability as n goes to∞ as a consequence of Schwartz (1965).

Here P
(n)
κ is the distribution of a sample of n observations with parameter

κ. Hence, the posterior is weakly consistent.

Proof. For q, q∗ ∈ the space of probability measure P, let the Kullback-
Leibler divergences be given by

KL(q∗, q) =

∫
q∗ log

q∗

q
.

Let K(κ0, κ) denote the Kullback-Leibler divergence

J∑
j=1

KL(N(0, Q−1
j [ΛEΛT + Σ](QTj )−1),N(0, Q−1

j0 [Λ0E0ΛT0 + Σ0](Q−1
j0 )T )).

For our model, we have

K(κ0, κ) =
1

2n

[
J∑
j=1

−nj log |Q−1
j0 H0(QTj0)−1{Q−1

j H(QTj )−1}−1|

+ njtr
(
Q−1
j0 H0(QTj0)−1{Q−1

j H(QTj )−1}−1 − Ip
)]

To prove Theorem 3, we rely on the following Lemma.

Lemma 4. For any ε > 0, there exists ε1 > 0, ε2 > 0, and ε3j > 0 for
j ∈ {2, . . . , J} such that ‖Λ−Λ0‖2F ≤ ε21, ‖E−E0‖2F ≤ ε22 and ‖Qj−Qj0‖2F ≤
ε23j, then we have

Π
{
K(κ0, κ) ≤ ε

}
≥

Π
{
‖Λ− Λ0‖2F ≤ ε21, ‖E − E0‖2F ≤ ε22, ‖Qj −Qj0‖2F ≤ ε23j , j = 2, . . . , J

}
Due to continuity of the functions such as determinant, trace and g(·), the

above result is immediate following the proof of Theorem 2 in Bhattacharya
and Dunson (2011). For our proposed priors, the prior probability of the
R.H.S. of Lemma 4 is positive. Thus the prior probability of any Kullback-
Leibler neighborhood around the truth is positive. This proves Theorem 3.
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2. S-2. This section deals with some additional simulation experiments
and results from the NHANES dataset.

2.1. Case 1: Multi-group, additive perturbation. In Section 5.2 of the
manuscript, each group is multiplied by a unique perturbation matrix Qj .
In this case, we perturb the data by adding a group-specific loading matrix
Ψj to a shared loading matrix Λ, as in model (2.1).

Yi =(Λ + Ψj)ηi + ε1i and Yi ∈ Gj ,
ε1i ∼N(0,Σ) ηi ∼ N(0, Ip),(2.1)

where the group-specific loadings (Ψj ’s) are lower in magnitude in compar-
ison to the shared loading matrix Λ. This can also be an alternative pertur-
bation model. The group-specific loadings are generated in Figure 1 which
shows the true and estimated loading matrices from BMFSA, FBPFA, and
PFA across a range of values of α. The estimated loadings from PFA are
much closer to the truth than BMFSA. We find that the estimated loading
matrices are some permutation of the true loading matrix with some excep-
tions. For the case with higher perturbation (row 2 of Figure 1), BMSFA
estimate is not good and PFA estimate is also bad for lower values of α.
Similarly, for the case with lower perturbations, PFA estimate with lower α
is better than higher α estimated loading. Table 1 compares predictive like-
lihoods of the two methods in different cases, and again, PFA and FBPFA
outperform BMSFA.

Table 1
Average predictive log-likelihood for PFA for different choices of α, FBPFA and BMSFA

in Simulation Case 1.

Generative True PFA for PFA for FBPFA BMSFA
Distribution of Ψj ’s Loading α = 10−2 α = 10−4

N(−0.2, 0.2) Loading 1 −56.27 −60.71 −56.63 −429.28
Loading 2 −1041.28 −361.82 −421.28 −5853.65

N(−0.5, 0.8) Loading 1 −30.68 −50.09 −54.62 −514.67
Loading 2 −320.04 −246.06 −479.59 −6798.37

2.2. Case 2: Observation-level perturbations. In this case, we generate
data from the model (2.2). First, a non-perturbed dataset is generated ex-
actly the same way as in Section 5.1 and 5.2 in the manuscript. Then, we
generate separate perturbation matrices Qi0 ∼ MN(Ip, α0Ip, α0Ip) for each
data vector Yi. We repeat this simulation for different choices of α0.

Figures 2 shows the estimated loading when they are estimated using
α = 10−4. The method performs poorly when the perturbation parameter
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Fig 1. Comparison of estimated loading matrices in Simulation case 2.1 when the true
data generating process follows the model in (2.1). For the first two rows, true Ψj’s are
generated from N(−0.2, 0.2) and for the last two rows Ψj’s are generated from N(−0.5, 0.8)
and for each row (a) PFA with α = 10−4, (b) PFA with α = 10−2, (c) FBPFA, (d) BMSFA
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Fig 2. Estimated loadings using PFA for different choices of α in Simulation case 2.2 for
α0 = 10−4 and two loadings. (a): Estimated loading for α = 10−2, (b): For α = 10−4, (c):
For α = 10−5.

α is lower than the true parameter α0 as in the previous cases. Figure 3
illustrates the performance of FBPFA in this case. When the perturbation
is higher, the performance deteriorates as it is more difficult to capture
the loading structure accurately. Overall, our method is able to accurately
estimate the true loading structure under some permutation of the columns.

2.3. More exploratory analysis on NHANES data. For each chemical
level, we fit an one-way ANOVA model to analyse group-specific effects
on each phthalate level separately. The results are provided from Table 2 to
9.

Table 2
Estimated group effects from a one-way ANOVA analysis for the phthalate MnBP.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 3.85 0.11 36.27 0.00
N-H Black 0.36 0.15 2.33 0.02
N-H White -0.29 0.13 -2.26 0.02

OH 0.46 0.18 2.55 0.01
Other/Multi -0.09 0.22 -0.41 0.68

3. S-3. This section has some more additional figures. We have some
additional figures in this section as discussed in the Manuscript. Figure 4
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Fig 3. Estimated loadings using FBPFA for different choices of α0 in Simulation case 2.2
for two cases and two loadings. (a): Estimated loading for α0 = 10−4, (b): For α0 = 10−2.
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Table 3
Estimated group effects from a one-way ANOVA analysis for the phthalate MiBP.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 2.88 0.06 49.23 0.00
N-H Black 0.59 0.08 6.97 0.00
N-H White -0.35 0.07 -4.98 0.00

OH 0.33 0.10 3.28 0.00
Other/Multi -0.08 0.12 -0.68 0.50

Table 4
Estimated group effects from a one-way ANOVA analysis for the phthalate MEP.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 8.32 0.29 28.80 0.00
N-H Black 2.84 0.42 6.79 0.00
N-H White -1.41 0.35 -4.02 0.00

OH 1.18 0.49 2.40 0.02
Other/Multi -0.99 0.60 -1.64 0.10

shows the MCMC mixing of the perturbation matrices and loading matrices
using FBPFA for NHANES application. Figure 5 illustrates estimated load-
ings for the second choice of loading matrix in Section 5.2 of the manuscript.
From the same section, estimated loadings for the partially shared factors
case are in Figure 6. Figure 7 depicts estimated loading for the same choice
of loading in Section 5.3 of the manuscript.

References.

Bhattacharya, A. and Dunson, D. B. (2011). Sparse Bayesian infinite factor models.
Biometrika 98(2) 291–306.

Schwartz, L. (1965). On Bayes procedures. Zeitschrift für Wahrscheinlichkeitstheorie
und verwandte Gebiete 4 10–26.

Arkaprava Roy
Department of Biostatistics
University of Florida
Gainesville, FL
E-mail: ark007@phhp.ufl.edu

Isaac Lavine
Amy Herring
David B. Dunson
Department of statistical science
Duke University
Durham, NC
E-mail: isaac.lavine@duke.edu

amy.herring@duke.edu
dunson@duke.edu

imsart-aoas ver. 2014/10/16 file: output.tex date: June 10, 2022

mailto:ark007@phhp.ufl.edu
mailto:isaac.lavine@duke.edu
mailto:amy.herring@duke.edu
mailto:dunson@duke.edu


8 ROY ET AL.

(a) Trace plot for Q (b) Trace plot for Λ

Fig 4. Trace plots of root mean square (RMS) deviations across the MCMC chain for

the perturbation matrices 1
4

∑5
j=2 (Qt

j −Q
t+1
j )2 and the shared loading matrix Λ which

is (Λt − Λt+1)2. The matrices Qt
j and Λt are the t-th post burn samples of Qj and Λ

respectively for NHANES application.

Fig 5. Comparison of estimated loading for loading matrix 2 in simulation case 2 of
the manuscript with different choices of α0 and α where Qj0 ∼MN(Ip, α0Ip, α0Ip) and
U = αIp = V. (a) α = 1×10−4, α0 = 1×10−4, (b) α = 1×10−2, α0 = 1×10−4, (c) FBPFA
with α0 = 1 × 10−4, (d) BMSFA with α0 = 1 × 10−4, (e) α = 1 × 10−4, α0 = 1 × 10−2,
(f) α = 1 × 10−2, α0 = 1 × 10−2, (g) FBPFA with α0 = 1 × 10−2, (h) BMSFA with
α0 = 1×10−2. True loading matrices are plotted twice in columns 1 for easier comparison
with other images. The color gradient added in the last image holds for all the images.
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Fig 6. Comparison of estimated loading in the partially shared modification of simulation
case 2 of the manuscript. Row 1 corresponds to true loading structure 1 and row 2 to true
loading structure 2. (a) FBPFA with α0 = 1 × 10−4, (b) FBPFA with α0 = 1 × 10−2,
(c) BMSFA with α0 = 1 × 10−4, (d) BMSFA with α0 = 1 × 10−2, (e) FBPFA with
α0 = 1 × 10−4, (f) FBPFA with α0 = 1 × 10−2, (g) BMSFA with α0 = 1 × 10−4, (h)
BMSFA with α0 = 1 × 10−2. The color gradient added in the last image holds for all the
images.

Fig 7. Comparison of estimated loading matrices in simulation case 3 of the manuscript
when the true data generating process follows the model in (??). For the first two rows,
true Ψj’s are generated from N(−0.2, 0.2) and for the last two rows Ψj’s are generated from
N(−0.5, 0.8) and for each row (a) PFA with α = 1× 10−2, (b)PFA with α = 1× 10−4, (c)
FBPFA, (d) BMSFA. The color gradient added in the last image holds for all the images.
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Table 5
Estimated group effects from a one-way ANOVA analysis for the phthalate MBeP.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 2.79 0.07 39.90 0.00
N-H Black 0.27 0.10 2.66 0.01
N-H White -0.09 0.08 -1.05 0.29

OH -0.01 0.12 -0.06 0.95
Other/Multi -0.23 0.15 -1.57 0.12

Table 6
Estimated group effects from a one-way ANOVA analysis for the phthalate MECPP.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 4.80 0.12 41.52 0.00
N-H Black -0.44 0.17 -2.63 0.01
N-H White -0.64 0.14 -4.56 0.00

OH -0.25 0.20 -1.28 0.20
Other/Multi -0.46 0.24 -1.89 0.06

Table 7
Estimated group effects from a one-way ANOVA analysis for the phthalate MEHHP.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 3.83 0.10 36.85 0.00
N-H Black -0.04 0.15 -0.26 0.79
N-H White -0.39 0.13 -3.06 0.00

OH -0.10 0.18 -0.56 0.58
Other/Multi -0.26 0.22 -1.19 0.23

Table 8
Estimated group effects from a one-way ANOVA analysis for the phthalate MEOHP.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 3.11 0.08 39.04 0.00
N-H Black -0.06 0.12 -0.54 0.59
N-H White -0.33 0.10 -3.39 0.00

OH -0.11 0.14 -0.83 0.41
Other/Multi -0.26 0.17 -1.54 0.12

Table 9
Estimated group effects from a one-way ANOVA analysis for the phthalate MEHP.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 1.58 0.04 35.44 0.00
N-H Black 0.03 0.06 0.44 0.66
N-H White -0.25 0.05 -4.57 0.00

OH 0.01 0.08 0.10 0.92
Other/Multi 0.00 0.09 0.02 0.99
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