
Online Supplement: Host Lipidome and TB treatment Failure 

 

Methods: 

 

Ethics Statement  

We followed US Department of Health and Human Services guidelines for human 

experimentation. Institutional review boards and ethics committees at BJMC (IRB 00003631), 

NIRT (IEC ID 2017020), Johns Hopkins University (IRB 00140325) and Columbia University 

(IRB AAAS0281) approved this study.  

 

Laboratory Assessments: 

Complex Lipids: Complex lipids, including ceramides, sphingomyelins, cholesterol 

esters, oxysterols, lyso- and phospholipids, mono-, di- and triacylglycerols, were semi-quantified 

using an untargeted approach by liquid chromatography with quadrupole time of flight mass 

spectrometry (LC-QTOF-MS). Lipids from plasma were extracted following protocols 

previously described[1]. Briefly, 1.5 mL methyl-tert-butyl ether (MTBE)-methanol was added to 

internal standard enriched plasma and vortexed for 20 s. MTBE (5 mL) was further added and 

incubated in a shaker at room temperature for one hour. 1.25 mL of water was added for phase 

separation followed by 10 min incubation in room temperature and centrifugation at 14,000 g for 

2 min. The upper phase, which has the lipids without proteins or polar hydrophilic compounds, 

was decanted and dried in a vacuum centrifuge followed by reconstitution with 65 µl of 



methanol:toluene (9:1, v/v) containing 1-cyclohexyl-3-uredio dodecanoic acid (CUDA; Sigma-

Aldrich; St. Louis, MO) as an internal standard. For mass spectrometry analysis, residues in 

extracts were separated on a 2.1 mm x 100 mm, 1.7 µm Waters Acquity UPLC CSH C18 

column. The extracts were detected using an Agilent 6530 QTOF-MS with resolution R=10,000 

for positively charged lipids such as phosphatidyl cholines (PC), lyso-PC, phosphatidyl 

ethanolamines (PE) and phosphatidyl serines (PS), and Agilent 6550 QTOF-MS with resolution 

R=20,000 for negatively charged lipids such as free fatty acids and phosphatidylinositols. 

Metabolite annotations were achieved using a combination of different tools and conformed to 

Metabolomics Standards Initiative defined levels of compound annotation [2].  All spectra, 

retention times and chromatography conditions are freely available at MassBank of North 

America (http://massbank.us).  

Oxylipins: Non-esterified oxylipins, endocannabinoids, polyunsaturated fatty acids 

(PUFAs) and non-steroidal anti-inflammataory drugs (NSAIDs) were isolated by liquid 

extraction protocol using methanol/acetonitrile mixture (1:1 v/v) from 40 µL of plasma and 

quantified by UPLC-MS/MS using internal standard methods. Briefly, 40 µL of plasma was 

mixed with 5 µL BHT/EDTA (1:1 methanol:water), 5 µL of 1250 nM deuterated oxylipins, 

endocannabinoids and polyunsaturated fatty acids surrogates and 5µl of an internal standard 

solution containing CUDA and 1-phenyl ureido 3-hexanoic acid (PUHA; kind gift from Dr. B.D. 

Hammock, University of California Davis) at 5µM in 1:1 methanol:acetonitrile. Next, plasma 

was homogenized by addition of 185 µL 1:1 methanol:acetonitrile and homogenate was 

centrifuge at 15,000 g for 10 min and the methanol:acetonitrile supernatant was filtered through 

0.1 µm PVDF membranes. Residues in extracts were separated on a 2.1 mm x 150 mm, 1.7 µm 

BEH C18 column (Waters, Milford, MA) and detected by electrospray ionization with multi 

http://massbank.us/


reaction monitoring on a API 6500 QTRAP (Sciex; Redwood City, CA) and quantified against 

7-9 point calibration curves of authentic standards using modifications of previously reported 

methods[3, 4]. All peak integrations were manually curated and quantification was conducted in 

MultiQuant v 3.0 (Sciex).  The rationale to include oxylipins was due to our goal of conducting 

an unbiased lipidomics analysis that includes lipid families with important functions, as well as 

the prior literature suggesting an important role for oxylipins, such as lipoxin and leukotrienes, in 

impacting TB susceptibility[5].  

 

Statistical Analyses:  

Lipidomic analysis was performed on 192 individuals. 470 annotated lipids were 

available for analysis after removing lipids that had missing data in >70% of individuals. To be 

conservative, we set the threshold at 70% to minimize the influence of data imputation while 

maximizing the number of species covered. Missing data (0.3% of data) exceeding this threshold 

were imputed by singular value decomposition (SVD) imputation in Jmp v14.0 (SAS Institute, 

Cary NC). For the least squares regression analysis, raw data were either Johnson or log-

transformed to follow an approximate normal distribution, with the optimal transformation 

selected by maximization of the Shapiro-Wilk W-test. Of note, quantitative and semi-

quantitative data were concatenated into a single combined dataset for all statistical analysis, 

including FDR corrections. We used principal components analysis (PCA) for data exploration, 

such as visualizing separation of lipidome profile by study site using prcomp function from stats 

package in R 4.01. 



We also performed cross validation with k=1 for classification by splitting the dataset 

into training (75% of data samples) and test (25% of data samples) sets. Samples were split 

randomly, based on information of the group classification with the function createDataPartition 

from the caret package in R. In log-transformed lipid data adjusted for covariates using the sva 

package [6], a machine-learning based random forest algorithm (randomForest package) was 

applied to the training set to identify the minimal variable set with high classification power to 

differentiate cases and controls, separately for the primary and subset analysis. Default 

parameters of random forest package were used with the following modifications to the 

parameters: number of trees to grow of 20000, number of permutations of 100, and number of 

variables randomly sampled as candidates at each split of 500. The accuracy of the lipid models 

was assessed by performing the receiver operating characteristic (ROC) curve and measuring the 

area under the curve (AUC). All results were plotted with the ggplot function for the barplots, 

and with chordDiagram function from circlize package in R 4.01.  

 

Discussion 

 

TGs: Interestingly, a recent study observed that ezetimibe, a drug that reduces cholesterol but 

was also shown to have an even stronger effect in reducing TGs, could restrict MTB growth in 

zebrafish models[7]. However, investigations into TG lowering therapy as a an adjunct therapy 

to improve TB cure rates [7, 8] should be made cautiously since MTB adaptations to long-term 

fenofibrate use appear to increase both macrophage lipid accumulation and the risk of TB 

associated mortality[9]. Regardless, our data identifies specific TGs that are associated with 



increased failure and could serve as baseline indicators for increased risk of failure along with a 

potential utility for treatment monitoring.   

 

Oxylipin: We also observed the oxygenated ALA metabolite 15,16-DiHODE levels were lower 

in failures. Data from studies of ALA show that it can actually inhibit MTB replication[10, 11], 

including through the inhibition of the MTB shikimate kinase enzyme[10]. Population-based 

studies also support a potential protective role of ALA in incidence of TB[12, 13]. Taken 

together, these findings suggest that ALA and its derivative 15,16-DiHODE might have differing 

roles in MTB compared to the longer chain DHA and EPA ω-3 PUFAs, and they could 

potentially serve as an adjunct therapy to anti-TB therapy to reduce treatment failure rates[10].  

 

PCs: Our results on PCs could help explain why PCs have shown to have apparent conflicting 

roles in TB. As PCs are among the most abundant phospholipids in mammalian cells, different 

species of PCs are known to have different roles. In our study, we observed that baseline levels 

of certain PCs (e.g. 32:0) were increased among those who eventually failed treatment. Studies 

have shown that treatment with PC 32:0 and other PCs increased MTB survival in macrophages 

through inhibition of actin assembly, which is required for intracellular killing of MTB[14]. 

More specifically, these PCs have anti-inflammatory roles including inhibiting TNFα- gene 

expression and subsequent F-actin assembly[14]. Thus, higher levels of these PCs are likely 

linked to increased treatment failure through increased MTB survival and impaired immunity. In 

contrast, we observed PCs with longer-chains and a higher degree of unsaturation, were lower in 

individuals with failure. Studies have observed higher levels of some of these PCs among 



individuals with TB compared to controls[15, 16]; the reasons are not clear and future studies 

need to address the mechanisms for how lower levels of these PCs might increase risk of failure.  

 

Clinical Lipidomics/Metabolomics: While clinical metabolomics is an emerging technology with 

significant challenges, recent advances are driving development of infrastructure and technology 

needed to implement these efforts in a clinical setting[17-19]. Advances in high-throughput 

lipidomics are driving a similar focus on clinical lipidomics[20-23].  Our findings further support 

the potential for clinical lipidomics as an advanced diagnostic tool in the clinical setting, and 

efforts to provide clinicians with a routine translatable lipidomic profiling should be encouraged. 

In the context of TB treatment failure, our findings could lead to the development of a targeted 

and translatable lipid panel that can be used to monitor treatment and identity potential failures. 

Further, identifying these high-risk individuals for treatment failure could guide clinicians for 

testing potential interventions (e.g. statins or other lipid-modifying agents).  
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