
Supplementary Material

Supplementary Methodology

Cardiovascular Risk Factors’ Definitions
Cardiovascular risk factors (CVRFs), including age>65 years,
male gender, glomerular filtration rate (GFR) below 60
mL/min/1.73 m2, smoking, hypertension, hyperlipidemia,
diabetes, obesity and increased high-sensitivity C-reactive
protein (hs-CRP) (>2mg/L)1 were recorded for each partici-
pant and their sum was assessed as a measure of CVRF
burden. Hypertension was defined as office blood pressure
(BP) >140/90mm Hg2 or history of medical treatment with
antihypertensive drugs. Diabetes mellitus (DM) was defined
according to latest criteria as fasting plasma glucose �126
mg/dL3 or intake of antidiabetic drugs. Hyperlipidemia was
defined according to current guidelines by the lipid profile
associated with the cardiovascular risk.4 Smoking cessation
was recorded as current or quitted >6 months. GFR was
estimated by the Modification of Diet in Renal Disease
equation.

Cardiovascular Risk Estimation
Patients were also classified into risk categories according to
European Society of Cardiology (ESC) clinical criteria. In
detail, ESC definition of very high risk patients includes the
presence of any of the following: (1) documented cardiovas-

cular disease (CVD), clinical or unequivocal on imaging.
Documented clinical CVD includes previous acute myocardi-
al infarction, acute coronary syndrome (ACS), coronary
revascularization and other arterial revascularization proce-
dures, stroke and transient ischemic attack, aortic aneurysm,
and peripheral artery disease. Unequivocally documented
CVD on imaging includes plaque on coronary angiography or
carotid ultrasound. (2) DMwith target organ damage such as
proteinuria or with a major risk factor such as smoking or
marked hypercholesterolemia or marked hypertension. (3)
Severe chronic kidney disease (CKD; GFR<30mL/min/1.73
m2). (4) A calculated SCORE �10%.5

ESC definition of high-risk patients includes the presence
of any of the following: (1) Markedly elevated single risk
factors, in particular cholesterol >8mmol/L (>310mg/dL)
(e.g., in familial hypercholesterolemia) or BP �180/110mm
Hg; (2) most other people with DM (with the exception of
young people with type 1 DM and without major risk factors
that may be at lowor moderate risk); (3) moderate CKD (GFR
30–59mL/min/1.73 m2); (4) a calculated SCORE �5% and
<10%.5

Stable CAD and ACS Definition
Individuals were considered as stable CAD patients accord-
ing to the following criteria: (1) patients who had undergone

Supplementary Fig. S1 Flowchart of the study population. ACS, acute coronary syndrome; CVD, cardiovascular disease; CAD, coronary artery
disease, MACE, major adverse cardiovascular events.
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an elective coronary angiogram within the previous month,
due to stable angina symptoms or chest pain not attributed to
ACS or aortic syndrome, (2) previous history of ACS more
than a year before baseline visit, and (3) documented pres-
ence of CAD by coronary angiogram or by stress imaging
techniques.6Adiseased coronary arterywas defined as>50%
stenosis.6 ACS was defined as increased high sensitivity
cardiac troponin levels (>99th percentile) combined with
at least one of the following: (1) symptoms of ischemia, (2)
ECG abnormalities, i.e., ST-T segment alterations, left bundle
branch block, or Qwaves, (3) imaging evidence of new loss of
viablemyocardium or regionalwallmotion abnormality, and
(4) intracoronary thrombus detected with coronary angiog-
raphy or autopsy.7

Vascular Methods
Peripheral vascular assessment was performed in all partic-
ipants without clinically overt CVD and in patients with CAD
(stable CAD or ACS). Aortic stiffness was assessed by aortic
pulse wave velocity (PWV), an established marker of aortic
elasticity.8–10 The validated Complior device (Artech Medi-
cal), which allows the online pulse-wave recording and the
automatic calculation of PWV, was used to assess PWV
noninvasively. PWV values were derived from measure-
ments of pulse transit time and the distance travelled

Supplementary Fig. S2 Cumulative incidence of major adverse car-
diovascular events (cardiovascular death, acute myocardial infarction,
and revascularization procedure) in high/very high CVD risk patients
(total N¼ 237) according to BACE1-AS tertiles (lowest vs. higher),
initially defined in the whole population. The number of patients at
risk, during the follow-up period per BACE1-AS tertiles defined in the
total population (lowest vs. higher), is depicted beneath the graph.
p< 0.001 by log-rank test of equality. HR¼ 2.42 per ascending tertile
(95% CI: 1.39–4.22), p¼ 0.002, by Cox regression analysis. HR¼ 1.86
per ascending tertile (95% CI: 1.011–3.43), p¼ 0.046, after multi-
variable adjustment for age, gender, presence of coronary artery
disease, diabetes mellitus, and hypertension. CI, confidence interval;
CVD, cardiovascular disease; HR, hazard ratio.

Supplementary Fig. S3 t-Distributed stochastic neighbor embedding (tSNE) projections of BACE1-AS and BACE1 gene expression in human
PBMCs. (A) t-SNE plot of colored and labeled cell clusters showing their respective cell subtypes across PBMCs. (B, C) The gene expression of
BACE1-AS and BACE1 in PBMC subtypes. Each dot represents a single cell. Dots colored in red indicate the gene expression of which the warmer the
color the higher the fold change in gene expression. PBMCs, peripheral blood mononuclear cells.
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between two recording sites, and automatically calculated as
follows: PWV¼distance [m]/transit time [s]. In our study,
PWVwasmeasured between the common carotid artery and
the common femoral artery and assessed twice (coefficient
of variation: 2.4%). Reference values for PWV were used
according to each subject’s systolic BP and age, as previously
described.11

High-resolution B-mode ultrasound imaging (14.0MHz
multifrequency linear array probe, Vivid 7 Pro, General
Electric) was used to assess carotid and common femoral

artery atherosclerosis and to measure intima-media thick-
ness (IMT) and atheromatous plaques.12 IMT was measured
between the intimal luminal and the medial adventitial
interfaces of the carotid and femoral far wall, at the end-
diastolic phase.13 Atheromatous plaques were defined as a
focal thickening that encroaches into the arterial lumen by
0.5mm, or by 50% of the surrounding IMT, or siteswhere IMT
is >1.5mm.12 All scans were performed by a single experi-
enced operator blinded to the cardiovascular profile of the
patient.

Supplementary Fig. S4 Single-cell analysis results of BACE1-AS and BACE1 gene expression in human atherosclerotic plaque. (A) UMAP plot of
the proportion of diverse cell subtypes across atherosclerotic plaque with labels based on Seurat v4 using the Tabula sapiens reference. (B, C)
UMAP plot showing the distribution of BACE1-AS and BACE1 in atherosclerotic plaque different cell subtypes. Dot size depicts the fraction of cells
expressing a gene. Dot color depicts the degree of expression of each gene. UMAP, uniform manifold approximation and projection for
dimension reduction.
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Supplementary Fig. S5 Pipeline used to identify validated targets of BACE1-AS involved in atherosclerosis. (A) We identified 2,094 genes
significantly regulated with a corrected p-value of <0.05 after BACE1-AS overexpression in human aortic endothelial cells, from which 756 are
predicted to be involved in atherosclerosis according to the Harmonizome database (https://maayanlab.cloud/Harmonizome/). (B) Gene
ontology analysis of the 756 atherosclerotic genes regulated by BACE1-AS overexpression (provided as input), using the web-based tool and
applying the following criteria: GOTERM_BP_FAT as selected terms and displayed terms with >10 counts in a functional annotation chart. (C)
KEGG pathway enrichment analysis to explore the most enriched pathways among the 756 atherosclerotic genes regulated by BACE1-AS
overexpression. The output pathways were filtered for false discovery rate (FDR) <0.05 and fold enrichment >1.5. Subsequently, the pathways
were sorted for increasing fold enrichment and plotted. In the plot, the size of each dot represents the number of genes from the input gene set
included in each pathway while the color indicates the FDR value (as �log10(FDR)).
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Supplementary Table S2 Descriptive characteristics of high/very high CVD risk patients (N¼ 237) who were followed for events
according to BACE1-AS tertiles

Variable N All 1st tertile 2nd tertile 3rd tertile p-Value

Age (y) 236 61.6 (11.2) 59.4(9.9) 64 (10.9) 61.3 (9.1) 0.012

Gender (male), n (%) 237 146 (61.6%) 47 (59.5) 47 (59.5%) 52 (65.8%) 0.640

Non-CVD, n (%) 128 128 (54%) 59 (74.7%) 34 (43%) 35 (44.3%) <0.001

Stable CAD, n (%) 54 54 (22.8%) 9 (11.4%) 26 (32.9%) 19 (24.1%) <0.001

ACS, n (%) 55 55 (23.2%) 11 (13.9%) 19 (24.1%) 25 (31.6%) <0.001

BMI (kg/m2) 195 27.66 (4.36) 28.15 (4.62) 27.14 (4.01) 27.56 (4.34) 0.495

SBP (mmHg) 198 132.58 (20.28) 134.36 (19.89) 130.25 (20.6) 132.81 (20.86) 0.563

DBP (mmHg) 198 75.08 (10.46) 74.99 (10.40) 74.05 (9.77) 76.07 (11.16) 0.598

Smoking, n (%) 234 103 (44%) 29 (36.7%) 31 (40.3%) 43 (55.1%) 0.048

Hypertension, n (%) 237 116 (48.9%) 31(39.2%) 46 (58.2%) 39 (49.4%) 0.058

Hyperlipidemia (%) 237 126 (53.2%) 32 (40.5%) 46 (58.2%) 48 (60.8%) 0.039

Diabetes mellitus, n (%) 237 40 (16.9%) 11 (27.5%) 15 (19%) 14 (17.7%) 0.676

Presence of carotid plaques, n (%) 210 132 (62.9%) 46 (64.8%) 42 (57.5%) 44 (66.7%) 0.494

Presence of any plaque, n (%) 209 212 (56.68%) 56 (78.9%) 54 (74.0%) 50 (76.9%) 0.783

Presence of femoral plaques (%) 209 115 (55%) 38 (53.5%) 37 (51.4%) 40 (60.6%) 0.527
�GFR (mL/min) 230 87.28 (33.34) 94.83 (33.19) 78.99 (32.29) 85.80 (32.97) 0.008
�hs-CRP (mg/L) 217 0.23 (0.08–0.875) 3.26 (18.95) 1.61 (4.80) 2.67 (8.35) 0.110
�Pulse wave velocity (m/s) 167 10.12 (2.88) 9.51 (2.49) 10.46 (2.90) 10.49 (3.19) 0.086
�Augmentation index (%) 156 27.58 (22.57) 25.17 (8.02) 32.48 (41.34) 26.42 (8.12) 0.694
�Time of return of reflected waves (ms) 158 140 (133–146) 141.54 (8.72) 138.26 (9.61) 136.38 (10.35) 0.011
�Common carotid artery IMT (mm) 196 0.89 (0.172) 0.87(0.18) 0.89 (0.17) 0.91 (0.17) 0.480
�Total number of femoral and carotid
segments with plaque

214 1 (0–2) 0 (0–2) 1 (0–3) 1 (0–3) 0.770

�Number of diseased vascular beds 237 1 (0–2) 1 (0–2) 1 (1–3) 1 (1–3) 0.732

Abbreviations: BMI, body mass index; hs-CRP, high-sensitivity C-reactive protein; DBP, diastolic blood pressure; GFR, glomerular filtration rate; IMT,
intima-media thickness; SBP, systolic blood pressure.
Note: p-Value is derived from analysis of variance or the nonparametric Kruskal–Wallis rank test (�) for continuous variables and the chi-squared test
for nominal variables. Diseased vascular beds were defined as: (1) carotid arteries with presence of plaque, (2) coronary arteries with presence of
plaque with stenosis >50%, (3) femoral arteries with presence of plaque.

Supplementary Table S3 Literature curation regarding the proatherosclerotic role of BACE1 and BACE1-AS

Experimental model Study finding Source

BACE1 repression

BACE1�/� mice fed with high-fat diet Lower levels of circulating LDL and TGs
Reduction of atherosclerotic plaque

14

BACE1�/� macrophages Decrease number of lipid droplets in the foam cells 14

BACE1�/� mice (serum) Increase anti-inflammatory IL-9 production 15

Human monocyte cell line treated with BACE1
inhibitor

Reduce binding to VCAM-1
BACE1 is markedly upregulated during macrophage
differentiation

16

BACE1�/� mice Reduced IL-17A expression in BACE1�/� T cells 17

BACE1 overexpression

Endothelial-specific BACE1 overexpression mice Tight junction disruptions and endothelial dysfunction 18

EA.hy926 endothelial cells treated with
BACE1-overexpressing lentivirus

Increased endothelial cell tight junction disruption
Increased monocyte adhesion

19

BACE1-AS repression

SH-SY5Y cells treated with BACE1-AS siRNA Reduction of TNF-α, IL-6, IL-1β levels, and ROS production 20

Abbreviations: BACE1, beta-secretase-1; IL, interleukin; KO, knockout; LDL, low-density lipoprotein; NFκB, nuclear factor kappa B; TGs, triglycerides;
TNF, tumor necrosis factor; TNFR1, tumor necrosis factor receptor-1.
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Supplementary Table S5 Cardioprotective role of miRNAs sponged by BACE1-AS

microRNA Methodology Association with CVD

miR29 ACS, atrial fibrillation, and heart failure patients. Downregulated in ACS, Afib, and HF patients.31–33

miR34b VSMCs of spontaneously hypertensive rats, VSMCs
from C57/BL mice.

Regulates VSMC proliferation by suppressing CDK6.
miR-34b modulates VSMC calcification by directly tar-
geting Notch1.34,35

miR107 Vascular endothelial cells of SPF Kunming mice, blood
cells from patients with atherosclerosis.

Upregulation of miR-107 protects against inflamma-
tion in coronary atherosclerosis. Downregulated in
patients with atherosclerosis, inhibits proliferation of
HUVECs and HUVSMCs.36,37

miR124 CAD patients, PAD patients, ApoE�/�, C57B/L6J mice,
macrophages from ApoE�/� mice.

Downregulated in CAD patients, negatively associated
with severity of PAD. miR-124 inhibits inflammatory
responses during atherosclerosis development. Sup-
presses p38MAPK signaling pathway, inhibiting mac-
rophage proliferation.38–41

miR132 Conflicting data.41–48

miR214 CAD patients, in vitro myocardial cells. Decreased in CAD, UA, and AMI patients. Exerts car-
dioprotective properties in MI-induced cardiac
injury.49,50

miR377 Human VSMCs. Inhibits VSMC proliferation.51

miR485 CAD patients, in vitro myocardial cells. Increased circulating miR485 in CAD patients. Inhibits
cell autophagy and apoptosis of myocardial cells in
vitro.52,53

miR761 Macrophages incubated with ox-LDL, rat aortic VSMCs. Reduces IL-1β and IL-18 secretion in macrophages. miR-
761 suppresses Ang-II-induced cell cycle progression
and subsequent proliferation of VSMCs by inhibiting
mTOR signaling pathway.54,55

Abbreviations: ACS, acute coronary syndrome; Afib, atrial fibrillation; AMI, acute myocardial infarction; AngII, angiotensin-II; ApoE, apolipoprotein-E;
BACE1-AS, β-secretase 1 antisense RNA; CAD, coronary artery disease; CDK6, cycline-dependent kinase-6; CVD, cardiovascular disease; HF, heart
failure; HUVECs, human umbilical vein endothelial cells; HUVSMCs, human umbilical vein smooth muscle cells; IL, interleukin; miR, microRNA; ox-
LDL, oxidized low-density lipoprotein; PAD, peripheral artery disease; UA, unstable angina; VSMCs, vascular smooth muscle cells.
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