Supplementary File 2

Single-cell RNA sequencing highlights the functional role of human endogenous retroviruses in gallbladder cancer

Supplementary Figure 1. Major cell type identification in GBC and adjacent normal tissues.

a tSNE projection of 28,301 single cells from tumor and adjacent normal tissues, colorcoded by clusters (left), tissues (middle), and samples (right).

b tSNE plot displaying the expression of canonical marker genes for major cell types.

c Cell number (left, middle) and relative proportion (right) of major cell types in different tissue types and samples.

d tSNE plot displaying the expression of HERV families in tumor and adjacent normal tissues.

Supplementary Figure 2. Experimental verification of HERV-derived enhancer activity.

a Overall expression levels of HERVs in major cell types.

b Mean HERV expression level across all cells for a given cell type.

c Significantly upregulated HERV loci identified in GBC-derived T cells (left) and DCs (right).

Supplementary Figure 3. Epithelial cell subtypes.

a tSNE projection of epithelial cells, color-coded by clusters (left), tissues (middle), and samples (right).

b Heatmap showing large-scale CNVs for each pair of samples.

c tSNE plot displaying the CNV score for epithelial cells (left) and boxplot showing the CNV score for epithelial cell clusters (right).

d Violin plot displaying the expression of selected genes in two non-malignant subtypes. **e** Cell number (left, middle) and relative proportion (right) of epithelial cell subtypes in different tissue types and samples.

f HERV families upregulated in Epi_EDN1(high) cells compared to Epi_EDN1(low) cells.

g Pie chart displaying the percentage of the upregulated HERVH loci.

h Differentiation trajectory of malignant and normal epithelial cells inferred by Monocle2, color-coded by pseudotime (left) and states (right).

i Top 10 GO terms for genes correlated with upregulated HERV families.

j Scatter plot showing correlation between the indicated gene and HERV (top) and expression of this gene depicted in violin plot (bottom).

Supplementary Figure 4. T cell subtypes.

a tSNE projection of T cells, color-coded by clusters (left), tissues (middle), and samples (right).

b tSNE plot displaying the expression of canonical marker genes for T cell subtypes. Clusters (cluster 10,11 and 12) that did not express T cell marker genes (CD3D, CD3E, CD3G and CD2) were excluded from downstream analyses due to ambiguity in their identity. Cluster 0 expressed T cell gene markers but hardly expressed CD4 and CD8A and was thought to represent CD4-/CD8- T cells.

c Cell number (left, middle) and relative proportion (right) of T cell subtypes in different tissue types and samples.

d Top 10 GO terms for genes correlated with upregulated HERV families.

Supplementary Figure 5. B cell subtypes.

a tSNE projection of B cells, color-coded by clusters (left), tissues (middle), and samples (right).

b tSNE plot displaying the expression of canonical marker genes for B cell subtypes.

c Cell number (left, middle) and relative proportion (right) of B cell subtypes in different tissue types and samples.

Supplementary Figure 6. Myeloid cell subtypes.

a tSNE projection of DCs, color-coded by clusters (left), tissues (middle), and samples (right).

b tSNE plot displaying the expression of canonical marker genes for DC subtypes.

c Cell number (left, middle) and relative proportion (right) of DC subtypes in different tissue types and samples.

d Top 10 GO terms for genes correlated with upregulated HERV families.

e Scatter plot showing correlation between gene MMP7 and HERV LTR7Y in the indicated cell populations (left) and expression of gene MMP7 depicted in violin plot (right).

Supplementary Figure 7. Fibroblast subtypes.

a tSNE projection of fibroblasts, color-coded by clusters (left), tissues (middle), and samples (right).

b tSNE plot displaying the expression of canonical marker genes for fibroblast subtypes.c Cell number (left, middle) and relative proportion (right) of fibroblast subtypes in different tissue types and samples.

d Top 10 GO terms for genes correlated with upregulated MER65-int.

sample	nfeature.min	nfeature.max	mitochondrial contamination
N1	200	5000	30%
T1	200	6000	30%
N2	200	6000	30%
T2	200	6000	30%
N3	200	5000	30%
Т3	200	6000	30%
N4	200	8000	30%
T4	200	8000	30%

Supplementary Table 1. QC metrics used to select cells.

Patient name	Sample name	Gender	Age (year)	Tumor subtype	Sample collection	Number of cells	Total filtered reads	Reads mapped ambiguously (%) (gene HERV)
P1	N1	female	64	adenocarcinoma	adjacent normal tissue	6,491	265,093,671	2.29 6.07
P1	T1	female	64	adenocarcinoma	tumor tissue	3,908	289,106,850	2.14 5.61
P2	N2	male	56	adenocarcinoma	adjacent normal tissue	2,581	667,559,625	2.33 6.94
P2	T2	male	56	adenocarcinoma	tumor tissue	2,568	651,349,051	2.53 6.48
P3	N3	female	72	adenocarcinoma	adjacent normal tissue	5,000	465,915,248	2.39 6.52
P3	Т3	female	72	adenocarcinoma	tumor tissue	2,999	608,028,773	2.67 7.17
P4	N4	male	54	adenocarcinoma	adjacent normal tissue	2,445	419,464,683	3.2 6.62
P4	T4	male	54	adenocarcinoma	tumor tissue	2,309	441,603,902	3.35 7.45

Supplementary Table 2. Clinical information and single-cell RNA sequencing data.

Supplementary Table 3. Primer sequences for nested PCR.

Primer Name	Primer sequence
MER4A1-dup6-chr1-1-F	5'- TTCAGGATACCTGAGCCCCTGTG -3'
MER4A1-dup6-chr1-1-R	5'- TGCCCACAGGTCTTGGGTTATCATG -3'
MER4A1-dup6-chr1-2-F	5'- CATTTCTCTATCGATAGGTACTGTGAACCAAAAATATC -3'
MER4A1-dup6-chr1-2-R	5'- GCACGCGTAAGAGCTCGGTACCTGCCTACCTCTCAC -3'
MER11B-dup23-chr5-1-F	5'- TAAGAGGTGTAGTCTTGGTAGGAAGATGC -3'
MER11B-dup23-chr5-1-R	5'- AAGACCATTTGGCCCACATAGCCTAG -3'
MER11B-dup23-chr5-2-F	5'- CATTTCTCTATCGATAGGTACAGACCATGGATTATT -3'
MER11B-dup23-chr5-2-R	5'- GCACGCGTAAGAGCTCGGTACTGTTGCGGGAAGTCAC -3'
LTR13A-dup8-chr11-1-F	5'- CTCCACCTCCCAGATTCAAGCGATTC -3'
LTR13A-dup8-chr11-1-R	5'- TTCTGCATAGACACAGTAACAGTCTGATCTCG -3'
LTR13A-dup8-chr11-2-F	5'- CATTTCTCTATCGATAGGTACTGTAGGGTCCAGC -3'
LTR13A-dup8-chr11-2-R	5'- GCACGCGTAAGAGCTCGGTACTGTGGGCGGAGGAAT -3'
LTR33-dup38-chr16-1-F	5'- TGACCTCAAGTGATCCTCCTGCCTTG -3'
LTR33-dup38-chr16-1-R	5'- GCGCTTTCTGAAGTTTGCTAACTTATGAATGCAAC -3'
LTR33-dup38-chr16-2-F	5'- CATTTCTCTATCGATAGGTACTATTCTCCATTGGTC -3'
LTR33-dup38-chr16-2-R	5'- GCACGCGTAAGAGCTCGGTACGGGAGACCTTGTCTC -3'
MLT1F-int-dup5-chr16-1-F	5'- TCTCTGCAAGGTAAGCCCTTCTCTAC -3'
MLT1F-int-dup5-chr16-1-R	5'- GGTGAGAAAGTCTGTTAATAAGAGTCCAGTG -3'
MLT1F-int-dup5-chr16-2-F	5'- CATTTCTCTATCGATAGGTACTCTCTGCAAGGTAAG -3'
MLT1F-int-dup5-chr16-2-R	5'- CATTTCTCTATCGATAGGTACTCTCTGCAAGGTAAG -3'
LTR2-dup7-chr16-1-F	5'- CTCTAGCCTGGGCAACAGAGCAAGACTC -3'
LTR2-dup7-chr16-1-R	5'- ACATTCCCTGGAGCCTGGCATCTTGAC -3'
LTR2-dup7-chr16-2-F	5'- CATTTCTCTATCGATAGGTACGTAGCAGGACGAG -3'
LTR2-dup7-chr16-2-R	5'- CACGCGTAAGAGCTCGGTACTAAGGGAGGAGACCA -3'
LTR10C-dup13-chr19-1-F	5'- GTAAAAAGAAAAGTAGAGGTTCTTCTTCAAAGACTTC -3'
LTR10C-dup13-chr19-1-R	5'- CAAAGACTTCCTTCTTCATCTAATTAAGAATAAATAG -3'
LTR10C-dup13-chr19-2-F	5'- CATTTCTCTATCGATAGGTACGTAAAAAGAAAAGTAGAG -3'
LTR10C-dup13-chr19-2-R	5'- GCACGCGTAAGAGCTCGGTACCTATTTATTCTTAATTAG -3'
MSTD-dup87-chr20-1-F	5'- GCAGGAAGTATTATCCAGCAAGTTACTACTGTG -3'
MSTD-dup87-chr20-1-R	5'- TGTCAGACAATGACTGACAGAAGTTGGTAG -3'
MSTD-dup87-chr20-2-F	5'- CATTTCTCTATCGATAGGTACGTTTTAGTCTATTTTGT -3'
MSTD-dup87-chr20-2-R	5'- GCACGCGTAAGAGCTCGGTACTGCTATGGTTTGAATGT -3'

Supplementary	Table 4.	HERVs	with	enhancer	activity	and	their	neighboring
DEGs.								

HERV with enhancer	Location	Neighboring DEGs			
activity					
MER4A1dup6-chr1	chr1: 22982843-22983338	C1QA, C1QB, KDM1A			
MER11B-dup23-chr5	chr5: 151729381-151730458	ATOX1, G3BP1			
LTR13A-dup8-chr11	chr11: 65521819-65522784	NEAT1			
LTR33-dup38-chr16	chr16: 18936807-18937237	ARL6IP1			
MLT1F-int-dup5-chr16	chr16: 29915600-29916253	ASPHD1, INO80E, KCTD13, MVP, TAOK2, T			
		MEM219, YPEL3			
LTR2-dup7-chr16	chr16: 30541069-30541510	CD2BP2, DCTPP1, FBRS, ORAI3, PRR14, RNF			
		40, SEPHS2, STX4, ZNF688, ZNF689			
LTR10C-dup13-chr19	chr19: 15837284-15837348	UCA1			
MSTD-dup87-chr20	chr20: 49769262-49769601	B4GALT5, RNF114			