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SUPPLEMENTARY METHODS 31 
 32 

Software Version 33 

Analysis in R used version 3.6.0 or greater. Seurat package version used was 3.1.2 or 34 

greater. Other package versions are specified when discussed. 35 

 36 

Projection onto Palantir t-SNE, Setty Rep 1 37 

Differentiation trajectories for each sample were calculated using previously computed 38 

normal hematopoietic trajectories from Palantir (6), a tool which uses marker genes to 39 

assign probabilities of differentiation. While Palantir succeeds with normal samples, the 40 

use of very few marker genes made the tool prone to inaccuracies or uninterpretable 41 

results stemming from the aberrations introduced by malignant samples. Therefore, 42 

instead of relying on single genes in our malignant samples, each malignant cell was 43 

assigned the branch probabilities and t-SNE coordinates of nearest-neighbor reference 44 

cells using the first 50 dimensions of Harmony-adjusted PCA space.  45 

To leverage all three replicates from the Setty paper, the three samples were 46 

merged into one Seurat object. The samples were then normalized and scaled using 47 

LogNormalize() and ScaleData() Seurat functions. ScaleData() by default uses the top 48 

2000 variable features. PCA was performed on the scaled data using the RunPCA() 49 

Seurat function. Harmony was used (parameters theta = 1, max.iter.harmony = 20, 50 

group.by.vars = sample) to reduce sample-to-sample variation. Then, replicate 2 and 3 51 

were assigned the t-SNE coordinates of the nearest replicate 1 cell in the first 50 52 

dimensions of Harmony-adjusted PCA space. The result produced t-SNE coordinates in 53 
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the same replicate 1 embedding for all 3 replicates. Additionally, branch probabilities of 54 

each cell from all three replicates were taken directly from the Setty data.  55 

For each malignant sample, Quality Control (QC) was performed as in the Setty 56 

paper, to eliminate possible non-biological sources of difference without removing any 57 

additional reference cells. Cells were removed if they had <1000 UMI count, < 315 58 

genes per cell, or mitochondrial percentage > 20%, as was done in the Setty paper. For 59 

each malignant sample, a combined object was created by merging the three Setty 60 

replicates and the malignant sample. This combined object (four samples, 3 Setty, 1 61 

malignant) was log-normalized using the LogNormalize() function in Seurat and then 62 

scaled using the ScaleData() Seurat function. PCA and Harmony were performed on 63 

the scaled object, using the RunPCA() and RunHarmony() functions in Seurat (Harmony 64 

parameters: theta = 2, Max.iter.harmony = 20). In this run of Harmony, differences due 65 

to lab protocols were removed and therefore the malignant sample was integrated 66 

against the other three replicates as a group, instead of integrating all of them 67 

individually. Then, each malignant cell was assigned the t-SNE coordinates of the 68 

nearest replicate 1, 2 or 3 cell in the first 50 dimensions of Harmony-adjusted PCA 69 

space. Additionally, each malignant cell was assigned a weighted average of the branch 70 

probabilities of the 30 nearest neighbors from replicate 1, 2, and 3, with the weighting 71 

calculated as the inverse of the distance in 50-dimensional Harmony-adjusted PCA 72 

space. After this was run for each malignant cell in each malignant sample, the result 73 

gave t-SNE coordinates and branch probabilities for each malignant sample.  74 

All Seurat functions were run with default parameters, except where otherwise 75 

noted.  76 
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Density Visualization for lineage trajectories 77 

Given the t-SNE coordinates for each sample from the Palantir projection, the density of 78 

cells along each branch could be visualized in the t-SNE space. The reference density 79 

was again set as the grouping of all three Setty replicates. First, the kde2d() function 80 

(from MASS R package version ‘MASS_7.3-53.1’, n=200, h=3) was run on the t-SNE 81 

embeddings of both the reference and each malignant sample separately. Then, the 82 

results were log-transformed separately with a scale factor of 1000 and a pseudo-count 83 

of 1. The reference was subtracted from each malignant sample, and the melt() function 84 

(from R package ‘reshape2_1.4.4’) was run to format the data. The resulting data was 85 

plotted using ggplot2 (geom_tile() and geom_point()) to show over- (blue) and under- 86 

(red) densities relative to the reference.  87 

 88 

Single-cell RNA sequencing Quality Control (QC) 89 

Data from publicly available normal samples was imported and a Seurat object was 90 

created with the eight normal samples. A lower cutoff for the number of features was set 91 

to 450. The percent of mitochondrial RNA was set to 0.05 for normal samples to remove 92 

dead cells. For each normal dataset (6-8), cells with number of features greater than 2 93 

standard deviations above the dataset mean were removed to account for possible 94 

doublets. From the Setty dataset, 25,041 of 41,331 (60.5%) cells were kept. From the 95 

Zheng dataset, 8,799 of 9,262 (95%) cells were kept. From the Hua dataset, 29,832 of 96 

32,289 (92.4%) cells were kept. Zheng and Hua datasets were previously filtered for 97 

mitochondrial content, explaining the higher percentage of quality cells in those 98 

datasets. 99 
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For the CMML samples, a lower feature cutoff of 450 was also used. For 100 

mitochondrial content, 25% was used as the lower cutoff due to the higher percentage 101 

of mitochondrial RNA in cancer cells. Any cells with a feature count greater than 2 102 

standard deviations above the mean were also excluded to account for doublets. Of 103 

182,189 initial cells, 137,578 (75.5%) high-quality cells were kept.  104 

 105 

Pseudo-Bulk Aggregation, pseudo-bulk UMAP, Ward clustering, and Signature 106 

Heatmap 107 

The input for pseudo-bulk aggregation was all quality-controlled and log-normalized 108 

scRNAseq data (39 Moffitt + 8 Normal). ScaleData() was run on this data, again 109 

keeping the first 2000 variable features. The datatset was then divided by sample. For 110 

each sample, the arithmetic mean of the scaled data was calculate for each of the 2000 111 

features. The result is a matrix with 47 rows (one for each sample) and 2000 columns 112 

(one for each variable feature/transcript). UMAP was performed on this matrix using the 113 

umap() function (parameters: n_neighbors = 39, metric = 'euclidean', min_dist = 0.05) of 114 

the uwot package (version: uwot_0.1.10).  115 

Additionally, hierarchical clustering was performed on this pseudo-bulk matrix. 116 

Distances were computed using the dist() function with “euclidean” method from the 117 

stats package (version: 4.0.2). The clustering was performed on the distances using the 118 

hclust() function from the stats package with method “ward.D2” (version: 4.0.2). The 119 

resulting dendrogram was divided into four groups, corroborating the groupings based 120 

on bulk UMAP and lineage bias.  121 
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Using the groupings defined by the Ward hierarchical clustering, the heatmap 122 

shown in Fig. 1E was constructed from a similar pseudo-bulk matrix to the one detailed 123 

above. Instead of using the top 2000 variable features, this matrix was constructed 124 

using only the 180 features (top 60 from each of HSC, GMP, MEP) from the Wu gene 125 

signatures (13). The arithmetic mean of the scaled expression (z-score) is plotted for 126 

each sample, and each gene in the signature.  127 

 128 

PCA, Harmony, UMAP, and Louvain Clustering 129 

All high-quality cells (n = 201,250) were used in both UMAP projection and clustering, 130 

as shown in Fig. 3A. Steps were performed in R (version >= 3.6.0) using R package 131 

Seurat (version >= 3.1.2). First, quality-controlled count data was log-normalized using 132 

Seurat function NormalizeData() with default parameters stated here for redundancy 133 

(“normalization.method = ‘LogNormalize’” and “scale.factor = 10000”). Next, Seurat 134 

function FindVariableFeatures() identified the top 2000 features using default 135 

parameters (“selection.method = ‘vst’”). Normalized data was then scaled using Seurat 136 

function ScaleData(). ScaleData() scales the top 2000 features identified using 137 

FindVariableFeatures(). ScaleData() allows the option of controlling for variables using 138 

the “vars.to.regress” parameter. To eliminate differences due to dead cells (high 139 

mitochondrial count) and differing read targets across datasets, we specified 140 

“vars.to.regress = c(‘nCount_RNA’, ‘percent.mito’)”. PCA was then performed on the 141 

scaled data using the top 2000 features and the default parameters of Seurat function 142 

RunPCA(). Harmony (version 0.1.0) (9) was then used to correct for batch effects due to 143 

different datasets. Seurat function RunHarmony() was used as a wrapper to Harmony. 144 



 7 

RunHarmony() parameter “group.by.vars” was set to variable “tech” in the metadata of 145 

the Seurat object which specifies the dataset of the each individual cell. Other 146 

RunHarmony() parameters were set to default (sigma = 0.1, reduction = “pca”). The 147 

output from RunHarmony() is a corrected PCA embedding which is then used for further 148 

analysis.  149 

Using the first 50 dimensions of the “harmony” reduction, neighbor graph 150 

construction was performed using the default parameters of the FindNeighbors() Seurat 151 

function (k.param = 20, reduction = “harmony”, dims = 1:50, n.trees = 50).  Using this 152 

neighbor graph, clusters were constructed at various resolutions using Louvain 153 

clustering as implemented in the FindClusters() Seurat function with other parameters 154 

set to default (algorithm = 1, n.start = 10, n.iter = 10). Resolutions used were: (0.025, 155 

0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2) which identified between 9 (0.025) and 21 (0.2) 156 

communities. Clustree (version 0.4.3) was used to visualize cells moving between 157 

clusters at various resolutions. We used clustree visualization to identify the resolution 158 

of 0.05, with 13 communities, as having the optimal tradeoff between resolution and 159 

noise. Next, the RunUMAP() function in Seurat was used for visualization. The first 50 160 

dimensions of the “harmony” reduction were used for the RunUMAP() function. Other 161 

parameters were set to default values (reduction = “harmony”, dims = 1:50, 162 

umap.method = “uwot”, n.neighbors = 30, metric = “cosine”, min.dist = 0.3).  163 

 164 

SingleR 165 

SingleR (version 1.6.1) (20) is a tool used to assign cell type status to cells profiled 166 

using single-cell RNA sequencing. It leverages bulk RNA sequencing from flow-167 
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cytometry sorted references to map each individual cell in a query dataset to a cell type 168 

in the reference dataset. We use three built-in references from the “SingleR” package; 169 

“NovershternHematopoieticData()” (55), “HumanPrimaryCellAtlasData()” (56), and 170 

“BlueprintEncodeData()” (57, 58), all of which have several hematopoietic progenitor 171 

cell types. We also use an additional reference (GSE42519) which we call the Rapin 172 

dataset, originating from published work in Rapin et al. Blood. 2014 (21).   We restrict 173 

the reference cell types to those possibly observed within our CD34+ bone marrow 174 

scRNAseq dataset, and then group them into six broader categories: Hematopoietic 175 

Stem Cell (HSC), Granulocyte-Macrophage Progenitor (GMP), Megakaryocyte-176 

Erythroid Progenitor (MEP), Common Lymphoid Progenitor (CLP), Multi-Potent 177 

Progenitor (MPP), and Common Myeloid Progenitor (CMP). We use the main cell types 178 

from the Novershtern and Human Primary Cell Atlas datasets and the fine cell types 179 

from the Blueprint Encode dataset. The “main” cell types are broader categories 180 

whereas the “fine” cell types are more specific. “Main” and “fine” labels for each 181 

reference were chosen as such to ensure that the six broader categories were 182 

represented. For example, in the Blueprint Encode dataset, the “main” label grouped 183 

MEP and HSC, prompting us to elect the “fine” label, which distinguished between the 184 

two cell types. B-cells, T-cells, NK cells and their respective progenitors were grouped 185 

with CLP. Erythroblasts were grouped with MEPs. Pro-myelocytes were grouped with 186 

GMPs.  187 

Cell type assignment was computed using SingleR independently for each 188 

reference. Following single reference cell type assignment, assignments were 189 

compared across references. If three or four references agreed on a cell type for a 190 
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given cell from our dataset, that cell type would be assigned to the individual cell. If less 191 

than three of the references agreed, the cell type would be classified as “No 192 

Consensus”. As seen on the UMAP in Fig. 3C, many of the cells with no consensus cell 193 

type appear between HSCs and MEPs, indicating that these cells may just have been 194 

“caught in between” while undergoing the process of differentiation. Still, only 10.2 % of 195 

cells had no consensus cell type. SingleR results also used to show CLP and HSC 196 

depletion in CMML, as detailed in Fig. 1I-J, Supplementary Fig. S5.  197 

 198 

Single-cell Pathway Scores 199 

As an orthogonal approach to evaluating cell type, specifically for Clus2 cells, at the 200 

single cell level, we used the Wu GMP signature (13)  to generate a score for each 201 

individual cell. Using all 100 genes from the GMP signature, Seurat function 202 

AddModuleScore() was used to assign each cell a score. The scores for cells in cluster 203 

2 are shown in (Supplementary Fig. S10). This approach was also applied to evaluate 204 

upregulation of WNT/b-catenin signaling by creating a score based on the Gene Set 205 

Enrichment Analysis Geneset for unstimulated and WNT pathway stimulated 206 

hematopoietic progenitor geneset (GSE26351; Supplementary Fig. S11C-D) (54). 207 

UMAP of WNT signature score (Supplementary Fig. S11C) is made using Seurat 208 

FeaturePlot() with “min.cutoff” set to 0 for visualization.  209 

 210 

mitoClone 211 

mitoClone (version 1.0) (25) uses mitochondrial reads, which typically have better 212 

coverage, to infer clonal composition of cells within a sample. From the single cell bam 213 
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files, the mitoClone function baseCountsFromBamList() with specification “sites = MT:1-214 

16569”, creates count tables. Then, the count tables are used as input into the 215 

mutationCallsFromBlacklist() function with parameter: min.af = 0.1, min.num.samples = 216 

0.01*(# cells), universal.var.cells = 0.9*(# cells), max.var.na = 0.5, max.cell.na = 0.75. 217 

The parameters are a balance between the resolution and noise. This choice of 218 

parameters is slightly lower resolution but gives greater confidence in the clonal 219 

breakdown observed. 220 

With multiple samples from the same patient, which are the cases we show in 221 

Fig. 4L-S and 5A-H, we run the sequential samples together in the 222 

mutationCallsFromBlacklist() function. Then, the phylogenetic reconstruction is done in 223 

the muta_cluster() function with default parameters. This step requires a gurobi license, 224 

which is free for academic users.  The output of muta_cluster gives clonal information 225 

and a confidence estimate for each single cell, which can then be used for visualization 226 

and clonal distribution calculation. Clonal distribution across samples from the same 227 

patient remains remarkably similar, lending confidence that these are observed 228 

phylogenies and not simply noise. 229 

There are several cases where the clonal reconstruction finds only one clone. 230 

This is to be expected with CMML, as it is a clonal disease. There are a few cases in 231 

which there are no selected sites for clonal reconstruction, and in those cases, we 232 

assume clonality. 233 

 234 

 235 

 236 
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COMET 237 

COMETSC (version 0.1.13) (24) is a python package used to identify markers from 238 

scRNAseq data to be used in flow cytometry. Currently, there is a limit to the number of 239 

cells used for COMET, which is 65,000. For our purposes (to identify markers for Clus2 240 

cells), we include all cluster 2 cells and the remaining cells of the 65,000-cell allotment 241 

are randomly sampled from non-Clus2 cells. In order to find markers for cluster 2 only, a 242 

cell that is in cluster 2 is assigned a 1 and non-cluster 2 cells are assigned 0 for the 243 

cluster input “.txt” file. We run COMET with “-K 3” to look for “panels” that are up to 3 244 

combinations of individual markers, though we only use a single marker. The output of 245 

COMET gives a true positive and true negative, indicating the accuracy of using the 246 

given markers to identify the population. Due to expected dropout in scRNAseq data, 247 

we prioritize a high true negative value, that is, we want markers which are only present 248 

in cluster 2, even if they are not present in every cluster 2 cell (high specificity, low 249 

sensitivity). 250 

 251 

Pathway Analysis 252 

Enrichr (53) was used with differentially expressed features (p < 0.05) between cluster 2 253 

and other cells. “Panther 2016” (29) pathway from Enrichr is shown in Fig. 6A.   254 

 255 

Dimensionality reduction and unsupervised clustering of high parameter flow 256 

cytometry data 257 

The unsupervised clustering analysis was performed using FlowJo version 10. The HSC 258 

and myeloid progenitors were identified using the gating strategy explained in the 259 
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results. The fluorescent data from stem and myeloid progenitors (identified by manual 260 

gating) of patients and healthy subjects were concatenated.  UMAP (UMAP, version 261 

2.1) plugin in FlowJo was used for dimensionality reduction. The following parameters 262 

were used for dimensionality reduction: nearest neighbors-30, minimum distance-0.5, 263 

distance function-Euclidean, 22 fluorescent parameters representing the compensated 264 

cytokine receptors in HSCs and 21 fluorescent parameters representing the CRs in 265 

myeloid progenitors. Phenograph (version 0.2) (36) plugin in FlowJo was used for 266 

clustering as previously described23. The following parameters were used for clustering: 267 

k-nearest neighbors=30. 22 and 21 fluorescent parameters representing the 268 

compensated CRs. Manual gating of each of the CRs was also performed to calculate 269 

MFI and percentage positive data. 270 

271 
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                               SUPPLEMENTARY TABLES 272 

 273 
Supplementary Table S1. Comparison of clinical baseline characteristics between 274 
patients in scRNA-Seq and FCM cohorts. The comparisons were made using non-275 
parametric Mann-Whitney test, Fischer’s exact test and Chi-square analysis. The 276 
comparisons revealed comparable clinical baseline characteristics between the 2 277 
patient cohorts. 278 
 279 
Supplementary Table S2. Panther Pathways from Genes Upregulated in Cluster 2 280 
Compared to Cluster 0. 281 
 282 
Supplementary Table S3. Panther Pathways from Genes Downregulated in 283 
Cluster 2 Compared to Cluster 0. 284 
 285 
Supplementary Table S4. FPKM values of 51 receptors in Healthy and CMML 286 
CD34+ cells extracted from bulk RNA-Seq datasets. 287 
 288 
Supplementary Table S5. Baseline characteristics of patient samples used in 289 
scRNA-Seq cohort. The table shows baseline characteristics of each of the samples 290 
used in scRNA-Seq study.  291 
 292 
Supplementary Table S6. Baseline characteristics of patient samples used in flow 293 
cytometry cohort. The table shows baseline characteristics of each of the samples 294 
used in FCM study.  295 
 296 
Supplementary Table S7. Summary statistics of samples used for scRNA-Seq. 297 
 298 
Supplementary Table S8. TotalSeq™-D Human Heme Oncology Cocktail, V1.0. 299 
The table details the specificity, clone, barcode sequence of each of the 45 antibodies 300 
used in the TotalSeq study. 301 
 302 
Supplementary Table S9. Myeloid Panel (45 Genes, 312 Amplicons). The table lists 303 
the genes profiled in the myeloid panel. 304 
 305 
Supplementary Table S10. Reagent information for PE-conjugated flow cytometry 306 
screen.  307 
 308 
Supplementary Table S11. Reagent information for CRD flow cytometry panel. 309 
 310 
Supplementary Table S12. Reagent information for murine stem and progenitor 311 
flow cytometry panel. 312 
 313 
Supplementary Table S13. Reagent information for PDX flow cytometry panel. 314 
 315 



 14 

Supplementary Table S14. Baseline characteristics of publicly available normal 316 
samples. 317 

SUPPLEMENTARY FIGURES 318 
 319 

Suppl. Fig. S1. Consort Diagram of CMML patient samples evaluated with single-cell 320 
RNA sequencing and high parameter flow cytometry (FCM) in this study. 321 
 322 
Suppl. Fig. S2. Pseudo-bulk aggregation analysis of scRNAseq showed distinct three 323 
differentiation trajectories. 324 
 325 
Suppl. Fig. S3. Three distinct trajectories were confirmed from projection of CMML 326 
samples onto a single-cell proteo-genomic reference map of hematopoiesis.   327 
 328 
Suppl. Fig. S4. Clinical parameter associations with monocytic-bias, MEP-biased, and 329 
normal-like patient groupings showed no significant differences in blast percentage, 330 
platelets, WBC, ALC, ANC, and absolute monocytosis. 331 
 332 
Suppl. Fig. S5. CMML patients show HSC depletion as compared to normals. 333 
 334 
Suppl. Fig. S6. Single-cell gene expression of HSC signatures show depletion in HSCs 335 
in CMML. 336 
 337 
Suppl. Fig. S7. Gating strategy used for identification of stem and myeloid progenitor 338 
populations in CMML patients and controls. 339 
 340 
Suppl. Fig. S8. Clinical characteristics of patients with HSC depletion. 341 
 342 
Suppl. Fig. S9. Cluster 2 drives Mono-bias assignment. 343 
 344 
Suppl. Fig. S10. Gene expression analysis of Clus2 cells showed GMP like signature. 345 
 346 
Suppl. Fig.  S11. Expression of CTNNB1, IRF8, and WNT pathway signature score in 347 
CMML GMPs in scRNAseq cohort. 348 
 349 
Suppl. Fig. S12. Expression of Fc gamma receptors in scRNAseq cohort. 350 
 351 
Suppl. Fig. S13. CD120b expression across stem and progenitor populations. 352 
 353 
Suppl. Fig. S14. Merged survival analysis of the single-cell RNA sequencing and flow 354 
cytometry cohorts. 355 
 356 
Suppl. Fig. S15. Clus2 characterized by CD284 expression.  357 
 358 
Suppl. Fig. S16. Palantir mappings with mitoClone clonal information indicated by color 359 
for all samples run individually. 360 



 15 

 361 
Suppl. Fig. S17. Development and optimization of CRD flow panel. 362 
 363 
Suppl. Fig. S18. Distribution of HSPCs in competitive BMT studies in NRAS model. 364 
 365 
Suppl. Fig. S19. Plasma cytokine levels 6 hours post injection of LPS or vehicle. 366 
 367 
Suppl. Fig. S20. Cellular density in Palantir pseudotime across differentiation 368 
trajectories in normal samples.  369 
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 370 
Supplementary Figure S1. Consort Diagram of CMML patient samples evaluated with single-cell RNA sequencing 371 
and high parameter flow cytometry (FCM) in this study. 372 



 17 

 373 
Supplementary Figure S2. Pseudo-bulk aggregation analysis of scRNAseq showed distinct three differentiation 374 
trajectories. (A) Pseudo-bulk aggregation of CMML scRNAseq cohort visualized with UMAP projections. (B) Ward 375 
hierarchical clustering of CMML and normal samples identifies the three distinct trajectories. (C) Single-cell UMAP 376 
projections highlighting cells from Mono-Bias samples, (D) MEP-Bias samples, and (E) Normal-like samples. 377 
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 378 
Supplementary Fig S3. Three distinct trajectories were confirmed from projection of CMML samples onto a 379 
single-cell proteo-genomic reference map of hematopoiesis.  Patients categorized as mono-bias had elevated 380 
monocyte pseudotime when mapped to the single-cell proteo-genomic reference published by Triana et al. in Nature 381 
Immunology (2021)  382 
 383 
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 384 
 385 
Supplementary Fig S4. Clinical parameter associations with monocytic-bias (Mono-Bias), MEP-biased, and 386 
normal-like patient groupings showed no significant differences in blast percentage, platelets, WBC, ALC, ANC, 387 
and absolute monocytosis. Non-parametric Kruskal-Wallis test was used to compared continuous variables across 388 
treatment naïve patients aggregated based on the three distinct trajectories identified. p-value significance represented by 389 
* < 0.05, ** < 0.01, *** < 0.001. 390 
 391 
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 392 
 393 

Supplementary Figure S5. CMML patients show HSC depletion as compared to 394 
normals. There was also a depletion in the SingleR assignment of HSC cell type in 395 
treatment naïve CMML samples (p-value: 0.0004; Mann-Whitney test). p-value 396 
significance represented by * < 0.05, ** < 0.01, *** < 0.001. 397 

 398 
 399 

 400 
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 401 
 402 

Supplementary Figure S6. Single-cell gene expression of HSC signatures show depletion in HSCs in CMML. HSC 403 
depletion was robust and replicated across three single-cell derived HSC signatures (Wu = Wu et al. Blood Advances 404 
2020; VG = Van Galen et al. Cell 2019; and Epp = Eppert et al. Nature Medicine 2011). Treatment-naïve samples 405 
separated by trajectory bias show. 406 
 407 
 408 
 409 
 410 
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 411 
 412 
Supplementary Figure S7. Gating strategy used for identification of stem and 413 
myeloid progenitor populations in CMML patients and controls. 414 
Triple positive HSCs: Lin-CD34+CD38-CD45RA-CD90+CD49F+,  415 
CMP: Lin-CD34+CD38+CD123+CD45RA-,  416 
GMP: Lin-CD34+CD38+CD123+CD45RA+,  417 
MEP: Lin-CD34+CD38+CD123-CD45RA-. 418 
 419 
 420 
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 421 
 422 
Supplementary Fig S8. Clinical characteristics of patients with HSC depletion. (A) Comparison of HSC frequency 423 
between controls and WHO-classified CMML stages using the flow-cytometry identified HSC immunophenotypes showed 424 
HSC depletion with disease progression in double positive HSCs, (B) single positive HSCs also known as HSPCs, n=20 425 
patient cases and 5 control cases. (C) Evaluation of bone marrow blast content between low HSC and high HSC group of 426 
patients showed that blast content was inversely correlated with HSC numbers in double positive HSCs, (D) single 427 
positive HSCs, n=20 patient cases. Data was analyzed using Mann-Whitney test; p-value significance represented by * < 428 
0.05, ** < 0.01, *** < 0.001. 429 
 430 
 431 
 432 

A DCB
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 433 
 434 

Supplementary Figure S9. Cluster 2 drives Mono-bias assignment. Fraction of cells 435 
assigned to cluster 2 in each sample, with samples grouped by differentiation bias.  436 
 437 
 438 
  439 
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 440 
 441 

Supplementary Figure S10. Gene expression analysis of Clus2 cells showed GMP 442 
like signature. The SingleR results were validated by scoring each cell with a 443 
previously published GMP gene signature score (from Wu Blood Advances 2020) and 444 
cells in Clus2 had significantly higher GMP scores than cells not in Clus2 (mean score 445 
of 0.5504 in Clus 2 and 0.0649 not in Clus 2; p-value: <0.0001). Nonparametric Mann-446 
Whitney tests were used to compare two group data. p-value significance represented 447 
by * < 0.05, ** < 0.01, *** < 0.001. 448 
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 451 
 452 

Supplementary Figure S11. Expression of CTNNB1, IRF8, and WNT pathway signature score in CMML GMPs in 453 
scRNAseq cohort. Gene expression per cell was visualized on UMAP projections of all single cells in cohort with Seurat 454 
featurePlot() function of (A) CTNNB1 and (B) IRF8.  (C) WNT pathway up-regulation was scored using Seurat 455 
AddModuleScore() and Gene Set Enrichment Analysis GeneSet GSE26351 describing WNT pathway stimulation in 456 
human CD34+ hematopoietic progenitor populations (established by Trompouki et al Cell. 2011 (54)).  457 

 458 
 459 
  460 
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 461 
Supplementary Figure S12. Expression of Fc gamma receptors in scRNAseq cohort. Gene expression per cell was 462 
visualized on UMAP projections of all single cells in cohort with Seurat featurePlot() function of (A) FCGR1A, (B) 463 
FCGR1B, (C) FCGR2A, (D) FCGR2B, (E) FCGR3A, and (F) FCGR3B.  Elevated expression in Clus2 cells indicates a 464 
possible state of myelopoiesis induced by stress (23).465 
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 466 
Supplementary Figure S13. CD120b expression across stem and progenitor 467 
populations. CD120b expression across stem and progenitor cells as determined by 468 
flow cytometry. Data was analyzed using Mann-Whitney test. p-value significance 469 
represented by * < 0.05, ** < 0.01, *** < 0.001.  470 
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 472 
 473 
Supplementary Figure S14. Merged survival analysis of the single-cell RNA 474 
sequencing and flow cytometry cohorts. KM survival analysis showed patients with 475 
monocytic-bias had inferior survival (n=55; log-rank p-value: 0.001). p-value significance 476 
represented by * < 0.05, ** < 0.01, *** < 0.001. 477 
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 480 
 481 

Supplementary Figure S15. Clus2 characterized by CD284 expression. (A) COMET 482 
was used to identify differential gene expression markers well-suited for validation with 483 
flow-cytometry. COMET identified TLR4 (encoded cell surface marker CD284) as a 484 
marker for identifying Clus2 cells with a true positive performance of 32.2% and true 485 
negative performance of 99.1%. (B) CD284 expression across stem and progenitor 486 
cells as determined by flow cytometry. Data was analyzed using Mann-Whitney test. (C) 487 
KM survival analysis showed patients with high CD284+ expression had inferior survival 488 
(n=26; log-rank p-value: 0.03). p-value significance represented by * < 0.05, ** < 0.01, 489 
*** < 0.001. 490 
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 492 
Supplementary Figure S16. Palantir mappings with mitoClone clonal information indicated by color for all 493 
samples run individually. Mono and MEP bias samples labeled; all others are Normal-like. No trend associating clonality 494 
with differentiation trajectories.   495 
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 496 
 497 

Supplementary Figure S17. Development and optimization of CRD flow panel. (A) The MFI of cytokine receptors 498 
based on the expression data generated from the PE-conjugated flow cytometry screen. (B) The stain index for the 499 



 33 

commercially available fluorophores. (C) The frequency (percentage of total) data for receptors generated from the PE-500 
conjugated flow cytometry screen. (D) SSM generated by using LWB stained with CD4 antibody conjugates on Symphony 501 
A5. The cytokine receptors were conjugated with appropriate fluorophores based on expression, frequency, and SSE 502 
data. (E) The first iteration of the SSM specific to our panel generated by staining compensation particles and cells with 503 
titred volume of respective 28 antibodies/dyes (single cell stain controls). (F) The revised SSM generated post 504 
optimization of spillover sources identified in Fig E. (G) UMAP visualization of Patients and Controls in i) triple positive 505 
HSCs ii) double positive HSCs iii) single positive HSCs (HSPCs) iv) CMPs v) GMPs vi) MEPs. The following codes have 506 
been used for the cytokine receptors in figures A and C) A:TIM3, B:CD123, C:CD284, D:CD117, E:CD215, F:CD132, 507 
G:CD126, H:CDw125, I:CD114, J:CD282, K:CD181, L:CD182, M:CD135, N:CD110, O:CD115, P:CD120b, Q:CD218a, 508 
R:CD192, S:CD184, T:CD120a, U:CD119, V:CD116. The following codes have been used for the cytokine receptors in 509 
figures D, E and F) 1:TIM3, 2:CD123, 3:CD284, 4:CD117, 5:CD215, 6:CD132, 7:CD126, 8:CDw125, 9:CD114, 10:CD282, 510 
11:CD181, 12:CD182, 13:CD135, 14:CD110, 15:CD115, 16:CD120b, 17:CD218a, 18:CD192, 19:CD184, 20:CD120a, 511 
21:CD119, 22:CD116. 512 
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 515 
 516 

Supplementary Figure S18. Distribution of HSPCs in competitive BMT studies in NRAS model: (A) GMPs (B) MEPs 517 
(C) CMPs (D) MPP1 (E) MPP3 (F) MPP4 (G) LSKs (H) HSCs. Support marrow-(CD45.1/CD45.2) vs CD45.2 NrasQ61R/+; 518 
Mx1-Cre, n=5 NrasQ61R/+; mice and 5 Mx-1Cre mice. Data was analyzed using multiple paired t-test. 519 
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 521 
Supplementary Figure S19. Plasma cytokine levels 6 hours post injection of LPS (n=6) or vehicle (n=6). Plasma 522 
was obtained from submandibular bleeds. Data was analyzed using non-parametric Mann-Whitney test. p-value 523 
significance represented by * < 0.05, ** < 0.01, *** < 0.001. 524 
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 527 
 528 

Supplementary Figure S20. Cellular density in Palantir pseudotime across differentiation trajectories in normal 529 
samples. Samples display HSC enrichment but no clear trajectory bias. 530 
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