1 m6A is required for resolving progenitor identity during

2 planarian stem cell differentiation

- 3 Yael Dagan¹*, Yarden Yesharim¹*, Ashley R. Bonneau^{2,3,4}, Tamar Frankovits¹, Schraga Schwartz⁵, Peter W.
- 4 Reddien^{2,3,4}, Omri Wurtzel^{1,6,7}
- ¹ School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978
- 6 Tel Aviv, Israel
- 7 ² Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- 8 ³ Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- 9 ⁴Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- 10 ⁵ Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
- 11 ⁶Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- 12 * These authors contributed equally
- 13 ⁷Correspondence: owurtzel@tauex.tau.ac.il

14 Table of contents	
----------------------	--

15	Appendix Figure S1	3
16	Appendix Figure S2	5
17	Appendix Figure S3	7
18	Appendix Figure S4	8
19	Appendix Figure S5	10
20	Appendix Table S1. Gene models of contig IDs in figures	11
21	Appendix Table S2. Genes cloned in this study	12
22	Appendix Table S3. Inline m6A-seq2 barcode sequences	14
23	Appendix Table S4. Mapping of library data to the planarian transcriptome	15
24	Appendix Table S5. qPCR primers used in this study	17
25	Supplementary References	18

- 30 Appendix Figure S1. Specificity of RNAi of m6A genes. (A-B) Shown is the correlation in gene expression changes
- 31 between experimental conditions. Each dot represents the log fold-change of a single gene, colored based on
- 32 significance threshold (FDR threshold < 1E-6). For both panels the p-value of the correlation < 2.2E-16. (C-F) Shown
- 33 is the normalized gene expression in RPKM for genes across the different libraries. RNAseq analysis validated the
- 34 efficiency and the specificity of the RNAi (C-D). The expression of h2b was upregulated in all of the tested
- 35 conditions (E). By contrast, the expression of *smedwi-1* did not change significantly following inhibition of m6A
- 36 genes (F). (E) The number of significantly upregulated and downregulated genes is shown at each of the tested
- 37 time points (FDR of genes included < 1E-5; Dataset EV2). In the early time point (four RNAi feedings) most of the
- 38 genes were upregulated. However, at later time points, most differentially expressed genes are downregulated,
- 39 which likely represent indirect effects of the RNAi, such as depletion of cell populations.

42 Appendix Figure S2. Analysis of histone transcript polyadenylation following inhibition of m6A genes. (A) Paired-43 end RNAseq data was used for identifying polyA containing histone transcripts. Reads mapped (read #1) to histone

44 genes without proper read-pairing were computationally isolated, and their read pair (read #2) was collected from 45 the raw data files. If the unmapped read (read #2) contained a poly-dT sequence, which is the reverse-complement 46 of polyA, then the read was counted as a polyadenylated histone transcript. (B-C) Shown are RNAseq reads 47 mapped to h2b (dd_4808; gene model SMESG000067906), which had a paired-read (read #2) containing polyA. 48 Control sample (top) has fewer reads mapped to h2b compared to the kiaa1429 (RNAi) sample (bottom). The total 49 number of polyA containing read-pairs mapped to h2b is shown in panel C. (D) qPCR strategy for estimating the 50 fraction of polyadenylated and non-polyadenylated h2b. Purified RNA (1) was reverse-transcribed with a poly-dT, 51 or random hexamers (2). Then, qPCR is performed with internal primers (3). (E) The expression of gapdh was 52 measured using RNA that was purified from wild type planarians. The analysis was used to estimate the efficiency 53 of qPCR using cDNA produced either with poly-dT priming or using random hexamers. The change in reporter signal (y-axis) as a function of the qPCR cycle was similar for both groups (left), as is the quantification cycle (Cq, 54 55 right). The analysis demonstrated that reverse-transcription with poly-dT and random hexamers was similarly 56 efficient. (F) Shown in the relative quantification of polyadenylated h2b and non-polyadenylated h2b in control 57 (left) and following kiaa1429 (RNAi). The increase in polyadenylated h2b expression following kiaa1429 (RNAi) 58 was observed despite a lack of increase in total h2b expression (right). Error bars are the 95% confidence interval. 59 (G) Shown is the number of polyA containing reads for several of the overexpressed histone components encoding 60 genes in RNAseq data per 10M library reads (h3* is the putative histone 3 transcript that is transcribed from contig 61 dd_25629, gene model SMESG000013634). Horizontal line indicates the median. (H) Comparison of DNA density 62 by using DAPI-labeling on control and kiaa1429 (RNAi) animals. DAPI-labeling, which correlates with chromatin 63 density, showed an overabundance of DAPI-poor nuclei in kiaa1429 (RNAi) animals. This suggested that kiaa1429 64 (RNAi) chromatin packaging was altered, and indicated that euchromatin might be more prevalent in kiaa1429 65 (RNAi), which might therefore affect transcriptional regulation. High magnification images (bottom) were 66 acquired from different field-of-views from similar anatomical areas. Whiskers indicate the range of DAPI-poor-67 nuclei to nuclei ratio in the images, boxes indicate the interquartile range (IQR), and central band indicates the 68 mean (n = 10 biological replicates per group). Student's t-test * p < 0.05. Scale = 10 μ m.

70

71 Appendix Figure S3. Reduction in intestinal cells following kiaa1429 (RNAi). (A) Shown are cell counting of FISH 72 images in kiag1429 (RNAi) and in control animals normalized by the area of counting (rectangular region anterior 73 to the pharynx and posterior to the brain; Methods). Representative images are shown in Figure 6E (Two sided 74 Student's t-test p = 1.2E-7 and 0.001 for dd_115 and dd_72, respectively followed by Bonferroni's correction). (B) 75 Shown is co-labeling of recently integrated intestinal cells into to intestine structure by using a mix probes for 76 detection of intestine-specific transcription factors (i.e., hnf4, nkx-2.2, and gata4/5/6-1), and anti-SMEDWI-1, 77 which labels neoblasts and recent progeny (Guo et al, 2006). White arrowheads indicate double positive cell. Scale 78 = 10 µm. (C) Quantification of co-labeled SMEDWI-1+/intestine+ cells is shown in Control and kiaa1429 (RNAi) 79 animals, based on cell counting from z-stack images (two sided Student's t-test = 0.02).

- 82 Appendix Figure S4. Overlap in differentially expressed genes. (A) Shown is the rank of overlap between the
- 83 RNAseq libraries produced here and the published planarian datasets. The rank was determined by counting the
- 84 number of overlapping and non-overlapping differentially expressed genes in the datasets produced here and in
- 85 published datasets (FDR < 1E-5 and TPM > 10), and calculating the hypergeometric p-value for the overlap (Table
- 86 EV1; blue to red, low and high ranked significance of overlap, respectively). (B) Plot showing the maximal Jaccard
- 87 index calculated between up-to the top 200 differentially expressed genes in the published planarian datasets
- 88 used here (Table EV1) and up-to the top 200 differentially expressed genes of each of the datasets produced here
- 89 (Dataset EV2). Each dot represents a single dataset. *CHD4* (RNAi) datasets are highlighted in red.

93 Appendix Figure S5. CHD4 (RNAi) recapitulates molecularly the inhibition of m6A genes. (A-B) Shown is a qPCR 94 quantification of h2b and smedwi-1 expression following RNAi of the NuRD component encoding genes CHD4 (A) 95 or rbap48 (B) in comparison to control libraries (error bars indicate the 95% confidence interval; two-sided t-test 96 Bonferroni corrected; ** - p < 0.01, * - p < 0.05). (C-D) volcano plot of human (C) and mouse (D) gene expression 97 changes following inhibition or conditional knockout of CHD4 encoding gene (Marques et al, 2020; Wilczewski et 98 al, 2018). Highlighted and labeled are significantly overexpressed histone-encoding genes, as well as the human 99 or mouse CHD4 homolog (red and black, significant and non-significant change in gene expression; adjusted p-100 value < 0.0001).

101	Appendix Table S1.	Gene models	of contig ID	s in figures
-----	--------------------	-------------	--------------	--------------

Figure	Panel	Label in figure	Gene Model
Figure 2	А	dd_254	SMESG000073667
Figure 4	А	dd_783	SMESG000016810.1
Figure 4	А	dd_1837	SMESG000016779.1; SMESG000016781.1
Figure 4	А	dd_11930	SMESG000016771.1
Figure 4	А	dd_18852	SMESG000016780.1
Figure 4	А	dd_1616	SMESG000022742.1
Figure 4	А	dd_19404	NA
Figure 4	А	dd_15204	SMESG000081110.1
Figure 4	А	dd_20482	NA
Figure 4	А	dd_2089	SMESG000016811.1
Figure 4	А	dd_7261	NA
Figure 4	А	dd_2262	SMESG000038305.1
Figure 4	А	dd_1785	SMESG000005903.1; SMESG000006038.1
Figure 4	А	dd_1938	SMESG000007684.1
Figure 4	А	dd_4923	SMESG000063585.1
Figure 4	А	dd_6637	SMESG000071518.1
Figure 4	А	dd_2759	SMESG000081460.1
Figure 4	А	dd_3377	SMESG000026665.1
Figure 4	E	dd_175	SMESG000049722.1
Figure 4	E	dd_4575	SMESG000068883.1
Figure 4	E	dd_3194	SMESG000053627.1
Figure 5	А	dd_25629	SMESG000013634.1
Figure 5	н	dd_1837	SMESG000016779.1; SMESG000016781.1
Figure 5	н	dd_585	SMESG000062836.1
Figure 6	E	dd_72	NA
Figure 6	E	dd_888	SMESG000073691.1
Figure 6	E	dd_75	SMESG000027140.1
Figure 6	E	dd_115	SMESG000066413.1; SMESG000066416.1
Figure 7	E	dd_25269	SMESG000013634.1
Figure EV1	А	dd_6450	SMESG000034548.1
Figure EV1	А	dd_6641	SMESG000073528.1
			SMESG000074445.1; SMESG000074456.1;
Figure EV1	A	dd_4676	SMESG000074577.1; SMESG000074578.1
Figure EV1	А	dd_2322	SMESG000043489.1; SMESG000043668.1
Figure EV1	А	dd_7426	SMESG000019097.1
Figure EV1	А	dd_7282	SMESG000001341.1
Figure EV1	В	dd_3491	SMESG000018260.1
Figure EV1	В	dd_7891	SMESG000008619.1

Figure EV1	В	dd_8450	SMESG000003195.1
Figure EV1	В	dd_5578	SMESG000001953.1
Figure EV1	В	dd_7162	SMESG000039495.1
Figure EV1	В	dd_5316	SMESG000075874.1
Figure EV4	E	dd_3194	SMESG000053627.1
Figure EV4	G	dd_3194	SMESG000053627.1
Appendix Figure S1	А	dd_6641	SMESG000073528.1
Appendix Figure S1	В	dd_3491	SMESG000018260.1
Appendix Figure S1	С	dd_4808	SMESG000067906.1
Appendix Figure S1	D	dd_659	SMESG000036375.1
Appendix Figure S4	А	dd_115	SMESG000066413.1; SMESG000066416.1
Appendix Figure S5	А	dd_888	SMESG000073691.1
Appendix Figure S6	А	dd_72	NA

102 Appendix Table S2. Genes cloned in this study

Contig	Gene model	Primer ID	Sequence
dd_Smed_v4_4676_1	SMESG000074445	Kiaa1429_F	CCGCTATCCGTTGTTA TTATGCG
dd_Smed_v4_4676_1	SMESG000074445	Kiaa1429_R	TCCGTAATCGTGGCCA GC
dd_Smed_v4_7282_1	SMESG000001341	rbm15_F	GGGAGTTATCTGATG GTCAAAGA
dd_Smed_v4_7282_1	SMESG000001341	rbm15_R	CCGGCACCGCTAACA GAA
dd_Smed_v4_6450_0_1	SMESG000034548	mettl3_F	AATTGAAACCAGACG AAATGCA
dd_Smed_v4_6450_0_1	SMESG000034548	mettl3_R	AGGTGTGTGGTTGCA GAGG
dd_Smed_v4_7426_1	SMESG000019097	hakai_F	ACGGTCAATGTCTCGT AGCC
dd_Smed_v4_7426_1	SMESG000019097	hakai_R	GCACGGCATCATGTTT AGG
dd_Smed_v6_2322_4	SMESG000043489	wtap_F	CCCGATGAAATGGTG AAATC
dd_Smed_v6_2322_4	SMESG000043489	wtap_R	TCGGGATCATCCTCTT CATC

	SMESG000018260		CAGTCATCTCCCAATG
dd_Smed_v4_3491_0_1		ythdc-1_F	TTGACG
	SMESG000018260		ACAAACCGCAATAATT
dd_Smed_v4_3491_0_1		ythdc-1_R	GTAACCA
	SMESG000053627		GATCGAGGAAATCTT
dd_Smed_v6_3194_0_1		Intestine marker_F	GACGAAC
	SMESG000053627		GTGAATACTTCAGGA
dd_Smed_v6_3194_0_1		Intestine marker_R	GCCATCC
	SMESG000049722		ACGATCTCGGAAAAC
dd_Smed_v6_175_0_1		<i>cathepsin</i> + marker_F	ATTCG
	SMESG000049722		AGCCATCGTAGCTATT
dd_Smed_v6_175_0_1		<i>cathepsin</i> + marker_R	CCACA
	SMESG000077782		GTGGAGAACTTGGAG
dd_Smed_v6_701_0_1		collagen F	CAAGC
	SMESG000077782		AACACCAGCATCTCCT
dd_Smed_v6_701_0_1		collagen R	GGAC
	SMESG000068883		CAACCCCAACGCGATA
dd_Smed_v6_4575_0_1		Protonephridia_F	CAAT
	SMESG000068883		CAGAAAGAAAGAGCC
dd_Smed_v6_4575_0_1		Protonephridia_R	TCCGC
	SMESG000074445	<i>kiaa1429</i> non-	AGGACGTTTCCAGCAA
dd_Smed_v4_4676_1		overlapping_F	TGAG
	SMESG000074445	<i>kiaa1429</i> non-	CATGGTTCGCCTTGGA
dd_Smed_v4_4676_1		overlapping_R	TTAG
	SMESG000068192		CGCGAGCATTTCATCT
dd_Smed_v6_2331_0_1		CHD4_F	TGTA
	SMESG000068192		AAACGATGGGCTTCAT
dd_Smed_v6_2331_0_1		CHD4_R	CAAC
	NA		GAATGGCCAAGCTTA
dd_Smed_v6_2065_0_1		<i>rbAp48</i> _F	ACTGC
	NA		TTTGGGCTCCAACTGA
dd_Smed_v6_2065_0_1		<i>rbAp48</i> _R	AATC
	SMESG000066413		CAGTGCTTGCCGTCTG
dd_Smed_v6_115_0_1		Intestine marker_F	ТСТА

	SMESG000066413		TAGCAACCAGTGCATT
dd_Smed_v6_115_0_1		Intestine marker_R	GAGC
	NA		AATGTTGGGATGCTGC
dd_Smed_v4_72_0_1		Intestine marker_F	AGTT
	NA		CAAAACGCAGGGCTC
dd_Smed_v4_72_0_1		Intestine marker_R	АТАСТ
	SMESG000027140		TGCCGTTATGAACATG
dd_Smed_v4_75_0_1		Intestine marker_F	ATTTTCG
	SMESG000027140		ACACAAAATATCGCAT
dd_Smed_v4_75_0_1		Intestine marker_R	ССТБСС
	SMESG000073691		TCTTGGACTTCATCGA
dd_Smed_v4_888_0_1		Intestine marker_F	СТТТСТ
	SMESG000073691		AACTGGTTTTCGTTGT
dd_Smed_v4_888_0_1		Intestine marker_R	СТАСААА
	SMESG000016779		TTGGAACAGACCACTG
dd_Smed_v6_1837_0_1		<i>kiaa1429</i> -cluster #1 F	GTGA
	SMESG000016779		AACGACGACCTTTCCA
dd_Smed_v6_1837_0_1		<i>kiaa1429</i> -cluster #1 R	ACTG
	SMESG000062836		ACAAGTGCAATGCCC
dd_Smed_v6_585_0_1		<i>kiaa1429</i> -cluster #2 F	GTAAC
	SMESG000062836		CCTCATTTCCCACGGT
dd_Smed_v6_585_0_1		<i>kiaa1429</i> -cluster #2 R	АТСА

103 Appendix Table S3. Inline m6A-seq2 barcode sequences

Condition	Replicate	Barcode sequence	Experiment
<i>kiaa1429</i> (RNAi)	#1	NNNCCAGTCT	m6A-seq2
<i>kiaa1429</i> (RNAi)	#2	NNNCCTCCGT	m6A-seq2
<i>kiaa1429</i> (RNAi)	#3	NNNGCACTCT	m6A-seq2
unc22 (RNAi), Control	#1	NNNGCCCATT	m6A-seq2
unc22 (RNAi), Control	#2	NNNGGCCTCT	m6A-seq2
unc22 (RNAi), Control	#3	NNNTATCACT	m6A-seq2

unc22 (RNAi), Control Ime4Δ/Δ/Ndt80Δ/Δ	#1	NNNGTTTGCT	Species mixing m6A-seq2
unc22 (RNAi), Control Ime4Δ/Δ/Ndt80Δ/Δ	#2	NNNCCTTAGT	Species mixing m6A-seq2
<i>kiaa1429</i> (RNAi) <i>Ndt80</i> Δ/Δ	#1	NNNCAACTGT	Species mixing m6A-seq2
kiaa1429 (RNAi) Ndt80Δ/Δ	#2	NNNCACCTCT	Species mixing m6A-seq2

104 Appendix Table S4. Mapping of library data to the planarian transcriptome

Condition	Туре	Mapping ratio	Unmapped read ratio
<i>kiaa1429</i> (RNAi)	Input	0.871783	0.128217
<i>kiaa1429</i> (RNAi)	pulldown	0.876082	0.123918
<i>kiaa1429</i> (RNAi)	Input	0.872294	0.127706
<i>kiaa1429</i> (RNAi)	pulldown	0.88221	0.11779
<i>kiaa1429</i> (RNAi)	Input	0.88312	0.11688
<i>kiaa1429</i> (RNAi)	pulldown	0.885548	0.114452
Control	Input	0.886476	0.113524
Control	pulldown	0.895546	0.104454
Control	Input	0.840594	0.159406
Control	pulldown	0.891526	0.108474
Control	Input	0.882362	0.117638

Control pulldown	0.893802	0.106198
------------------	----------	----------

106 Appendix Table S5. qPCR primers used in this study

Gene	Sequence	Contig	Gene model
<i>11930_</i> F	GAGGATTCTCCTATTAAACCC	dd_smed_v6_11930	SMESG00001
	AAC	_0_1	6771
<i>11930</i> _R	CGTGCGATCAGCGTTTATATT	dd_smed_v6_11930 _0_1	SMESG00001 6771
gapdh_F*	TCTTCCCCAACCAATTTTCTGT	dd_smed_v6_78_0_	SMESG00005
	TCTG	1	2353
gapdh_R*	CCGAATATTTTATTTGGCTCTT	dd_smed_v6_78_0_	SMESG00005
	CCTCCA	1	2353
smedwi1_F*	GTCTCAGAAAACAACTAAAGG	dd_smed_v6_659_0	SMESG00003
	TACAGCA	_1	6375
smedwi1_R*	TGCTGCAATACACTCGGAGAC	dd_smed_v6_659_0	SMESG00003
	A	_1	6375
mettl3_F	ACAGTTTTGTCACTATGGTAC	dd_Smed_v6_6450_	SMESG000034
	C	0_1	548
<i>mettl3</i> _R	GAAAGCAAGTATTGAGAAAT	dd_Smed_v6_6450_	SMESG000034
	GAAC	0_1	548
wtap_F	GGAGCTGATTTCCATTAAGAA	dd_Smed_v6_2322_	SMESG000043
	TG	0_4	489
<i>wtap</i> _R	TCGATATTGATTTTGCACACT	dd_Smed_v6_2322_	SMESG000043
	G	0_4	489
3194_F	CATTTGTGCTATTACGGTGTC	dd_smed_v6_3194_ 0_1	SMESG000053 627
<i>3194</i> _R	GGTGAGTTCATTAGTGTACAG	dd_smed_v6_3194_	SMESG000053

	C	0_1	627
h2b_F	TGTAAGGTTGATTTTACCAGG AG	dd_smed_v6_4808_ 0_1	SMESG00006 7906
<i>h2b</i> _R	CCCGTGTACTTAGTAACAGC	dd_smed_v6_4808_ 0_1	SMESG00006 7906
rbm15_F	GGCGAATTCAATGTCAAAGTA G	dd_Smed_v6_7282_ 0_1	SMESG00000 1341
rbm15_R	AGCCAAAACAGGATCAACTG	dd_Smed_v6_7282_ 0_1	SMESG00000 1341

107 * Primer sequences previously published (van Wolfswinkel *et al*, 2014).

108 Supplementary References

- Guo T, Peters AHFM & Newmark PA (2006) A *bruno-like* gene is required for stem cell
 maintenance in planarians. *Dev Cell* 11: 159–169
- 111 Marques JG, Gryder BE, Pavlovic B, Chung Y, Ngo QA, Frommelt F, Gstaiger M, Song Y,
- 112 Benischke K, Laubscher D, *et al* (2020) NuRD subunit CHD4 regulates super-enhancer
- accessibility in rhabdomyosarcoma and represents a general tumor dependency. *eLife* 9
- 114 Wilczewski CM, Hepperla AJ, Shimbo T, Wasson L, Robbe ZL, Davis IJ, Wade PA & Conlon FL
- (2018) CHD4 and the NuRD complex directly control cardiac sarcomere formation. *Proc Natl Acad Sci USA* 115: 6727–6732

117 van Wolfswinkel JC, Wagner DE & Reddien PW (2014) Single-cell analysis reveals functionally

distinct classes within the planarian stem cell compartment. *Cell Stem Cell* 15: 326–339