Applied Microbiology and Biotechnology

Amyloid peptides with antimobicrobial and/or microbial agglutination activity

Dongru Chen^{1#}, Xiangqi Liu^{2#}, Yucong Chen³, Huancai Lin^{3*}

1 Department of Orthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University. Guangdong Provincial Key Laboratory of Stomatology. Guangzhou, Guangdong, China

2 Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University. Guangdong Provincial Key Laboratory of Stomatology. Guangzhou, Guangdong, China

3 Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University. Guangdong Provincial Key Laboratory of Stomatology. Guangzhou, Guangdong, China

Adress: Lingyuan Xi 56, Guangzhou, Guangdong, China.

*Corresponding author: Huancai Lin; Email: <u>linhc@mail.sysu.edu.cn.</u> Telephone and fax numbers: 020-83744816.

First author	Year	Amyloid peptides	Derives	functions	Specific or broad	Mechanism	Cytotoxicity	Monomers or fibers
		or sequence			effects			effect
		eria and antifungus)	Ŧ					T (11 1 1
Wei (Wei et al. 2021)	2021	Hen Egg-White Lysozyme	Lysozyme	Antibacteria	Broad (G ⁺ bacteria, G ⁻ bacteria)	Pores formation	-	Lysozyme fibrils showed significantly enhanced antibacterial activity compared to monomers and oligomers.
Salinas (Salinas et al. 2021)	2021	Uperin 3.5	Skin of Uperoleia mjobergii	Antibacteria	G ⁺ bacteria (Only G ⁺ bacteria tested)	Membranes disruption	-	Both monomers and fibers, but the effect of fibrils is weaker than that of monomers
Tu (Tu et al. 2021)	2021	UP(EFVAKLFKF FK), UP- RR(EFVAKLFRF FR), UP- RWR(EFVAKLFR FWR)	PSMα3 (phenol- soluble modulins α3)	Antibacteria	Broad (G ⁺ and G ⁻ bacteria)	Membranes disruption	Excellent biocompatibi lity	Monomers were added, but the authors think the antibacterial activity derived from formed nanostructures.
Engelberg (Engelberg & Landau 2020)	2020	LL-37 ₁₇₋₂₉	LL-37 (37- residue peptide whose N- terminal sequence is LL)	Antibacteria	G ⁺ bacteria (Only G ⁺ bacteria tested)	Membranes disruption	-	Only monomers tested

Table S1: Effects and mechanisms of amyloid peptides against bacteria and fungus

Schnaider (Schnaider et al. 2020)	2020	dhvar2 (KRLFKELLFSL RKY), L7F (KRLFKEFLFSL RKY)	Histatin 5	Antibacteria and antifungus	Broad (G ⁺ bacteria, G ⁻ bacteria and fungus)	Membrane permeabilization	-	Only monomers tested
Khodaparast (Khodaparast et al. 2018)	2018	Aggregation prone regions (APRs) derived from <i>Escherichia coli</i> proteome	<i>Escherichia</i> <i>coli</i> proteome	Antibacteria	Broad (G ⁻ bacteria tested)	APRs lead to massive and lethal inclusion body formation containing a large number of proteins, inducing the collapse of protein homeostasis.	Non- cytotoxic	Only monomers tested
Salinas (Salinas et al. 2018)	2018	LFKFFK	ΡSΜα3	Antibacteria	G ⁺ bacteria (<i>Micrococcus</i> <i>luteus</i> and <i>Staphylococcus</i> <i>hominis</i>), but nontoxic to <i>Staphylococcus</i> <i>aureus</i>	-	-	Only monomers tested
Schnaider (Schnaider et al. 2017)	2017	Diphenylalanine (FF)	-	Antibacteria	Broad (G ⁺ and G ⁻ bacteria)	Membrane permeabilization and depolarization	Non- cytotoxic	Both monomers and nanotubes?
Bouaziz (Bouaziz et al. 2017)	2017	Lysozyme monomers, fibers, Zn2Al-NO3-LYS, Zn2Al-NO3-AMY	Lysozyme	Antibacteria	G ⁺ bacteria (Only G ⁺ bacteria tested)	The enzymatic activity depends on the active site integrity and accessibility, and the enzymatic site is not totally denatured in	-	Both monomers and fibers, but the effect of fibrils is weaker than that of monomers.

						amyloid fibrils, making the fibrils retain a weaker antibacterial effect.		
Bednarska (Bednarska et al. 2016)	2016	C29, C30 , Hit1 and Hit50	Proteome of Staphylococc us epidermidis	Antibacteria	Higher antibacterial activity against G ⁺ bacteria than against G ⁻ bacteria.		Non- cytotoxic	Only monomers tested
Park (Park et al. 2016)	2016	α-synuclein (α- Syn)	α-Syn	Antibacteria and antifungus	Broad (G ⁺ bacteria, G ⁻ bacteria and fungus)	The α -Syn interacts with bacterial membrane and fugal cytoplasmic compounds in microbial cells to inhibit cell growth.	-	Only monomers tested
Wang (Wang et al. 2012)	2012	Human islet amyloid polypeptide (hIAPP)	hIAPP	Antibacteria	Higher antibacterial activity against G ⁺ bacteria than against G ⁻ bacteria.	-	-	All the three states are effective, but monomer's antimicrobial effect was greater than those of annular protofibrils and fibrils.
Soscia (Soscia et al. 2010)	2010	Abeta (Aβ)	Αβ	Antibacteria and antifungus	Broad (G ⁺ bacteria, G ⁻ bacteria and fungus)	-	-	Only monomers tested
Pasupuleti (Pasupuleti et al. 2009)	2009	PrP ₂₃₋₂₃₁ and PrP ₂₃₋₁₄₄	Prion protein (PrP)	Antibacteria and antifungi	Broad (G ⁺ bacteria, G ⁻ bacteria and fungus)	-	-	Only monomers tested

Walsh (Walsh et al. 2014)	2014	PrP ₁₀₆₋₁₂₆	PrP	Antibacterial	Broad (G+ bacteria, G- bacteria)	Interacts with the bacterial membrane, results in physical removal of peptide-lipid micelles, causing membrane leakage and cell death	Cytotoxic	Only oligomers exhibit antimicrobial activity
Hirakura (Hirakura et al. 2002); Hari-Dass R (Hari-Dass et al. 2005); Zheng (Zheng et al. 2020)	2002, 2005, 2020	serum amyloid A (SAA)	SAA	Antibacteria	Broad (G ⁺ bacteria, G ⁻ bacteria)	Ion-channel formation and membrane disruption	-	Only monomers tested
Microbes agglu		l					~	
Chen (Chen et al. 2021)	2021		C123 protein, and other species	Pathogen agglutinatio n	Broad (G ⁺ bacteria, G ⁻ bacteria and fungus)	Forming amyloid fibrils agglutinating microbes through binding microbial surface carbohydrates	Slight or no cytotoxicity.	Both monomers and fibers, but the effect of fibrils is weaker than that of monomers
Kumar (Kumar et al. 2016)	2016	Αβ	Αβ	Pathogen agglutinatio n	Broad (bacteria and fungus)	Forming amyloid fibrils agglutinating microbes through binding microbial surface carbohydrates	-	All the monomers, oligomers and fibrils are effective. Compared with monomers, oligomers exhibited potentiated, and protofibrils attenuated.
Voth (Voth et al. 2020)	2020	Amyloids including Aβ and tau	Supernatant of type III secretion	Pathogen agglutinatio n	Bacteria	Amyloid oligomers bind to the bacteria membrane and cause agglutination	Cytotoxic	Oligomers

								-
			system (T3SS) incompetent <i>Pseudomonas</i> <i>aeruginosa</i> infected pulmonary microvascular endothelial cells (PMVECs)					
Chu (Chu et al. 2012)	2012	Human α-defensin 6 (HD6)	HD6	Pathogen agglutinatio n	Bacteria (Only bacteria tested)	Forming amyloid fibrils agglutinating microbes through binding proteinaceous surface appendages	_	Only monomers tested
Microbes agglu	tination	and antimicrobes		1		11 0	1	I
Kurpe (Kurpe et al. 2020)		R23I(RKKRRQR RRGGSar#(A)GV TDFGVFVEI) R23T(RKKRRQR RRGGSar#(A)G VVEGTVVEVT) V10I(VTDFGVF VEI)	Ribosomal S1 protein	Antibacteria	Not clear? Only G- bacteria <i>Thermus</i> <i>Thermophilus</i> tested.	Coaggregating S1 protein, suppressing the intensity of protein biosynthesis and thus decreasing total numbers of proteins.	Decrease cell viability when using 20 µg/mL and more, suppress mitotic activity and migration activity.	Only monomers tested.
Hu (Hu et al. 2020)	2020	phase-transited BSA(PTB)	BSA	Antibiofilm (Inhibit microbes adhesion to fibrils)	Broad	-	-	Fibrils

Hu (Hu et al. 2018)	2018	Epigallocatechin gallate-binding lysozyme amyloid fibrils hydrogels; lysozyme amyloid fibrils	Lysozyme	Bacteria agglutinatio n firstly and antibacteria	Broad (G ⁺ and G ⁻ bacteria)	Inducing the agglomeration of the bacterial cells firstly and then killing bacteria might through membrane disintegration.	Non- cytotoxic	Fibrils
Spitzer (Spitzer et al. 2016)	2016	$A\beta_{x-42}, A\beta_{1-40}$	Αβ	$A\beta_{x-42}$: antimicrobes and pathogen agglutinatio n; $A\beta_{1-40}$: antifungus	$A\beta_{x-42}$: broad; $A\beta_{1-40}$: moderate against fungus, non effect to bacteria.	Pathogen agglutination: forming amyloid fibrils agglutinating microbes; Antimicrobes: not stated.	-	Only monomers tested
Torrent (Torrent et al. 2012)	2012	Eosinophil cationic protein (ECP)	ECP	Antimicrobe s and pathogen agglutinatio n	Specific to G ⁻ bacteria	Specifically binding to lipopolysaccharide (LPS) and forming amyloid fibrils, and thus disrupting lipopolysaccharide bilayer, exposing the internal cytoplasmatic membrane to the protein action, promoting the membrane disruption.	-	Only monomers tested

Note: Previous well-known antimicrobial peptides or host defense peptides with the amyloid forming ability are not listed in this table. -: Not declared.

Author	Year	Amyloid	Derive	Monomers or	Functions	Virus species	Specific	Mechanism	Cytotoxicity	Others
Palika (Palika et al. 2021)	2021	peptides β- lactoglob ulin (BLG)	s BLG	fibers effectβ-lactoglobulinamyloid fibril-Fe(BLG AF-Fe) hasstrong effect,BLG monomer-Fe has moderateeffect,whileBLG AF or Fealonehavenoeffect.	Filtration membrane trap eliminate viruses from water by retaining and inactivating virus.	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 2), <i>H1N1</i> , <i>enterovirus</i> 71	or not Broad	The viruses are elongated perpendicular to the surface, and such elongation was driven by the shrinkage of the membrane on drying.	-	Enveloped, non- enveloped, airborne and waterborne viruses
Michiels (Michiels et al. 2020)	2020	Peptide 12B(WD LIQLIVS DGSDLI QLIVSD)	Basic polym erase 2 (PB2) APR (₃₈₁ LI QLIV S ₃₈₇)	Monomers and oligomers.	1. Antivirus2. Not specificallyinterfering withviral entry into cell.	Influenza A	Specific to influenza A strains, not to influenza B strains.	Peptides 12B induces aggregation and inactivation of PB2, which occurs in the cell.	Dose- dependent red blood cells lysis. No accumulatio n.	Enveloped virus
Ezzat (Ezzat et al. 2019)	2019	NNFGAI L from IAPP, GNNQQ NY from yeat prion protein, Aβ		Monomers tested	Virus agglutination	Respiratory syncytial virus (RSV), herpes simplex virus type (HSV)	-	Viruses bind amyloidogenic peptides in their corona and catalyze amyloid formation via surface-assisted heterogeneous nucleation.	-	RSV catalyzes the amyloid aggregatio n of NNFGAIL , but not to GNNQQN

Table S2: Effects of amyloid peptides against viruses and their possible mechanisms

										Y.
Zabrodsk aya (Zabrodsk aya et al. 2018) Egorov (Egorov et al. 2013) Matusevic h (Matusevi ch et al. 2015)	2018, 2013, 2015	PB1(6- 13), PB1(6- 25)	PB1	Monomers tested	Antivirus by inhibiting influenza A virus replication in cell culture	Influenza A	Effective to Influenza A of different subtypes	PB1(6–13) monomer interact with PB1 subunit N-terminal region, causing a change of PB1 from an alpha helix to a beta structure, causing PB1 not binding to acidic polymerase (PA) protein.	Non- cytotoxic	Another mechanism is assumed to be PB1 derived peptides competes with the full-size PB1 protein for binding sites on the PA protein.
Eimer (Eimer et al. 2018)	2018	Αβ	Αβ	Aβ oligomers	Viral agglutination	HSV-1, 6A and 6B	Not specific	$A\beta$ oligomers bind herpesvirus surface glycoproteins.	Non- cytotoxic	Enveloped virus
Bourgade (Bourgad e et al. 2015)	2015	A β_{42} and A β_{40}	Αβ	Monomers tested	 Inhibit HSV-1 replication Inhibit HSV-1 infection cells 	HSV-1	-	$A\beta$ interference with HSV-1 replication could involve its insertion into the HSV-1 envelope	Non- cytotoxic	D not prevent non- enveloped human adenovirus replication.
White (White et al. 2014)	2014	$A\beta_{42}$ and $A\beta_{40}$	Αβ	Monomers tested	 Reduce viral uptake by epithelial cells Antivirus Virus agglutination Increase uptake of virus by 	H3N2 and H1N1 influenza A virus	Not specific	-	Non- cytotoxic	Enveloped virus

					neutrophils 7. Reduce viral protein synthesis in monocytes					
Münch (Munch et al. 2007)	2007	PAP ₂₄₈₋₂₈₆	Prostat ic acidic phosph atase (PAP)	PAP ₂₄₈₋₂₈₆ fibrils	Viral agglutination	Human immunodefic iency virus (HIV)	Independ ently of HIV-1 subtype or group.	PPI-2480 and α - synuclein, but not A β , also enhance HIV-1 infection. Fibrils agglutinate HIV and enhance viral infection into cells, independent of the viral Env glycoprotein and hence not restricted to retroviruses.	Non- cytotoxic	Enveloped virus. Monomers lost viral agglutinati on effect.

Note: Previous well-known antimicrobial peptides or host defense peptides with the amyloid forming ability are not listed in this table. -: Not declared.

References:

Bednarska NG, van Eldere J, Gallardo R, Ganesan A, Ramakers M, Vogel I, Baatsen P, Staes A, Goethals M, Hammarstrom P, Nilsson KP, Gevaert K, Schymkowitz J, Rousseau F (2016) Protein aggregation as an antibiotic design strategy. MOL MICROBIOL 99:849-865.

Bouaziz Z, Soussan L, Janot JM, Lepoitevin M, Bechelany M, Djebbi MA, Amara A, Balme S (2017) Structure and antibacterial activity relationships of native and amyloid fibril lysozyme loaded on layered double hydroxide. Colloids Surf B Biointerfaces 157:10-17.

Bourgade K, Garneau H, Giroux G, Le Page AY, Bocti C, Dupuis G, Frost EH, Fulop TJ (2015) beta-Amyloid peptides display protective activity against the human Alzheimer's disease-associated herpes simplex virus-1. BIOGERONTOLOGY 16:85-98.

Chen D, Li J, Pan T, Wu R, Tao Y, Lin H (2021) The broad-spectrum antibiofilm activity of amyloid-forming hexapeptides. MICROB BIOTECHNOL 14:656-667.

Chu H, Pazgier M, Jung G, Nuccio SP, Castillo PA, de Jong MF, Winter MG, Winter SE, Wehkamp J, Shen B, Salzman NH, Underwood MA, Tsolis RM, Young GM, Lu W, Lehrer RI, Baumler AJ, Bevins CL (2012) Human alpha-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. SCIENCE 337:477-481.

Egorov VV, Matusevich OV, Shaldzhyan AA, Skvortsov AN, Zabrodskaya YA, Garmay YP, Landa SB, Lebedev DV, Zarubayev VV, Sirotkin AK, Vasin AV, Kiselev OI (2013) Structural Features of the Peptide Homologous to 6-25 Fragment of Influenza A PB1 Protein. Int J Pept 2013:370832.

Eimer WA, Vijaya KD, Navalpur SN, Rodriguez AS, Mitchell T, Washicosky KJ, Gyorgy B, Breakefield XO, Tanzi RE, Moir RD (2018) Alzheimer's Disease-Associated beta-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection. NEURON 99:56-63.

Engelberg Y, Landau M (2020) The Human LL-37(17-29) antimicrobial peptide reveals a functional supramolecular structure. NAT COMMUN 11:3894.

Ezzat K, Pernemalm M, Palsson S, Roberts TC, Jarver P, Dondalska A, Bestas B, Sobkowiak MJ, Levanen B, Skold M, Thompson EA, Saher O, Kari OK, Lajunen T, Sverremark EE, Nilsson C, Ishchenko Y, Malm T, Wood M, Power UF, Masich S, Linden A, Sandberg JK, Lehtio J, Spetz AL, El AS (2019) The viral protein corona directs viral pathogenesis and amyloid aggregation. NAT COMMUN 10:2331.

Hari-Dass R, Shah C, Meyer DJ, Raynes JG (2005) Serum amyloid A protein binds to outer membrane protein A of gram-negative bacteria. J BIOL CHEM 280:18562-18567.

Hirakura Y, Carreras I, Sipe JD, Kagan BL (2002) Channel formation by serum amyloid A: a potential mechanism for amyloid pathogenesis and host defense. AMYLOID 9:13-23.

Hu B, Shen Y, Adamcik J, Fischer P, Schneider M, Loessner MJ, Mezzenga R (2018) Polyphenol-Binding Amyloid Fibrils Self-Assemble into Reversible Hydrogels with Antibacterial Activity. ACS NANO 12:3385-3396.

Hu X, Tian J, Li C, Su H, Qin R, Wang Y, Cao X, Yang P (2020) Amyloid-Like Protein Aggregates: A New Class of Bioinspired Materials Merging an Interfacial Anchor with Antifouling. ADV MATER 32:e2000128.

Khodaparast L, Khodaparast L, Gallardo R, Louros NN, Michiels E, Ramakrishnan R, Ramakers M, Claes F, Young L, Shahrooei M, Wilkinson H, Desager M, Mengistu TW, Nilsson K, Hammarstrom P, Aertsen A, Carpentier S, Van Eldere J, Rousseau F, Schymkowitz J (2018) Aggregating sequences that occur in many proteins constitute weak spots of bacterial proteostasis. NAT COMMUN 9:866.

Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G, Goldstein LE, Tanzi RE, Moir RD (2016) Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. SCI TRANSL MED 8:340r-372r.

Kurpe SR, Grishin SY, Surin AK, Selivanova OM, Fadeev RS, Dzhus UF, Gorbunova EY, Mustaeva LG, Azev VN, Galzitskaya OV (2020) Antimicrobial and Amyloidogenic Activity of Peptides Synthesized on the Basis of the Ribosomal S1 Protein from Thermus Thermophilus. INT J MOL SCI 21.

Matusevich OV, Egorov VV, Gluzdikov IA, Titov MI, Zarubaev VV, Shtro AA, Slita AV, Dukov MI, Shurygina AP, Smirnova TD, Kudryavtsev IV, Vasin AV, Kiselev OI (2015) Synthesis and antiviral activity of PB1 component of the influenza A RNA polymerase peptide fragments. Antiviral Res 113:4-10.

Michiels E, Roose K, Gallardo R, Khodaparast L, Khodaparast L, van der Kant R, Siemons M, Houben B, Ramakers M, Wilkinson H, Guerreiro P, Louros N, Kaptein S, Ibanez LI, Smet A, Baatsen P, Liu S, Vorberg I, Bormans G, Neyts J, Saelens X, Rousseau F, Schymkowitz J (2020) Reverse engineering synthetic antiviral amyloids. NAT COMMUN 11:2832.

Munch J, Rucker E, Standker L, Adermann K, Goffinet C, Schindler M, Wildum S, Chinnadurai R, Rajan D, Specht A, Gimenez-Gallego G, Sanchez PC, Fowler DM, Koulov A, Kelly JW, Mothes W, Grivel JC, Margolis L, Keppler OT, Forssmann WG, Kirchhoff F (2007) Semen-derived amyloid fibrils drastically enhance HIV infection. CELL 131:1059-1071.

Palika A, Armanious A, Rahimi A, Medaglia C, Gasbarri M, Handschin S, Rossi A, Pohl MO, Busnadiego I, Gubeli C, Anjanappa RB, Bolisetty S, Peydayesh M, Stertz S, Hale BG, Tapparel C, Stellacci F, Mezzenga R (2021) An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles. NAT NANOTECHNOL.

Park SC, Moon JC, Shin SY, Son H, Jung YJ, Kim NH, Kim YM, Jang MK, Lee JR (2016) Functional characterization of alpha-synuclein protein with antimicrobial activity. Biochem Biophys Res Commun 478:924-928.

Pasupuleti M, Roupe M, Rydengard V, Surewicz K, Surewicz WK, Chalupka A, Malmsten M, Sorensen OE, Schmidtchen A (2009) Antimicrobial activity of human prion protein is mediated by its N-terminal region. PLOS ONE 4:e7358.

Salinas N, Colletier JP, Moshe A, Landau M (2018) Extreme amyloid polymorphism in Staphylococcus aureus virulent PSMalpha peptides. NAT COMMUN 9:3512.

Salinas N, Tayeb-Fligelman E, Sammito MD, Bloch D, Jelinek R, Noy D, Uson I, Landau M (2021) The amphibian antimicrobial peptide uperin 3.5 is a cross-alpha/cross-beta chameleon functional amyloid. Proc Natl Acad Sci U S A 118.

Schnaider L, Brahmachari S, Schmidt NW, Mensa B, Shaham-Niv S, Bychenko D, Adler-Abramovich L, Shimon L, Kolusheva S, DeGrado WF, Gazit E (2017) Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. NAT COMMUN 8:1365.

Schnaider L, Rosenberg A, Kreiser T, Kolusheva S, Gazit E, Berman J (2020) Peptide Self-Assembly Is Linked to Antibacterial, but Not Antifungal, Activity of Histatin 5 Derivatives. MSPHERE 5.

Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD (2010) The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. PLOS ONE 5:e9505.

Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, Friedrich O, Gromer T, Kornhuber J, Lang R, Maler JM (2016) Amyloidogenic amyloid-beta-peptide variants

induce microbial agglutination and exert antimicrobial activity. Sci Rep 6:32228.

Torrent M, Pulido D, Nogues MV, Boix E (2012) Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation. PLOS PATHOG 8:e1003005.

Tu W, Xue K, Lou S, Zhu C, Yu Z (2021) Self-assembly of virulent amyloid-derived peptides into nanoantibacterials. NANOSCALE 13:9864-9872.

Voth S, Gwin M, Francis CM, Balczon R, Frank DW, Pittet JF, Wagener BM, Moser SA, Alexeyev M, Housley N, Audia JP, Piechocki S, Madera K, Simmons A, Crawford M, Stevens T (2020) Virulent Pseudomonas aeruginosa infection converts antimicrobial amyloids into cytotoxic prions. FASEB J 34:9156-9179.

Walsh P, Vanderlee G, Yau J, Campeau J, Sim VL, Yip CM, Sharpe S (2014) The mechanism of membrane disruption by cytotoxic amyloid oligomers formed by prion protein(106-126) is dependent on bilayer composition. J BIOL CHEM 289:10419-10430.

Wang L, Liu Q, Chen JC, Cui YX, Zhou B, Chen YX, Zhao YF, Li YM (2012) Antimicrobial activity of human islet amyloid polypeptides: an insight into amyloid peptides' connection with antimicrobial peptides. BIOL CHEM 393:641-646.

Wei Z, Wu S, Xia J, Shao P, Sun P, Xiang N (2021) Enhanced Antibacterial Activity of Hen Egg-White Lysozyme against Staphylococcus aureus and Escherichia coli due to Protein Fibrillation. BIOMACROMOLECULES 22:890-897.

White MR, Kandel R, Tripathi S, Condon D, Qi L, Taubenberger J, Hartshorn KL (2014) Alzheimer's associated beta-amyloid protein inhibits influenza A virus and modulates viral interactions with phagocytes. PLOS ONE 9:e101364.

Zabrodskaya YA, Lebedev DV, Egorova MA, Shaldzhyan AA, Shvetsov AV, Kuklin AI, Vinogradova DS, Klopov NV, Matusevich OV, Cheremnykh TA, Dattani R, Egorov VV (2018) The amyloidogenicity of the influenza virus PB1-derived peptide sheds light on its antiviral activity. BIOPHYS CHEM 234:16-23.

Zheng H, Li H, Zhang J, Fan H, Jia L, Ma W, Ma S, Wang S, You H, Yin Z, Li X (2020) Serum amyloid A exhibits pH dependent antibacterial action and contributes to host defense against Staphylococcus aureus cutaneous infection. J BIOL CHEM 295:2570-2581.