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Materials and Instruments

Materials

(2E, 4E) -5-phenylpenta-2, 4-dienoic acid (CTA15) was purchased from Fluorochem. (2E,4E)-
5-(benzo[d][1,3]dioxol-5-yl)penta-2,4-dienoic acid (CTA16), Piperine (CTA22), (1E,3E,5E)-1,6-
diphenylhexa-1,3,5-triene (CTA26) and Norbornene (M2) were purchased from Sigma-
Aldrich. Methoxy poly (ethylene glycol) was purchased from TCI. All other reagents were
purchased from either Sigma-Aldrich or Acros organics. All of them were used without further
purification. Deuterated solvents (CD.Cl,, CDCls, and DMSO-D¢) were purchased from
Cambridge Isotope Laboratories, Inc. Grubbs 3™ generation catalyst (G3) was prepared as
reported previously.!

Instruments

All *H NMR, 3C NMR, and DOSY NMR spectra were recorded on a Bruker Avance DPX (400
MHz and 300 MHz) FT NMR spectrometer. Chemical shifts for H and 13C were given in ppm
relative to the residual solvent peak (CDCls: 7.27 for *H; CDCls: 77.16 for 13C and CD,Cl: 5.32
for 1H; CD,Cl,: 53.84 for 13C). HR MALDI FT-ICR mass spectra were measured on a Bruker FTMS
4.7T BioAPEX Il in positive mode using trans-2-[3-(tert-butylphenyl)-2-methyl-2-
propenylidene]malononitrile (DCTB) as matrix and sodium trifluoroacetate (NaTFA) or silver
trifluoroacetate (AgTFA) as the counter ion source. HR-MS (ESI+) mass spectra were
measured on a Bruker FTMS 4.7T BioAPEX Il and Thermo Scientific LTQ Orbitrap XL equipped
with a static nanospray ion source. Relative molecular weights and molecular weight
distributions were measured by gel permeation chromatography (GPC) with either
chloroform or DMF as eluent with a flow rate of 1 mL/min at 40°C and 60°C, respectively. The
chloroform GPC system was calibrated with polystyrene standards, and the DMF GPC system
was calibrated with poly (ethylene oxide) calibration standards in a range from 103to 3x10°
Da. The Chloroform GPC is an automated PSS security System (Agilent Technologies 1260
infinity Il) with a set of two MZ-Gel SDplus linear columns (300 x 8 mm, 5 um particle size).
The DMF GPC is an automated Agilent 1260 Infinity Il HPLC system equipped with one Agilent
PolarGel M guard column (particle size = 8 um) and two Agilent PolarGel M columns (ID = 7.5
mm, L = 300 mm, particle size = 8 um). Signals were recorded by an interferometric
refractometer (Agilent 1260 series). Samples were run using DMF + 0.05M LiBr as the eluent.
All polymer samples were filtered through a PTFE syringe membrane filter (0.45 um pore size,
VWR) before GPC measurements. Electron impact ionization mass spectra (EI-MS) were
run on a gas chromatography —mass spectrometry (GC-MS) instrument of Agilent 8890
series GC system and Agilent5977B GC/MSD.



Synthesis of Chain Transfer Agents (CTAs):
CTA1 (methyl (E)-2-(4-(buta-1,3-dien-1-yl)-2-methoxyphenoxy)acetate)

AcO HO
j@\ﬂ NaOH, Satd. NaHCO; :@\A
~o > cHo ~o ZcHo

MeOH, H,0

4-Acetoxy-3-methoxycinnamaldehyde, predominantly trans (22.72 mmol, 5 g), was dissolved
in 50 mL methanol in a round bottom flask. 50 mL water and 50 mL saturated sodium
bicarbonate solution was added to it. Then, 15 mL 1 (M) aqueous sodium hydroxide was
added in one portion, and the mixture was stirred overnight at room temperature. Complete
consumption of starting material was observed. Next, the solution was concentrated and
acidified under an ice bath with a concentrated hydrochloric acid solution until pH reached to
3. The aqueous mixture was extracted three times with ethyl acetate. The combined organics
were mixed and dried over magnesium sulfate and further concentrated under reduced
pressure to give a yellow solid (4 g, 22.46 mmol, 99% yield) as I11. The crude product was used
for the next step without any further purification.

IH NMR (CDCls, 400 MHz) 8 ppm: 3.96 (s, 3 H), 5.99 (s, 1 H), 6.60 (dd, J=15.83, 7.76 Hz, 1 H),
6.97 (d, J=8.19 Hz, 1 H), 7.03 - 7.19 (m, 2 H), 7.41 (d, J=15.89 Hz, 1 H), 9.66 (d, J=7.70 Hz, 1 H)
13C NMR (CDCls, 101 MHz) & ppm: 56.0, 76.6, 77.2, 77.3, 109.4, 114.9, 124.0, 126.4, 126.6,
146.9, 148.9, 153.0, 193.5.

HO o ~_CHO
o ZcHo Br o~ /Ofo

DMF
o

In an oven-dried round bottom flask, 11 (1 equiv., 22.47 mmol, 4 g) and potassium carbonate
(1.5 equiv., 33.72 mmol, 4.66 g) were dissolved in 50 mL dimethylformamide (DMF). Next,
methyl bromoacetate (1.2 equiv., 27 mmol, 2.56 mL) was added to the DMF mixture dropwise
at room temperature and stirred for 30 mins. Then, the mixture was concentrated in the
rotary evaporator, and the concentrated solution was extracted three times with ethyl
acetate and brine. The organics were combined, dried over magnesium sulfate, and
concentrated under reduced pressure to give 12 as a white solid (5.22 g, 20.85 mmol, 93%
yield). The crude product was pure enough to use directly in the next step.



1H NMR (CDCls, 400 MHz) & ppm: 3.79 (s, 4 H), 3.91 (s, 3 H), 4.74 (s, 2 H), 6.60 (dd, J=15.89,
7.70 Hz, 1 H), 6.75 - 6.89 (m, 1 H), 7.04 - 7.17 (m, 2 H), 7.39 (d, J=15.89 Hz, 1 H), 9.65 (d, J=7.70
Hz, 1 H) 3C NMR (CDCls, 101 MHz) & ppm: 52.2, 55.9, 65.8, 76.6, 77.3, 110.7, 113.3, 122.7,
127.2,128.3, 149.7, 149.8, 152.3, 168.7, 193.3.

Methyltriphenylphosphonium bromide (1.2 equiv., 10.55 mmol, 3.77 g) was dissolved in 40
mL THF and cooled to 0°C. Solid potassium tert-butoxide (1.2 equiv., 10.55 mmol, 1.18 g) was
added in one shot, and the THF solution immediately became yellow. The solution was stirred
at 0°C for 10 mins. 12 (1 equiv., 8.79 mmol, 2.2 g) was dissolved in 5 mL THF and added slowly
to the precooled mixture. Then, the resulting solution was stirred at room temperature for
15 mins. TLC showed complete consumption of starting material, but two close spots were
observed. THF was evaporated under reduced pressure, and crude was dissolved in ethyl
acetate and worked up against brine two times. The organic part was dried over magnesium
sulfate, concentrated under reduced pressure, and further purified by column
chromatography (5%-10% ethyl acetate-hexane) to obtain CTA1 as a yellow solid (1.1 g, 4.4
mmol, 50.45% vyield) and 13 as a bright yellow solid (400 mg, 1.7 mmol, 19.4% yield).

CTA1-'H NMR (CDCls, 400 MHz) & ppm: 3.80 (s, 3 H), 3.92 (s, 3 H), 4.71 (s, 2 H), 5.09 - 5.19 (m,
1H),5.27-5.39 (m, 1 H), 6.41 - 6.57 (m, 2 H), 6.60 - 6.71 (m, 1 H), 6.78 (d, J=8.31 Hz, 1 H),
6.92 (dd, /=8.31, 2.08 Hz, 1 H), 6.98 (d, J=2.08 Hz, 1 H) 13C NMR (CDCl3, 101 MHz) 8 ppm: 52.2,
55.8, 66.4, 76.6, 77.2, 77.3, 109.5, 114.1, 117.0, 119.5, 128.5, 131.9, 132.3, 137.1, 147.0,
149.6, 169.3.

13- 'H NMR (CDCls, 400 MHz) & ppm: 3.92 (s, 3 H), 4.59 (s, 2 H), 5.10 - 5.19 (m, 1 H), 5.26 - 5.38
(m, 1 H), 6.42 - 6.58 (m, 2 H), 6.65 (s, 1 H), 6.75 (d, J=8.31 Hz, 1 H), 6.86 - 7.00 (m, 2 H) 13C
NMR (CDCls, 101 MHz) & ppm: 28.0, 55.9, 66.5, 76.6, 77.2, 77.3, 82.2, 109.5, 113.5, 116.8,
119.5, 128.3, 131.4, 132.4, 137.1, 147.2, 149.5, 167.8.



CTA2 ((E)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene)

(o) -
- N KO'Bu
_ + MePPh; = NF
CHO THF

Br

Methyltriphenylphosphonium bromide (1.2 equiv., 14.8 mmol, 5.29 g) was dissolved in 30 mL
THF and cooled to 0°C. Solid potassium tert-butoxide (1.2 equiv., 14.8 mmol, 1.66 g) was
added in one shot, and the THF solution immediately became yellow. The solution was stirred
at 0°C for 10 mins. Trans-p-methoxycinnamaldehyde (1 equiv., 12.33 mmol, 2 g) was dissolved
in 10 mL THF and added slowly to the precooled mixture. Then, the resulting solution was
stirred at room temperature for 15 mins. THF was evaporated under reduced pressure, and
crude was dissolved in ethyl acetate and worked up against brine two times. The organic part
was dried over magnesium sulfate, concentrated under reduced pressure, and further
purified by column chromatography (5% ethyl acetate-hexane) to obtain CTA2 as an off-white
solid (1.7 g, 10.62 mmol, 86% yield).

1H NMR (CDCls, 400 MHz) & ppm: 3.83 (s, 3 H), 5.09 - 5.22 (m, 1 H), 5.32 (dt, J=16.75, 1.16 Hz,
1H), 6.44-6.62 (m, 2 H), 6.62 - 6.78 (m, 1 H), 6.83 - 7.00 (m, 2 H), 7.30 - 7.49 (m, 2 H) 3C NMR
(CDCls, 101 MHz) & ppm: 55.2, 76.6, 76.9, 77.3,114.0, 116.3, 127.6, 129.8, 132.3, 137.3, 159.2.

CTA3 ((E)-1-bromo-4-(buta-1,3-dien-1-yl)benzene)

Br Br
\©\/\ p KO™Bu \©\M
+ MePPh
> cHo 3

_ THF
Br

Methyltriphenylphosphonium bromide (1.2 equiv., 2.8 mmol, 1 g) was dissolved in 10mL THF
and cooled to 0°C. Solid potassium tert-butoxide (1.2 equiv., 2.61 mmol, 319 mg) was added
in one shot, and the THF solution immediately became yellow. The solution was stirred at 0°C
for 10 mins. 3-(4-Bromophenyl) acrylaldehyde (1 equiv., 2.37 mmol, 500 mg) was dissolved in
2 mL THF and added slowly to the precooled mixture. Then, the resulting solution was stirred
at room temperature for 15 mins. THF was evaporated under reduced pressure, and crude
was dissolved in ethyl acetate and worked up against brine two times. The organic part was
dried over magnesium sulfate, concentrated under reduced pressure, and further purified by
column chromatography (2% ethyl acetate-hexane) to obtain CTA3 as a colorless liquid (420
mg, 2 mmol, 85.2% yield).

1H NMR (CDCls, 400 MHz) & ppm: 5.12 - 5.27 (m, 1 H), 5.35 (ddt, 1 H), 6.39 - 6.58 (m, 2 H),
6.68-6.84 (m, 1 H), 7.19 - 7.30 (m, 2 H), 7.37 - 7.49 (m, 2 H) 13C NMR (CDCls, 101 MHz) & ppm:
76.6,77.3,118.3,121.3, 127.8, 130.2, 131.5, 131.7, 136.0, 136.8.



CTA4 ((E)-2-(buta-1,3-dien-1-yl)furan)

0 ; KO'Bu | °
Wan\ + MePPh; ———> \
CHO _ THF
Br A\

Methyltriphenylphosphonium bromide (1.2 equiv., 4.93 mmol, 1.76 g) was dissolved in 10 mL
THF and cooled to 0°C. Solid potassium tert-butoxide (1.2 equiv., 4.93 mmol, 554 mg) was
added in one shot, and the THF solution immediately became yellow. The solution was stirred
at 0°C for 10 mins. 3-(2-Furyl) acrolein (1 equiv., 4.1 mmol, 500 mg) was dissolved in 5 mL THF
and added slowly to the precooled mixture. Then, the resulting solution was stirred at room
temperature for 15 mins. THF was evaporated under reduced pressure, and crude was
dissolved in ethyl acetate and worked up against brine two times. The organic part was dried
over magnesium sulfate, concentrated under reduced pressure, and further purified by
column chromatography (5% ethyl acetate-hexane) to obtain CTA4 as a colorless liquid (450
mg, 3.75 mmol, 91.6% yield).

'H NMR (300 MHz, CDCls) 3 ppm: 5.06 - 5.27 (m, 1 H), 5.27 - 5.45 (m, 1 H), 6.19 - 6.44 (m, 4
H), 6.50 (d, J=10.09 Hz, 1 H), 6.61 - 6.84 (m, 1 H), 7.37 (d, J=2.29 Hz, 1 H) 3C NMR (75 MHz,
CDCl3) 6 ppm: 76.5, 77.4,108.5, 111.5, 117.7, 120.4, 128.1, 136.6, 142.1, 152.9.

CTAS5 ((E)-9-(buta-1,3-dien-1-yl)anthracene)

Z

P
N KO'Bu

+ MePPh; ———
_ THF
Br

Methyltriphenylphosphonium bromide (1.2 equiv., 5.16 mmol, 1.85 g) was dissolved in 20 mL
THF and cooled to 0°C. Solid potassium tert-butoxide (1.5 equiv., 6.45 mmol, 725 mg) was
added in one shot, and the THF solution immediately became yellow. The solution was stirred
at 0°C for 10 mins. 3-(9-Anthryl) acrolein (1 equiv., 4.3 mmol, 1 g) was dissolved in 15mL THF
and added slowly to the precooled mixture. Then, the resulting solution was stirred at room
temperature for 15 mins. THF was evaporated under reduced pressure, and crude was
dissolved in ethyl acetate and worked up against brine two times. The organic part was dried
over magnesium sulfate, concentrated under reduced pressure, and further purified by
column chromatography (only hexane) to obtain CTA5 as a bright yellow solid (800 mg, 3.48
mmol, 80.68% vyield).

'H NMR (CDCls, 400 MHz) & ppm: 5.28 - 5.54 (m, 2 H), 6.69 (dd, J=15.83, 10.58 Hz, 1 H), 6.77
-7.01 (m, 1 H), 7.36 - 7.64 (m, 5 H), 7.92 - 8.14 (m, 2 H), 8.25 - 8.51 (m, 3 H) *C NMR (CDCls,



101 MHz) & ppm: 76.3, 76.6, 117.7, 124.7, 125.0, 125.5, 126.1, 128.3, 128.5, 129.1, 131.1,
132.0, 136.8, 137.9.

CTAG6 (methyl 2-(4-(buta-1,3-dien-1-yl)phenoxy)acetate)

(N Ox
K2CO
o) 2C0;
L e
fo} Acetone
B L
~o o
14

In an oven-dried round bottom flask, 4-Hydroxybenzaldehyde (1 equiv., 57.32 mmol, 7 g) and
potassium carbonate (1.6 equiv., 94 mmol, 13 g) were mixed, and 44 mL acetone was added to make
a slurry. To the suspension, methyl bromoacetate (1.2 equiv., 68.82 mmol, 6.5 mL) was added
dropwise, and the resulting solution was stirred at room temperature for 1 h. All the starting
materials were consumed. The mixture was filtered, and the filtrate was concentrated and
then worked up with ethyl acetate and brine. The organic part was dried over magnesium
sulfate, concentrated under reduced pressure, and dried under a high vacuum to give |14 as a
colorless viscous liquid (10.9 g, 56.18 mmol, 98%).

P.S. This compound causes eye irritation.

'H NMR (CDCls, 400 MHz) 8 ppm: 3.75 (s, 4 H), 4.68 (s, 2 H), 6.95 (m, J=8.80 Hz, 2 H), 7.78 (m,
J=8.80 Hz, 2 H), 9.83 (s, 1 H) *C NMR (CDCl3, 101 MHz) & ppm: 25.3, 52.1, 64.8, 76.6, 77.3,
114.6, 130.5, 131.7, 162.3, 168.3, 190.4.
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Allyltriphenylphosphonium bromide (1.2 equiv., 37.70 mmol, 14.45 g) was dissolved in 80 mL
THF in a round bottom flask under an argon atmosphere. The solution was cooled to 0°C. Solid
potassium tert-butoxide (1.2 equiv., 38.31 mmol, 4.3 g) was added quickly, and a yellow
solution was observed. The mixture was stirred at that temperature for 10 mins. 14 (1 equiv.,
31.41 mmol, 6.1 g) was dissolved in 15 mL THF and added to the precooled mixture dropwise;
then, the flask was warmed to room temperature and stirred for 30 mins. All the starting
materials were gone, and two very close spots were observed, presumably a mixture of cis
and trans products. THF was evaporated under reduced pressure, added brine to the flask,
and extracted three times with ethyl acetate. The combined organics were collected, dried
over magnesium sulfate, and further purified by column chromatography (10%-20% ethyl
acetate-hexane) to obtain a colorless viscous liquid as CTA6 (5.5 g, 25.2 mmol, 65.8%).

1H NMR (CDCls, 400 MHz) & ppm: 3.79 - 3.86 (m, 3 H), 4.62 - 4.69 (m, 2 H), 5.11 - 5.41 (m, 2
H), 6.21 (tt, J=11.31, 0.98 Hz, 1 H), 6.39 (d, J=11.37 Hz, 1 H), 6.44 - 6.56 (m, 1 H), 6.80 - 6.96
(m, 3 H), 7.24 - 7.38 (m, 3 H) 13C NMR (CDCls, 101 MHz) & ppm: 52.2, 65.3, 76.6, 77.2, 77.3,
114.3, 114.8, 116.8, 119.2, 127.7, 128.2, 129.6, 129.8, 130.3, 131.0, 131.1, 132.0, 133.1,
137.2, 156.8, 157.3, 169.3.

CTA7 (2-(4-(buta-1,3-dien-1-yl)phenoxy)ethyl 4-((tert-butoxycarbonyl)amino)benzoate)

2) HCI, H,0

NH,
o o
j\ L )< 1)Et;N, H,0, Dioxane
+ 0~ 0" o
0”7 “oH

To a mixture of 4-aminobenzoic acid (1 equiv., 36.45 mmol, 5.0 g) in dioxane (70 mL) and
water (35 mL) were added trimethylamine (2 equiv., 73 mmol, 10.26 mL) followed by di-tert-
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butyl dicarbonate (2 equiv., 73 mmol, 3.2 g). The reaction mixture was stirred at room
temperature for 24 h. The solvent was removed by rotary evaporation, and 3 (N) aqueous
hydrochloric acid (30 mL) was added dropwise to the residue. A precipitate was obtained,
collected, washed with water, and dried to provide I5 (8.16 g, 34.4 mmol, 94.3%) as a white
solid.

IH NMR (300 MHz, CDCls) & ppm: 1.50 - 1.58 (m, 10 H), 6.68 - 6.87 (m, 1 H), 7.43 - 7.54 (m, 2
H), 7.98 - 8.11 (m, 2 H). 3C NMR (75 MHz, CDCls) & ppm: 28.2, 76.6, 77.2, 77.4, 81.4, 117.4,
123.3,131.6, 143.4, 152.1, 170.4.

/
A

[ Z
DIBAL-H
DCM
Bl s
o Cl) HO
16

CTAG6 (1 equiv., 18.05 mmol, 3.940 g) was dissolved in 40 mL DCM and cooled to -78°C. To it,
DIBAL-H (1M in THF) (2.2 equiv., 39.72 mmol, 39.72 mL) was added very slowly over 1 h. Then,
the reaction mixture was brought to room temperature and kept stirring for 2 h. No starting
materials were left afterward. The reaction was again cooled to -30°C and quenched by
adding 20 mL of cold water. The resulting suspension was passed through celite, and the
filtrate was extracted with ethyl acetate. The organics were combined, dried over magnesium
sulfate, and purified by column chromatography (30% ethyl acetate-hexane). A white solid
was obtained after drying overnight (3 g, 15.76 mmol, 87.36%).

1H NMR (CDCls, 400 MHz) & ppm: 2.14 - 2.40 (m, 1 H), 3.76 - 4.06 (m, 4 H), 5.01 - 5.31 (m, 2
H), 6.01-6.21 (m, 1 H), 6.21-6.50 (m, 1 H), 6.68 - 6.93 (m, 3 H), 7.06 - 7.33 (m, 2 H) 13C NMR
(CDCls, 101 MHz) & ppm: 61.3,69.1, 76.6, 77.3,114.2, 114.6, 116.5, 119.0, 127.6, 127.8, 129.4,
129.7, 130.2, 130.4, 132.1, 133.1, 137.2, 157.6, 158.2.

io 0
A0
O~y DCC,DMAP_ >L jl o \©\/m
Sj AT Toow T ooy —

I5 (1 equiv., 2.1 mmol, 500 mg), 16 (1 equiv., 2.1 mmol, 401 mg), and DMAP (0.1 equiv., 0.21
mmol, 25 mg) were dissolved in 15 mL DCM and cooled to 0°C. DCC (1.1 equiv., 2.5 mmol,
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520 mg) was dissolved in 5 mL DCM and added to the mixture slowly. Then, the resulting
solution was stirred at room temperature overnight. Next, it was filtered, and the filtrate was
worked up with ethyl acetate and brine. The organic part dried over magnesium sulfate,
concentrated and purified by column chromatography (10% ethyl acetate-hexane) to give
CTA7 as a pure white solid (700 mg, 1.7 mmol, 82%).

1H NMR (CDCls, 400 MHz) & ppm: 1.54 (s, 9 H), 4.27 - 4.39 (m, 2 H), 4.59 - 4.72 (m, 2 H), 5.18
-5.24 (m, 1 H), 5.26 - 5.40 (m, 1 H), 6.13 - 6.27 (m, 1 H), 6.35 - 6.45 (m, 1 H), 6.45 - 6.59 (m, 1
H), 6.59 - 6.73 (m, 1 H), 6.79 - 6.98 (m, 3 H), 7.28 - 7.31 (m, 1 H), 7.31 - 7.48 (m, 3 H), 7.93 -
8.07 (m, 2 H) 13C NMR (CDCls, 101 MHz) & ppm: 28.2, 63.1, 66.1, 76.6, 77.2, 77.3, 81.2, 114.4,
114.8, 117.3, 119.0, 127.6, 127.9, 129.5, 129.8, 130.3, 131.0, 132.2, 133.2, 137.3, 142.8,
166.1.

CTA8 (methyl 4-(buta-1,3-dien-1-yl)benzoate)

X
o\ X
+ KO'Bu
+ B
PP THF
Br
CO,Me CO,Me

Allyltriphenylphosphonium bromide (1.2 equiv., 30.90 mmol, 11.84 g) was dissolved in 50 mL
THF in a round bottom flask under an argon atmosphere. The solution was cooled to 0°C. Solid
potassium tert-butoxide (1.2 equiv., 30.90 mmol, 3.47 g) was added quickly, and a yellow
solution was observed. The mixture was stirred at that temperature for 10 mins. Aldehyde (1
equiv., 25.75 mmol, 5.0 g) was dissolved in 20 mL THF and added to the precooled mixture
dropwise; then, the flask was warmed to room temperature and stirred for 30 mins. THF was
evaporated under reduced pressure, added brine to the flask, and extracted three times with
ethyl acetate. The combined organics were collected, dried over magnesium sulfate, and
further purified by column chromatography (slowly eluting 10% ethyl acetate-hexane) to
obtain a colorless viscous liquid as CTA8 (3.65 g, 16.72 mmol, 65%).

'H NMR (CDCls, 400 MHz) & ppm: 3.85 - 3.96 (m, 3 H), 5.20 - 5.35 (m, 1 H), 5.35-5.48 (m, 1
H), 6.29 - 6.41 (m, 1 H), 6.41 - 6.63 (m, 1 H), 6.77 - 6.95 (m, 1 H), 7.35-7.48 (m, 2 H), 7.93 -
8.07 (m, 2 H) 3C NMR (CDCls, 101 MHz) & ppm: 51.9, 51.9, 76.6, 77.3, 119.2, 120.9, 126.1,
128.4,128.8,129.1, 129.4, 129.8, 131.6, 131.9, 132.4, 132.6, 136.7, 141.9, 166.7.
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CTAS8 (1 equiv., 5.31 mmol, 1 g) was dissolved in 10 mL methanol. Sodium hydroxide (10
equiv., 53.13 mmol, 2.1 g) was dissolved in 8.9 mL of water to give a 6M aqueous solution.
This aqueous solution was added to methanol solution dropwise, and the resulting mixture
was stirred overnight, upon which no starting material was left. Then, methanol was
evaporated under reduced pressure, and water was added. The resulting solution was cooled
in an ice bath. A concentrated HCl solution was added very slowly until pH reached 2. At that
point, a white solid was precipitated. The solution was filtered, and the residue was extracted
with ethyl acetate and brine two times. The organic part was dried over magnesium sulfate
concentrated under reduced pressure to give |7 as a white solid (890 mg, 5.1 mmol, 96%
yield). The crude was pure enough to use in the following steps.

1H NMR (400 MHz, DMSO-ds) & ppm: 5.15 - 5.40 (m, 1 H), 5.40 - 5.63 (m, 1 H), 6.28 - 6.47 (m,
1 H), 6.47 - 6.64 (m, 1 H), 6.77 - 6.96 (m, 1 H), 7.36 - 7.51 (m, 2 H), 7.59 (d, J=7.95 Hz, 1 H),
7.81-8.09 (m, 2 H), 12.92 (br. s., 1 H) 13C NMR (101 MHz, DMSO-ds) & ppm: 39.0, 39.3, 39.7,
39.9, 40.1, 40.3, 119.9, 122.0, 126.5, 128.9, 129.0, 129.1, 129.3, 129.4, 129.6, 129.7, 129.9,
131.8, 132.2, 132.3, 132.7, 133.3, 133.5, 137.2, 141.2, 141.3, 167.2.
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CTA9 (2-(4-(buta-1,3-dien-1-yl)phenoxy)ethyl 2-bromo-2-methylpropanoate)

=
=

o
)j\%‘ Et3N
+ e =
Br
Br DCM o
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o
e

A mixture of a-Bromoisobutyryl bromide (1.2 equiv., 2.52 mmol, 0.34 mL) and 16 (1.0 equiv.,
2.1 mmol, 400 mg) in 20 mL dry DCM was cooled in an ice bath. Triethylamine (2.0 equiv., 4.2
mmol, 0.6 mL) was added dropwise at that temperature. The flask was stirred at room
temperature overnight. Then, the mixture was diluted with water and extracted with DCM
and brine. The organic part was combined, dried over magnesium sulfate, and further purified
by column chromatography (5% ethyl acetate-hexane) to give CTA9 as a colorless liquid (630
mg, 1.86 mmol, 88.3% yield).

\

1H NMR (CDCls, 400 MHz) & ppm: 1.91 - 1.99 (m, 6 H), 4.20 - 4.29 (m, 2 H), 4.48 - 4.59 (m, 2
H), 5.11 - 5.41 (m, 2 H), 6.21 (tt, J=11.31, 0.98 Hz, 1 H), 6.40 (d, J=11.49 Hz, 1 H), 6.44 - 6.55
(m, 1 H), 6.80 - 6.96 (m, 3 H), 7.22 - 7.40 (m, 2 H) *3C NMR (CDCls, 101 MHz) & ppm: 30.7, 55.4,
64.1, 65.6, 76.6, 77.2, 77.3, 114.5, 114.9, 116.6, 119.1, 127.6, 127.9, 129.6, 129.7, 130.3,
130.5, 130.6, 132.1, 133.2, 137.2, 157.5, 158.1, 171.6.

CTA10 (S-benzyl 4-(buta-1,3-dien-1-yl)benzothioate)

Z X
7z X
DCC, DMAP
+ ph” O SH -
DCM
CO,H
0~ s
kPh

In an oven-dried round bottom flask, 17 (1.0 equiv., 1.43 mmol, 250 mg), benzyl mercaptan
(1.1 equiv., 1.58 mmol, 196 mg), and DMAP (0.1 equiv., 0.14 mmol, 18 mg) were taken and
dissolved in 6 mL dry DCM. The resulting solution was cooled to 0°C. Then, DCC (1.2 equiv.,
1.72 mmol, 356 mg) was dissolved in 4 mL DCM and added to the mixture dropwise. Then the
flask was warmed to room temperature and stirred overnight. Next, the solution was filtered,
and the filtrate was concentrated under reduced pressure and further purified by column
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chromatography (20% ethyl acetate-hexane) to give CTA10 as a colorless liquid (315 mg, 1.12
mmol, 78.3% yield). The product was stored at -20°C.

'H NMR (CDCls, 400 MHz) & ppm: 4.27 - 4.40 (m, 2 H), 5.24 - 5.37 (m, 1 H), 5.37 - 5.53 (m, 1
H), 6.28 - 6.42 (m, 1 H), 6.42 - 6.52 (m, 1 H), 6.76 - 6.96 (m, 1 H), 7.22 - 7.51 (m, 8 H), 7.88 -
8.03 (m, 2 H) 3C NMR (CDCl3, 101 MHz) & ppm: 33.3, 76.6, 77.2, 77.3, 119.6, 121.2, 126.4,
127.3, 127.7, 128.6, 128.9, 129.0, 129.1, 131.4, 132.3, 132.6, 132.7, 135.1, 135.5, 136.7,
137.4, 142.2, 142.6, 190.6.

CTA11 (1-(2-(4-((E)-buta-1,3-dien-1-yl)-2-methoxyphenoxy)ethyl) 10-(2-(4-((E)-buta-1,3-dien-
1-yl)-3-methoxyphenoxy)ethyl) decanedioate)

0\)k -
[ ° Br K,CO °
- * 1\ = SO o~
fo) fo) DMF o

In an oven-dried round bottom flask, Ethyl 4-hydroxy-3-methoxycinnamate (1 equiv., 45.0 mmol, 10
g) and potassium carbonate (1.6 equiv., 72 mmol, 10 g) were mixed, and 50 mL acetone was added to
it. To this suspension, methyl bromoacetate (1.2 equiv., 54 mmol, 5.12 mL) was added
dropwise, and the resulting solution was stirred at room temperature overnight. All the
starting materials were consumed. The mixture was filtered, and the filtrate was
concentrated and then worked up with ethyl acetate and brine. The organic part was dried
over magnesium sulfate, concentrated under reduced pressure, and dried under a high
vacuum to give 18 (13.2 g, 44.8 mmol, 99%). The crude obtained was used in the next step
without any further purification.

1H NMR (CDCls, 400 MHz) & ppm: 1.32 (t, J=7.09 Hz, 3 H), 3.74 - 3.87 (m, 4 H), 3.90 (s, 3 H),
4.24 (g, J=7.09 Hz, 2 H), 4.72 (s, 2 H), 6.31 (d, J=15.89 Hz, 1 H), 6.78 (d, J=8.07 Hz, 1 H), 6.97 -
7.13 (m, 2 H), 7.60 (d, J=15.89 Hz, 1 H) 13C NMR (CDCls, 101 MHz) & ppm: 14.1, 14.2, 20.9,
25.4, 52.2, 53.0, 55.8, 60.2, 60.3, 66.0, 76.6, 77.3, 110.4, 113.4, 116.6, 121.9, 128.8, 144.0,
149.0, 149.6, 166.9, 168.9.

o
o\/\
o OH
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o HO _~ 0
N AN ~

o DCM
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I8 (1 equiv., 17 mmol, 5.00 g) was dissolved in 40 mL dry DCM and cooled to -78°C. To this
solution, Diisobutylaluminum hydride solution (DIBAL-H) (1M in THF, 4.4 equiv., 75 mmol, 75
mL) was added dropwise over 1 h. The mixture was warmed to room temperature and stirred
overnight, all the starting materials were consumed, and then the reaction was cooled to -
30°C and quenched by adding cold water dropwise. Next, the flask was allowed to stir at room
temperature for another 15 mins. The mixture was filtered over celite. The filtrate was
worked up against ethyl acetate and brine three times. The combined organics were dried
over magnesium sulfate and concentrated under reduced pressure to give 19 as a white solid
(3.56 g, 15.8 mmol, 92.4% yield), which was used in the next step without any purification.

1H NMR (CDCls, 400 MHz) & ppm: 1.71 - 1.80 (m, 1 H), 2.82 (t, J=6.48 Hz, 1 H), 3.84 - 3.99 (m,
5H),4.09-4.17 (m, 2 H), 4.28 - 4.36 (m, 2 H), 6.25 (dt, J=15.86, 5.88 Hz, 1 H), 6.54 (dt, J=15.80,
1.57 Hz, 1 H), 6.82 - 6.98 (m, 3 H) 3C NMR (CDCl3, 101 MHz) & ppm: 55.7, 61.2, 63.7, 71.3,
76.6, 77.3, 109.4, 114.5, 119.7, 127.0, 130.8, 130.9, 147.8, 149.7.

O\/\
OH
o\/\OH MnO,
Tt O. -
HO N o
X

o~ DCM

110

A solution of compound I9 (1 equiv., 15.87 mmol, 3.56 g) was dissolved in 90 mL dry DCM. To
it, Manganese (IV) oxide (88% activated) (10 equiv., 158.7 mmol, 15.68 g) was added in one
shot, and the resulting black solution was stirred at room temperature overnight. The mixture
was filtered over celite the next day. The DCM solution was concentrated under reduced
pressure, and the crude was purified by column chromatography (30% ethyl acetate-hexane)
to obtain 110 as a white solid (3 g, 13.5 mmol, 85% vyield).

1H NMR (CDCls, 400 MHz) & ppm: 2.44 (s, 1 H), 3.92 (s, 3 H), 3.95 - 4.07 (m, 2 H), 4.12 - 4.25
(m, 2 H), 6.63 (dd, J=15.83, 7.76 Hz, 1 H), 6.95 (d, J=8.31 Hz, 1 H), 7.05 - 7.22 (m, 2 H), 7.42 (d,
J=15.89 Hz, 1 H), 9.68 (d, J=7.70 Hz, 1 H) 13C NMR (CDCls, 101 MHz) & ppm: 55.9, 61.1, 70.8,
76.6,77.2,77.3,110.3, 113.5, 123.2, 127.0, 127.7, 149.9, 151.0, 152.5, 193.5.
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In a 50mL oven-dried round bottom flask, sebacic acid (1 equiv., 0.5 mmol, 100 mg), 110 (2.1
equiv., 1.04 mmol, 231 mg), and DMAP (0.2 equiv., 0.1 mmol, 12 mg) were taken and
dissolved in 10 mL dry DCM. The resulting solution was cooled to 0°C. Then, DCC (2.2 equiv.,
1.09 mmol, 225 mg) was dissolved in 2 mL DCM and added to the mixture dropwise. Then the
flask was warmed to room temperature and stirred overnight. Next, the solution was filtered.
The filtrate was concentrated under reduced pressure and further purified by column
chromatography (35%-45% ethyl acetate-hexane) to give 111 as a white solid (150 mg, 0.25
mmol, 50% yield).

1H NMR (CDCls, 400 MHz) & ppm: 1.22 - 1.33 (m, 10 H), 1.59 - 1.67 (m, 5 H), 2.34 (t, J=7.52 Hz,
4 H),3.91 (s, 6 H), 4.24 - 4.38 (m, 4 H), 4.48 (t, J=4.95 Hz, 4 H), 6.64 (d, J=7.70 Hz, 1 H), 6.60
(d,J=7.70 Hz, 1 H), 6.94 (d, J=8.31 Hz, 2 H), 7.02 - 7.21 (m, 4 H), 7.44 (s, 1 H), 7.40 (s, 1 H), 9.67
(d, J=7.70 Hz, 2 H) 3C NMR (CDCls, 101 MHz) & ppm: 24.7, 29.0, 29.0, 34.0, 56.0, 62.3, 67.1,
76.6,77.2,77.3,110.7, 113.3, 123.1, 127.0, 127.8, 149.9, 150.9, 152.5, 173.6, 193.5.

o
! |
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\
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Methyltriphenylphosphonium bromide (2.4 equiv., 0.29 mmol, 104 mg) was dissolved in 3 mL
THF and cooled to 0°C. Solid potassium tert-butoxide (2.5 equiv., 0.3 mmol, 34 mg) was added
in one shot, and the THF solution immediately became yellow. The solution was stirred at 0°C
for 10 mins. 111 (1 equiv., 0.12 mmol, 74 mg) was dissolved in 2 mL THF and added slowly to
the precooled mixture. Then, the resulting solution was stirred at room temperature for 15
mins. THF was evaporated under reduced pressure, and crude was dissolved in ethyl acetate
and worked up against brine two times. The organic part was dried over magnesium sulfate,
concentrated under reduced pressure, and further purified by column chromatography (2%
ethyl acetate-hexane) to obtain CTA11 as a white solid (25 mg, 0.04 mmol, 34% yield), which
was stored at -20°C.
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'H NMR (CDCls, 400 MHz) & ppm: 1.22 - 1.36 (m, 10 H), 1.58 - 1.67 (m, 4 H), 2.33 (t, J/=7.58 Hz,
4 H), 3.83-3.95(m, 6 H), 4.24 (dd, J=5.56, 4.34 Hz, 4 H), 4.34 - 4.52 (m, 4 H), 5.07 - 5.22 (m, 2
H), 5.22 - 5.38 (m, 2 H), 6.42 - 6.59 (m, 4 H), 6.59 - 6.74 (m, 2 H), 6.81 - 6.89 (m, 2 H), 6.89 -
7.04 (m, 4 H) 3C NMR (CDCls, 101 MHz) & ppm: 24.8, 29.0, 34.1, 55.9, 62.6, 67.3, 76.6, 77.2,
77.3,109.5, 114.2, 116.8, 119.7, 128.2, 131.3, 132.4, 137.1, 147.8, 149.8, 173.7.

CTA12 (bis(2-(4-(buta-1,3-dien-1-yl)phenoxy)ethyl) decanedioate)

l
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In an oven-dried round bottom flask, sebacic acid (1 equiv., 2.75 mmol, 556 mg), 16 (2.2 equiv.,
6.04 mmol, 1.15 g), and DMAP (0.2 equiv., 0.55 mmol, 68 mg) were taken and dissolved in 12
mL dry DCM. The resulting solution was cooled to 0°C. Then, DCC (2.3 equiv., 6.32 mmol, 1.3
g) was dissolved in 3 mL DCM and added to the mixture dropwise. Then the flask was warmed
to room temperature and stirred overnight. Next, the solution was filtered. The filtrate was
concentrated under reduced pressure and further purified by column chromatography (10%-
20% ethyl acetate-hexane) to give CTA12 a sticky, viscous liquid (900 mg 1.65 mmol, 60%
yield). The product was further stored at -20°C freezer.

1H NMR (CDCls, 400 MHz) & ppm: 1.18 - 1.37 (m, 8 H), 1.55 - 1.72 (m, 4 H), 2.25 - 2.44 (m, 4
H), 4.06 - 4.26 (m, 4 H), 4.35 - 4.52 (m, 4 H), 5.10 - 5.40 (m, 4 H), 6.13 - 6.26 (m, 1 H), 6.34 -
6.59 (m, 3 H), 6.59 - 6.74 (m, 1 H), 6.81 - 6.99 (m, 5 H), 7.21 - 7.40 (m, 4 H) 3C NMR (CDCls,
101 MHz) & ppm: 24.8, 28.9, 28.9, 34.0, 62.5, 65.9, 76.6, 77.3, 114.3, 114.7, 116.5, 119.0,
127.6,127.8, 129.5, 129.7, 130.2, 130.3, 130.4, 132.2, 133.2, 137.2, 157.5, 158.1, 173.6.
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CTA13 (tris(2-(4-(buta-1,3-dien-1-yl)phenoxy)ethyl) benzene-1,3,5-tricarboxylate)
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A mixture of 1,3,5-Benzenetricarbonyl trichloride (1 equiv., 1.0 mmol, 266 mg) and 16 (3.1
equiv., 3.1 mmol, 590 mg) in 20 mL dry DCM was cooled in an ice bath. Triethylamine (3.3
equiv., 3.3 mmol, 0.46 mL) was added dropwise at that temperature. The flask was stirred at
room temperature for 1 h. Then, the mixture was diluted with water and extracted with DCM
and brine. The organic part was combined, dried over magnesium sulfate, and further purified
by column chromatography (15% ethyl acetate-hexane) to give CTA13 as a viscous liquid (450
mg, 0.62 mmol, 62% yield). The product was stored at -20°C, as in room temperature; after
overnight, insoluble material was obtained, probably because of radical cross-linking.

1H NMR (CDCls, 400 MHz) & ppm: 4.30 - 4.39 (m, 6 H), 4.71 - 4.78 (m, 6 H), 5.11 - 5.41 (m, 6
H), 6.13 - 6.25 (m, 2 H), 6.40 (s, 1 H), 6.37 (s, 2 H), 6.43 - 6.58 (m, 1 H), 6.64 (s, 1 H), 6.78 - 6.96
(m, 9 H), 7.23 - 7.37 (m, 10 H), 8.82 - 8.95 (m, 3 H) 13C NMR (CDCls, 101 MHz) & ppm: 63.9,
65.8, 76.6, 77.2, 77.3, 114.4, 114.8, 116.6, 119.1, 127.7, 127.9, 129.6, 129.7, 130.3, 130.6,
131.0, 132.2, 133.2, 135.0, 137.2, 157.5, 164.8.

CTA14 (2,2-bis(((4-(-buta-1,3-dien-1-yl)benzoyl)oxy)methyl)propane-1,3-diyl bis(4-(-buta-1,3-
dien-1-yl)benzoate)
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In an oven-dried round bottom flask, pentaerythritol (1 equiv., 0.47 mmol, 64.2 mg), 17 (4.2
equiv., 1.98 mmol, 345 mg), and DMAP (0.5 equiv., 0.24 mmol, 29 mg) were taken and
dissolved in 5 mL dry DCM. The resulting solution was cooled to 0°C. Then, DCC (4.5 equiv.,
2.12 mmol, 438 mg) was dissolved in 3 mL DCM and added to the mixture dropwise. Then the
flask was warmed to room temperature and stirred overnight. Next, the solution was filtered,
and the filtrate was concentrated under reduced pressure and further purified by column
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chromatography (20% ethyl acetate-hexane) to give CTA14 as a sticky, viscous liquid (250 mg,
0.33 mmol, 69.6% yield). The product was further stored at -20°C.

1H NMR (CDCls, 400 MHz) & ppm: 4.64 - 4.79 (m, 8 H), 5.23 - 5.36 (m, 4 H), 5.36 - 5.50 (m, 4
H), 6.27 - 6.41 (m, 3 H), 6.41 - 6.51 (m, 3 H), 6.51 - 6.63 (M, 2 H), 6.74 - 6.94 (m, 4 H), 7.29 -
7.45 (m, 8 H), 7.87 - 8.05 (m, 8 H) 13C NMR (CDCls, 101 MHz) & ppm: 14.1, 43.1, 63.6, 76.6,
77.2,77.3,119.5, 121.2, 126.3, 127.6, 129.0, 129.0, 129.6, 130.0, 131.5, 132.3, 132.6, 132.7,
136.7, 142.4, 165.8.

CTA17 ((2E,4E)-N-methyl-5-phenylpenta-2,4-dienamide)

XX COH EDC.HCI, DMAP XX CONHMe
+ CH;3NH, HCI -
Et;N, DCM

In a 50mL oven-dried round bottom flask, (2E, 4E) -5-phenylpenta-2, 4-dienoic acid (CTA15)
(1 equiv., 2.87 mmol, 500 mg), methylamine hydrochloride (1.1 equiv., 3.16 mmol, 213.5 mg),
N-(3-Dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride (EDC.HCI) (1.2 equiv., 3.45
mmol, 661 mg) and 4-(Dimethylamino)pyridine (DMAP) (0.05 equiv., 0.15 mmol, 18 mg) were
taken and then dissolved in 20 mL dry dichloromethane (DCM). The mixture was cooled in an
ice bath under argon. Then, triethylamine (3.5 equiv., 9.9 mmol, 1.38 mL) was added to the
flask dropwise. The ice bath was removed, and the mixture was stirred at room temperature
overnight. The next day, the solution was diluted with DCM and washed one time with water
and two times with brine. The combined organics were dried over magnesium sulfate and
concentrated in a rotary evaporator. The crude was dissolved under a warm condition in a
minimum amount of ethyl acetate and crystallized at room temperature to obtain white
crystals (350 mg, 1.87 mmol, 65% yield), filtered, and dried under a high vacuum.

1H NMR (CDCls, 400 MHz) § ppm: 2.92 (d, J=4.89 Hz, 3 H), 5.67 - 5.92 (m, 1 H), 5.99 (d, J=14.79
Hz, 1 H), 6.73 - 6.98 (m, 2 H), 7.24 - 7.53 (m, 6 H) 13C NMR (CDCls, 101 MHz) & ppm: 26.4, 76.6,
77.3,123.7, 126.3, 126.9, 128.6, 128.7, 136.2, 139.1, 140.7, 166.7.
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CTA18 ((2E,4E)-5-(furan-2-yl)penta-2,4-dienal)

112

In a 200 mL round bottom flask, potassium tert-butoxide (1.3 equiv., 21.24 mmol, 2.4 g) was
dissolved in 80 mL tetrahydrofuran (THF) and cooled to 0°C. To it, trimethyl
phosphonoacetate (1.3 equiv., 21.24 mmol, 3.45 mL) was added dropwise and stirred the
resulting solution at 0°C for 15mins. Then, 3-(2-Furyl) acrolein (1 equiv., 19.38 mmol, 2 g) was
dissolved in 10 mL THF and added to the precooled solution dropwise over 15mins. The flask
was warmed to room temperature and stirred for 15 mins. Upon which no starting material
was observed. Next, THF was removed under reduced pressure in a rotary evaporator, and
the crude was dissolved in ethyl acetate and worked up against brine two times. The organic
part was combined, concentrated, and further purified by column chromatography (5% ethyl
acetate-hexane) to give a yellow solid (2.52 g, 14.15 mmol, 73% yield) mentioned above as
112.

1H NMR (300 MHz, CDCls) & ppm: 3.77 (s, 3 H), 5.99 (dt, J=15.27, 0.71 Hz, 1 H), 6.45 (dd, J=2.20,
1.28 Hz, 2 H), 6.62 - 6.87 (m, 2 H), 7.32 - 7.50 (m, 2 H) 3C NMR (75 MHz, CDCls) & ppm: 51.5,
76.5,77.2,77.4,111.8,112.1, 120.6, 124.5, 127.0, 143.6, 144.3, 152.1, 167.4.

L i
DIBAL-H /

N
DCM

113

112 (1 equiv., 6.91 mmol, 1.23 g) was dissolved in 15mL dry DCM and cooled to -78°C. To this
solution, Diisobutylaluminum hydride solution (DIBAL-H) (1M in THF, 2.2 equiv., 15.18 mmol,
15.2 mL) was added dropwise over 30 mins. The mixture was warmed to room temperature
and stirred for a further 3 h, almost all the starting materials were consumed, and then the
reaction was cooled to -30°C and quenched by adding cold water dropwise. Next, the flask
was allowed to stir at room temperature for another 15 mins. The mixture was filtered over
celite. The filtrate was worked up against ethyl acetate and brine three times. The combined
organics were dried over magnesium sulfate and concentrated under reduced pressure to
give 113 as a white solid (1 g, 6.66 mmol, 96.5% yield), which was used in the next step without
any purification.
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1H NMR (CDCls, 400 MHz) & ppm: 2.11 - 2.41 (m, 1 H), 4.21 (dt, J=5.90, 0.90 Hz, 2 H), 5.86 -
6.03 (m, 1 H), 6.18 - 6.48 (m, 4 H), 6.60 - 6.80 (m, 1 H), 7.36 (dd, J=1.77, 0.31 Hz, 1 H) 13C NMR
(CDCls, 101 MHz) & ppm: 63.0, 76.6, 77.3, 108.3, 111.5, 120.1, 126.7, 130.9, 132.6, 142.0,
152.9.

o
/ MnO, /0
NN OH = A ____o

DCM

A solution of compound 113 (1 equiv., 5 mmol, 754 mg) was dissolved in 25 mL dry DCM. To
it, Manganese (IV) oxide (88% activated) (10 equiv., 50.11 mmol, 4.36 g) was added in one
shot, and the resulting black solution was stirred at room temperature overnight. The mixture
was filtered over celite the next day. The DCM solution was concentrated under reduced
pressure, and the crude was dissolved in ethyl acetate and kept at -20°C overnight to obtain
yellow crystals of CTA18 (650mg, 5.39mmol, 87% vyield).

1H NMR (CDCls, 400 MHz) § ppm: 6.18 - 6.35 (m, 1 H), 6.41 - 6.52 (m, 1 H), 6.55 (d, J=3.42 Hz,
1H), 6.70 - 6.84 (m, 1 H), 6.84 - 6.99 (m, 1 H), 7.13 - 7.33 (m, 1 H), 7.43 - 7.58 (m, 1 H), 9.61
(d, J=7.95 Hz, 1 H) 3C NMR (CDCls, 101 MHz) & ppm: 76.6, 76.9, 77.3, 112.3, 113.1, 124.4,
128.4,131.4, 144.3, 151.4, 151.9, 193.3.

CTA19 ((2E,4E)-5-(4-bromophenyl)penta-2,4-dienal)
CHO

Br\@\ﬂ
03 1)KO'Bu, THF
+ -
ZcHo + Phapvl\o 2)2(M) HCI
BI'_ Br

In an oven-dried Schlenk flask, (1,3-Dioxolan-2-yImethyl) triphenylphosphonium bromide (2.6
equiv., 6.17 mmol, 2.65 g) was dissolved in 15mL THF and cooled to 0°C. Potassium tert-
butoxide (3 equiv., 7.11 mmol, 800 mg) was added, and the solution immediately turned
yellow. The resulting solution was stirred at that temperature for 20 mins. Then 3-(4-
Bromophenyl) acrylaldehyde (1 equiv., 2.37 mmol, 500 mg) was dissolved in 2mL THF and
added to the mixture dropwise over 10 mins. The flask was warmed to room temperature
and stirred overnight. 5mL water was added to the same flask, followed by 5mL 2(M) HCI, and
the solution was stirred for 2 more hours. Thin layer chromatography (TLC) showed the
absence of starting material and generation of two very close spots suggesting probably cis
and trans isomers. After that, THF was evaporated under reduced pressure, and the crude
was dissolved in ethyl acetate and washed with brine two times. The organic part was dried
over magnesium sulfate, concentrated, and further purified by column chromatography (5%-
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10% ethyl acetate-hexane). Both isomers were isolated separately as white solid, and some
mixtures contained both (335 mg, 1.42 mmol, overall yield of 60%).

Cis isomer - *H NMR (CDCls, 400 MHz) & ppm: 5.99 (ddt, J=10.99, 7.29, 0.95, 0.95 Hz, 1 H), 6.86
(d, J=15.28 Hz, 1 H), 6.92 - 7.12 (m, 1 H), 7.34 - 7.45 (m, 3 H), 7.45 - 7.60 (m, 3 H), 7.69 - 7.86
(m, 1 H), 10.27 (d, J=7.34 Hz, 1 H) 3C NMR (CDCls, 101 MHz) & ppm 76.68, 77.20, 77.31,
122.78, 123.69, 126.79, 127.32, 128.88, 132.06, 132.13, 134.55, 141.09, 146.45, 151.35,
190.09, 193.40.

Trans isomer- *H NMR (CDCls, 400 MHz) & ppm: 6.30 (dd, J=15.16, 7.95 Hz, 1 H), 6.91 - 7.07 (m,
2 H), 7.19 - 7.31 (m, 2 H), 7.35 - 7.42 (m, 2 H), 7.49 - 7.58 (m, 2 H), 9.64 (d, J=7.95 Hz, 1 H) 13C
NMR (CDCls, 101 MHz) § ppm: 76.6, 77.2, 77.3,123.7, 126.8, 128.8, 132.0, 132.1, 134.5, 140.8,
151.3, 193.4.

CTA20 (2-chloroethyl (2E,4E)-5-phenylpenta-2,4-dienoate)

DCC, DMAP X CO,CH,CH,CI

X _COzH
2 + HO/\/CI .
DCM

In a 50mL oven-dried round bottom flask, (2E, 4E) -5-phenylpenta-2, 4-dienoic acid (CTA15)
(1 equiv., 4.6 mmol, 800 mg), 2-chloroethanol (2 equiv.,, 9.2 mmol, 0.61 mL) and 4-
(Dimethylamino) pyridine (DMAP) (1.2 equiv., 5.5 mmol, 674 mg) were taken and dissolved
in 20 mL dry DCM. The resulting solution was cooled to 0°C. Then, N,N'-
Dicyclohexylcarbodiimide (DCC) (1.5 equiv., 6.93 mmol, 1.43 g) was dissolved in 5 mL DCM
and added to the mixture dropwise. Then the flask was warmed to room temperature and
stirred overnight. Next, the solution was filtered. The filtrate was concentrated under reduced
pressure and further purified by column chromatography (20% ethyl acetate-hexane) to give
CTA20 as a white solid (810 mg, 3.43 mmol, 74.65% yield).

'H NMR (CDCls, 400 MHz) & ppm 3.75 (dd, J=6.24, 5.26 Hz, 2 H), 4.44 (dd, J=6.24, 5.26 Hz, 2
H), 6.03 (d, J/=15.41 Hz, 1 H), 6.78 - 7.05 (m, 2 H), 7.30 - 7.43 (m, 3 H), 7.43 - 7.67 (m, 3 H).

CTA21 ((3E,5E)-6-(4-bromophenyl)hexa-3,5-dien-2-one)

Br
Br\@\/\ i roene \©\/\/Y
+ —_— P
A eho PhaPs L Heat

o

3-(4-Bromophenyl) acrylaldehyde (1 equiv., 3.17 mmol, 670 mg) and 1-
(triphenylphosphoranylidene)-2-propanone (1.5 equiv., 4.72 mmol, 1.5 g) were dissolved in
30 mL of toluene and heated at 85°C for overnight. TLC showed incomplete conversion of
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starting material. Then, toluene was evaporated under reduced pressure and the crude
purified by column chromatography (5% ethyl acetate-hexane) to give a white solid (555 mg,
2.22 mmol, 70% yield).

1H NMR (CDCls, 400 MHz) & ppm: 2.32 (s, 3 H), 6.28 (d, J=15.41 Hz, 1 H), 6.79 - 6.97 (m, 2 H),
7.21 - 7.40 (m, 3 H), 7.45 - 7.60 (m, 2 H). 3C NMR (CDCls, 101 MHz) & ppm: 27.4, 76.6, 77.3,
123.1,127.2, 128.5, 130.9, 132.0, 134.8, 139.7, 142.8, 198.2.

CTA23 ((E)-(2-methylbuta-1,3-dien-1-yl)benzene)

+ KO'Bu N X
xCHO . MePPh,
h THE

Br

Methyltriphenylphosphonium bromide (1.2 equiv., 12.31 mmol, 4.4 g) was dissolved in 20 mL
THF and cooled to 0°C. Solid potassium tert-butoxide (1.2 equiv., 12.31 mmol, 1.38 g) was
added in one shot, and the THF solution immediately became yellow. The solution was stirred
at 0°C for 10 mins. a-Methyl-trans-cinnamaldehyde (1 equiv., 10.26 mmol, 1.44 mL) was
dissolved in 5 mL THF and added slowly to the precooled mixture. Then, the resulting solution
was stirred at room temperature for 15 mins. THF was evaporated under reduced pressure,
and crude was dissolved in ethyl acetate and worked up against brine two times. The organic
part was dried over magnesium sulfate, concentrated under reduced pressure, and further
purified by column chromatography (2% ethyl acetate-hexane) to obtain CTA23 as a colorless
liquid (1.3 g, 9.00 mmol, 88% yield).

'H NMR (CDCls, 400 MHz) & ppm: 1.97 - 2.06 (m, 3 H), 5.10 - 5.21 (m, 1 H), 5.28 - 5.39 (m, 1
H), 6.45 - 6.67 (m, 2 H), 7.17 - 7.46 (m, 5 H) 3C NMR (CDCls, 101 MHz) 8 ppm: 13.1, 76.6, 77.3,
112.9, 126.6, 128.1, 129.2, 131.6, 135.9, 137.7, 141.8.
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CTA24 (1-methoxy-4-((1E)-penta-1,3-dien-1-yl)benzene)

CHO P
X
+ KO'Bu Z
+  CH;CH,PPh;
_ THF
Br
o
~N
_0

Ethyltriphenylphosphonium bromide (1.2 equiv., 11.1 mmol, 4.1 g) was dissolved in 20 mL
THF and cooled to 0°C. Solid potassium tert-butoxide (1.2 equiv., 11.1 mmol, 1.25 g) was
added in one shot, and the THF solution immediately became yellow. The solution was stirred
at 0°C for 10 mins. Trans-p-methoxycinnamaldehyde (1 equiv., 9.25 mmol, 1.5 g) was
dissolved in 10 mL THF and added slowly to the precooled mixture. Then, the resulting
solution was stirred at room temperature for 15 mins. THF was evaporated under reduced
pressure, and crude was dissolved in ethyl acetate and worked up against brine two times.
The organic part was dried over magnesium sulfate, concentrated under reduced pressure,
and further purified by column chromatography (5% ethyl acetate-hexane) to obtain CTA24
as a colorless liquid (1.4 g, 8.0 mmol, 87% yield).

IH NMR (CDCls, 400 MHz) & ppm: 1.80 - 1.90 (m, 3 H), 3.80 - 3.85 (m, 3 H), 5.56 (ddt, J=10.71,
7.17, 1.02, 1.02 Hz, 1 H), 6.11 - 6.27 (m, 1 H), 6.49 (d, J=15.65 Hz, 1 H), 6.80 - 7.03 (m, 3 H),
7.29-7.43 (m, 2 H) 3C NMR (CDCls, 101 MHz) & ppm: 13.5, 18.3, 55.2, 76.6, 77.3, 114.0, 114.0,
122.2,125.9,127.2, 127.3, 127.4, 129.2, 129.7, 130.5, 131.3, 159.0.

CTA25 (1-((1E)-hexa-1,3-dien-1-yl)-4-methoxybenzene)

/
CHO P
o P
. + KO'Bu
CH;CH,CH,PPh;—————
3 2 2, 3 THF
Br
o
A 0

7~

Propyltriphenylphosphonium bromide (1.2 equiv., 11.1 mmol, 4.3 g) was dissolved in 20 mL
THF and cooled to 0°C. Solid potassium tert-butoxide (1.2 equiv., 11.1 mmol, 1.25 g) was
added in one shot, and the THF solution immediately became yellow. The solution was stirred
at 0°C for 10 mins. Trans-p-methoxycinnamaldehyde (1 equiv., 9.25 mmol, 1.5 g) was
dissolved in 10 mL THF and added slowly to the precooled mixture. Then, the resulting
solution was stirred at room temperature for 15 mins. THF was evaporated under reduced
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pressure, and crude was dissolved in ethyl acetate and worked up against brine two times.
The organic part was dried over magnesium sulfate, concentrated under reduced pressure,
and further purified by column chromatography (5% ethyl acetate-hexane) to obtain CTA25
as a colorless liquid (1.5 g, 7.96 mmol, 88.2% vyield).

'H NMR (CDCls, 400 MHz) & ppm: 0.99 - 1.16 (m, 3 H), 2.24 - 2.40 (m, 2 H), 3.76 - 3.89 (m, 3
H), 5.49 (dtt, /=10.92, 7.47,7.47,1.01, 1.01 Hz, 1 H), 6.05 - 6.26 (m, 1 H), 6.37 - 6.57 (m, 1 H),
6.80 - 7.02 (m, 3 H), 7.29 - 7.45 (m, 2 H) 3C NMR (CDCl3, 101 MHz) & ppm: 13.6, 14.3, 21.2,
25.8, 55.2, 76.6, 77.3, 114.0, 122.4, 127.2, 127.4, 28.2, 129.5, 129.6, 130.4, 131.5, 133.7,
136.1, 159.0.

PEG2kx macroinitiator

0 e, E:t;N DMAP &
/{ \/TIQH \V\_7¢ 14 Dioxane /{ \/TQJW
40°C

Poly(ethylene glycol) methyl ether (M,=2000 g/mol, 1 equiv., 4.96 mmol, 10 g), succinic anhydride (2.5
equiv., 12.4 mmol, 1.24 g), DMAP (1 equiv., 4.96 mmol, 607 mg) and triethyl amine (1 equiv., 4.96
mmol, 0.7 mL) were dissolved in 80 mL 1,4-dioxane. The resulting solution was heated at 40°C for 20
h. The reaction was cooled, and the dioxane was concentrated under reduced pressure. Then it was
precipitated into cold diethyl ether two times to obtain carboxylic acid functional PEG (PEGa
carboxylic acid) as a white solid (10 g, 4.3 mmol 95% yield).

1H NMR (CDCls, 400 MHz) & ppm: 2.57 - 2.67 (m, 4 H), 3.36 (s, 3 H), 3.56 - 3.71 (m, 207 H),
4.22 - 4.26 (m, 2 H) 13C NMR (CDCls, 101 MHz) § ppm: 29.2, 29.5, 39.3, 58.9, 63.6, 68.9, 70.5,
70.6,71.8, 76.6, 77.2, 77.3, 106.3, 172.2, 174.2.

,{O\/T J\W \b bec, omap *o o J\/Y /©/\ﬂ\

OH

In an oven-dried round bottom flask, carboxylic acid functional PEG (1.0 equiv., .57 mmol, 1.23
g), 16 (10.0 equiv., 5.7 mmol, 1.08 g), and DMAP (1 equiv., 0.57 mmol, 70 mg) were taken and
dissolved in 4 mL dry DCM. The resulting solution was cooled to 0°C. Then, DCC (10.0 equiv.,
5.7 mmol, 1.18 g) was dissolved in 2 mL DCM and added to the mixture dropwise. Then the
flask was warmed to room temperature and stirred overnight. Next, the solution was filtered.
The filtrate was concentrated under reduced pressure and precipitated into cold diethyl ether
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three times to obtain PEG2kx macroinitiator as a white solid (1 g, 0.43 mmol, 75.1% yield). The
product was stored at -20°C.

'H NMR (CDCls, 400 MHz) & ppm: 2.63 - 2.72 (m, 4 H), 3.35 - 3.39 (m, 3 H), 3.41 - 3.50 (m, 2
H), 3.50 - 3.75 (m, 189 H), 3.75-3.89 (m, 2 H), 4.14 - 4.28 (m, 4 H), 4.39 - 4.49 (m, 2 H), 5.08 -
5.22 (m, 1 H), 5.34 (dt, /=16.87, 1.04 Hz, 1 H), 6.13 - 6.23 (m, 1 H), 6.32 - 6.46 (m, 1 H), 6.52 (s,
1H),6.79-6.93 (m, 3 H) *C NMR (CDCl3, 101 MHz) 8 ppm: 24.6, 28.9, 58.9, 62.9, 63.8, 65.8,
68.9, 70.5, 70.7, 71.8, 76.6, 77.2, 77 .3, 114.3, 114.7, 116.5, 119.0, 127.6, 127.8, 129.5, 129.7,
130.2, 130.5, 132.1, 133.1, 137.2, 157.4, 172.1.
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Synthesis of Monomers:

Synthesis of exo-MNI (M1)
(0]

(0]
Toluene N—
O + CHgNHz ——
Reflux

0]
0]

Exo-N-methylnorbornene imide (exo-MNI) (M1) was synthesized according to the previously
reported procedure?.

Synthesis of endo, exo-bicyclo [2.2.1] hept-5-en-2-yl) methoxy) triisopropylsilane (M3)

W s
. >—Si—CI e
OH A DCM OTIPS

In an oven-dried Schlenk flask, bicyclo[2.2.1]hept-5-en-2-yImethanol (exo and endo mixture)
(1 equiv., 96.78 mmol, 12 g), triisopropylsilyl chloride (1.1 equiv., 106.45 mmol, 22.8 mL),
imidazole (3equiv., 291.2 mmol, 19.8 g) and DMAP (0.01 equiv., 0.97 mmol, 120 mg) were
dissolved in 120 mL dry DCM. The resulting mixture was stirred overnight at room
temperature. Then, the mixture was washed with water once and with brine two times. The
organic part was dried over magnesium sulfate, concentrated, and purified by column
chromatography (2% ethyl acetate-hexane) to give M3 as a colorless liquid (27g, 96.42 mmol,
99% vyield).

1H NMR (CDCls, 400 MHz) & ppm: 0.42 - 0.53 (m, 1 H), 1.04 - 1.16 (m, 22 H), 1.24 - 1.40 (m, 2
H), 1.40 - 1.50 (m, 1 H), 1.71 - 1.87 (m, 1 H), 2.24 - 2.39 (m, 1 H), 2.74 - 2.88 (m, 1 H), 2.95 -
3.03 (m, 1 H), 3.24 (t, J=9.54 Hz, 1 H), 3.49 (dd, J=9.66, 6.24 Hz, 1 H), 5.98 (dd, J=5.75, 2.93 Hz,
1 H), 6.03 - 6.20 (m, 1 H). 3C NMR (CDCls, 101 MHz) & ppm: 11.7, 17.7, 28.2, 28.9, 41.2, 41.5,
41.5,41.9, 43.0, 43.4, 44.5, 49.0, 66.5, 67.4, 76.3, 76.6, 132.3, 136.2, 136.4, 136.5.
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1H NMR reactions:
The reaction of CTA1 with G3:

X
e “Ru
S DCMD2 + o
G3 + Meozc/\o i

o\ Me02C o\
In an NMR tube, G3 (1 equiv., 0.01 mmol, 8 mg) and 1,3,5 trimethoxybenzene (as an internal
standard) were dissolved in 0.5 mL dichloromethane-d, (DCM-d;), and *H NMR was
measured. CTA1 (1 equiv., 0.01 mmol, 2.63 mg) in 0.25 mL DCM-d, was added, and *H NMR

was measured immediately.

Styrene
1 equiv. G3 + 1 equiv. CTA1 AJ\

3.00 4.27 4,64J
Only CTA1 M
Only G3 N

|

3.00

| S—
AR R e R RN R R RRRER RRRE | LR RS | RARES T T T RS R n s nn U R RARA R R R E R R a ]
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Fig. S1: *H NMR (CD.Cl, 300 MHz) of reaction of CTA1 (1 equiv.) with G3 (1 equiv.) in DCM-d>
(CD2Clz). NMR spectra were compared with CTA1 and styrene (measured independently in
CDCl3). The peak at 6.05 ppm is from the internal standard. Peaks of CTA1 around 5.15 ppm
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and 5.32 ppm are gone, and new peaks of styrene at 5.22-5.26 ppm and 5.73-5.79 ppm were
observed.

Scheme S1: Regioselective cross-metathesis

We believe, minimal steric congestion of terminal 1,3 conjugated double bond as compared
to internal double bond is responsible for the high regioselective cross-metathesis reaction.
Grubbs’ ruthenium complex reacted regioselectively forming an electronically stable
conjugated carbene rather than the methylidene complex.

Regioselective cross-metathesis

Ru=\
Ru
H R 7 \  Grubbs' catalyst 7 \ Y/ PN
\ Z “Ph
= Ru . FC g 7 Ru= FG 7
R (R=Ph/ alkyl)
' . H ically
O Electronically poor and : w ! : Q Electronically stable Ru carbene complex
] P .
a FG sterically accessible ' red via 'HN s
Q energetically higher Ru methylidene ! k_/ E Q Observed via MR spectroscopy
comlex;was,never,observed E E Q Confirmed by MALDI-ToF mass spectrometry
E Ru=\ '
3 R :
! sterically unfavoured .
Vs R SRR SRS RS S R B RS RS S S SR T SRS R F RS SR
Ru
= Ar

Ar

II-electron donation of extra double bond of conjugated CTA to the vacant and diffused d-
orbital of Ru led to stabilisation of four membered metallacyclobutane. This maybe a
plausible explanation for observed regioselectivity as well as fast reactivity of conjuagted
diene CTAs.
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End capping experiment:

CTAl
Ph Ru MEOQC /©/\/\ %//
AN
MNI = Ru
G — n
DCM D2 o
N DCM D2
;° Meozc o.

G3 (1 equiv., 0.0045 mmol, 4 mg) was dissolved in 0.5 mL dichloromethane-d; (CD,Cl2) in an
NMR tube and to it exo-MNI (20 equiv., 0.09 mmol, 16 mg) in 0.2 mL CDCl, was quickly added.
!H NMR was measured. Then, CTA1 (2 equiv., 0.009 mmol, 2.24 mg) dissolved in 0.2 mL CD,Cl,
was added, and *H NMR was measured over time. After that, the CD,Cl, mixture was
concentrated under reduced pressure at room temperature, and the formed polymer was
precipitated in methanol. The polymer (P1) was obtained as a grey solid in quantitative yield.

Smins after CTA1 | was added ﬁ l
Fully initiated G3 carbene M

B B e e e e e T L B s B B e B e e e e S S N I S S e B e I L s B e e B e B |
19.5 19.0 18.5 18.0 17.5 17.0
Chemical Shift (ppm)

Fig. S2: 'H NMR spectrum (CD,Cl,, 300 MHz) of end-capping reaction with CTA1.
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Fig. S3: MALDI-ToF mass spectrum (DCTB, AgTFA) of P1.
Catalytic polymerization in an NMR tube using CTAS:
MeO,C
\
~ DCM-d2 M1 \©\/
G3 + O = //Y
DCM-d2 N
° (o]}
N"o

In an NMR tube, 1,3,5 trimethoxy benzene (as an internal standard), G3 (1 equiv., 0.0026
mmol, 2 mg) and CTAS8 (20 equiv., 0.045 mmol, 8.5 mg) were mixed in 0.6 mL DCM-d, and H
NMR were measured. Then, M1 (200 equiv., 0.45 mmol, 80.13 mg) was added quickly, and 'H
NMR was measured immediately. Complete consumption (see *H NMR spectra below) of
monomer and CTA was observed within the first measurement (5-8 mins). Next, a few drops
of ethyl vinyl ether were added to the NMR tube, and the resulting solution was concentrated
under reduced pressure. The concentrated mixture was precipitated into cold methanol. A
white solid polymer (P12) was obtained further dried under a high vacuum.
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Fig. S4: 'H NMR (400 MHz) of polymerization of M1 using CTA8 in DCM-d, (CD,Cl,). Peaks
from CTA8 (Bottom spectra, green line) disappeared (top spectra, blue line, yellow shaded

region), and no peaks from monomer (M1) were observed.

General procedure for catalytic synthesis of Monotelechelic polymers:

In an oven dried Schlenk flask, monomer M1 was degassed three times and then dissolved in
degassed dichloromethane (DCM) and kept under Argon. M2 and M3 were first dissolved in
DCM and then degassed three times using a conventional freeze-thaw cycle. In a separate
Schlenk flask, CTA was added and degassed three times. To it, dry, degassed DCM was added,
followed by the addition of G3 that was already dissolved in degassed DCM. The resulting
solution was stirred at room temperature for three mins. Then, the monomer solution was
added quickly to the mixture of catalyst and CTA and stirred at room temperature for ten
mins. Complete monomer consumption was observed by *H NMR spectroscopy and/or thin
layer chromatography. Next, a few drops of ethyl vinyl ether were added, and the resulting
mixture was stirred for five more mins. The mixture was concentrated under reduced
pressure and precipitated into cold methanol two times. A solid was obtained, filtered, and
dried under a high vacuum. Respective yields of all the polymers were measured after drying
under a high vacuum overnight.
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Table S1: Catalytically Synthesis of Monotelechelic polymers-

Entry | CTA Monomer | G3:CTA: M, (Non- | M, Y/ Y/ b Polymer
(M) Monomer | catalytic, | (Catalytic, | (*H (SEC, Yield
ratio M/G3) M/CTA) NMR) | CHCIs) (%)
(kDa) kDa kDa kDa
P2 CTAl M1 1:40:400 71 2.0 2.7 2.6 1.77 | 88
P3 CTAl M1 1:40:800 141 3.7 4.4 54 1.74 | 85
P4 CAT1 M1 1:40:1200 212 5.5 6.2 8.2 1.59 |91
P5 CTAl M1 1:200:3000 531 2.9 3.1 3.6 1.68 | 84
P6 CTA2 M1 1:300:3000 531 1.9 2.2 2.5 1.72 |91
P7 CTA3 M1 1:100:2000 354 3.8 3.6 39 195 |92
P8 CTA3 M1 1:50:10000 1770 35.5 -2 44.0 1.80 |90
P9 CTA4 M1 1:100:1500 265 2.8 3.5 4.4 1.76 | 88
P10 CTAS M1 1:200:2000 354 2.0 2.1 2.3 1.78 | 86.5
P11 CTA6 M1 1:100:2000 354 3.7 4 6.5 1.60 | 87
P12 CTA8 M1 1:20:200 35 2 2.6 34 1.66 | 84
P13 CTA9 M1 1:100:3000 531 5.7 6.1 7.9 1.72 | 87.6
P14 CTA10 | M1 1:100:2000 354 3.8 4.0 5 1.80 |88
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Entry | CTA Monomer | G3: CTA: M, (Non-| M, Y/ Y/ b Polymer
(M) Monomer | catalytic, | (Catalytic, | (*H (SEC, Yield
ratio M/G3) M/CTA) NMR) | CHCIs) (%)
(kDa) kDa kDa kDa
P15 CTA2 M2 1:100:3000 282 3.0 4.0 7.2 2.09 |85
P16 CTAS M2 1:100:2500 235 2.6 3.7 8.8 1.98 | 90
P17 CTA7 M2 1:100:2500 235 2.7 3.6 8.8 2.10 | 84
P18 CTA9 M2 1:100:2500 235 2.7 4.1 8.2 2.10 | 80
P19 CTA10 | M2 1:170:3400 320 2.1 3.5 7.0 2.10 | 88

a= due to very high molecular weight of the polymer end group analysis could not be performed.

P2:

G3: 2 mg, CTA1: 22.5 mg, M1: 160 mg. Concentration (M1): 0.1 (M). DCM: 9 mL.

'H NMR (CDCl3, 400 MHz) 8 ppm: 1.48 - 1.71, 2.00 - 2.22, 2.28, 2.64 - 2.76, 2.76 - 2.85, 2.90 -
3.13,3.19-3.36, 3.80, 3.89-3.97,4.69 - 4.72, 5.11 - 5.26, 5.45 - 5.59, 5.70 - 5.81, 5.83 - 6.00,
6.88 - 6.97, 7.32, 7.28. 3C NMR (CDCls, 101 MHz) 8 ppm: 24.7, 24.8, 24.8, 40.8, 45.6, 51.0,
51.1,52.2,52.6,52.6,55.9, 66.4, 76.6, 77.2, 77.3, 119.3, 131.8, 149.6, 178.3.

P3:
G3: 2 mg, CTA1: 22.5 mg, M1: 320 mg. Concentration (M1): 0.1 (M). DCM: 18 mL.

'H NMR (CDCl3, 400 MHz) 8 ppm: 1.47 - 1.73,2.01 - 2.21, 2.28, 2.66 - 2.86, 2.89 - 3.13, 3.18 -
3.36, 3.80, 3.90 - 3.96, 4.69 - 4.72, 5.10 - 5.25, 5.44 - 5.60, 5.69 - 5.82, 5.86 - 6.0, 6.87 - 6.97.
13C NMR (CDCl3, 101 MHz) & ppm: 24.7, 24.8, 24.8, 40.8, 41.2, 41.4, 41.6, 41.6, 41.9, 42.0,
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42.4,42.4,42.7,42.9,43.1,45.5, 45.6,45.7,45.8, 45.9, 46.0, 46.2, 46.8, 50.7, 50.9, 51.0, 51.1,
51.1,51.3,51.8,52.2,52.6,52.9,55.8, 66.4,76.6,77.2,77.3,114.1,119.3, 131.3, 131.6, 131.7,
131.8,131.9, 132.0, 132.0, 132.6, 133.4, 149.6, 169.3, 178.1, 178.3, 178.4.

P4:
G3: 2 mg, CTA1: 22.5 mg, M1: 480 mg. Concentration (M1): 0.1 (M). DCM: 27 mL.

'H NMR (CDCls, 400 MHz) 8 ppm: 2.00 - 2.23, 2.24 - 2.32, 3.80, 3.89 - 4.00, 4.65 - 4.74, 5.10 -
5.17,5.17 - 5.27,5.41 - 5.64, 5.64 - 5.86, 5.86 - 6.03, 6.47, 6.77, 6.83 - 6.93, 6.93 - 7.12. 13C
NMR (CDCl3, 101 MHz) & ppm: 24.7, 24.8, 24.8, 40.8, 40.8,41.2,41.4,41.9,42.0, 42.4, 42.7,
42.9,45.5,45.6,45.7,45.9, 46.2, 46.8, 50.9, 51.1, 51.3, 51.8, 52.2, 52.6, 53.0, 55.8, 66.4, 76.6,
77.2,77.3,77.5,114.2, 119.3, 131.6, 131.8, 132.0, 132.6, 133.4, 149.6, 178.3, 178.3, 178.4.

P5:
G3: 1 mg, CTA1: 56.2 mg, M1: 601 mg. Concentration (M1): 0.1 (M). DCM: 34 mL.

'H NMR (CDClz, 400 MHz) 8 ppm: 1.99 - 2.22, 2.23 - 2.31, 3.80, 3.87 - 3.99, 4.63 - 4.74, 5.07 -
5.27,5.42 - 5.63, 5.63 - 5.83, 5.83 - 6.04, 6.34, 6.39 - 6.57, 6.66, 6.70 - 6.83, 6.83 - 7.12. 13C
NMR (CDCl3, 101 MHz) & ppm: 24.7, 24.7, 24.8, 40.8, 41.1,41.4, 41.7,41.9,42.1,42.4, 42 4,
42.7,42.9,43.1,45.5,45.6,45.7,45.7,45.9, 46.0, 46.1, 46.2, 46.8, 50.7, 50.9, 50.9, 51.0, 51.0,
51.1,51.3,51.5, 51.8, 52.2, 52.5, 52.6, 52.9, 55.8, 66.4, 76.6, 77.2, 77.3, 109.4, 109.4, 114.1,
115.7, 119.3, 127.3, 131.4, 131.5, 131.7, 131.8, 131.8, 132.0, 132.0, 132.0, 132.6, 132.8,
133.4,133.4,138.7, 146.8, 149.6, 169.3,177.9, 178.1, 178.3, 178.4.

P6:
G3: 1 mg, CTA2: 54.3 mg, M1: 601 mg. Concentration (M1): 0.1 (M). DCM: 34 mL.

'H NMR (CDCls, 400 MHz) 8 ppm: 1.43 - 1.73, 3.74 - 3.83, 5.06 - 5.25, 5.37 - 5.61, 5.66 - 5.95,
6.12-6.39,6.39-6.53,6.53-6.70, 6.79 - 6.88, 7.27 - 7.39. 1*C NMR (CDCl3, 101 MHz) 8 ppm:
24.3,24.3,24.4,40.4,40.5,40.8,41.0,41.0,41.1,41.2,41.2,41.4,41.5,41.6,41.7,41.9, 42.0,
42.3,42.4,42.5,42.7,43.2,45.1,45.2,45.3,45.3,45.3,45.5, 45.6,45.7,45.8, 46.2, 46.4, 46.7,
50.3, 50.3, 50.5, 50.5, 50.6, 50.7, 50.8, 50.9, 51.1, 51.4, 51.7, 52.1, 52.1, 52.1, 52.2, 52.3, 52.5,
54.8, 76.3, 76.6, 76.8, 113.6, 115.3, 115.3, 125.9, 126.0, 127.0, 127.4, 129.6, 131.2, 131.3,
131.4, 131.4, 131.5, 131.6, 131.6, 131.7, 132.2, 132.5, 132.9, 132.9, 133.0, 133.0, 133.1,
138.3,138.3,158.7,177.6, 177.7, 177.9, 177.5, 177.9, 178.0.

P7:

G3: 1 mg, CTA3: 23.6 mg, M1: 401 mg. Concentration (M1): 0.1 (M). DCM: 23 mL.
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'H NMR (CDCls, 400 MHz) 8 ppm : 1.99 - 2.22,2.24 - 2.31, 5.07 - 5.28, 5.40 - 5.64, 5.64 - 5.86,
5.86 - 6.06, 6.35, 6.39 - 6.61, 6.73, 7.38 - 7.50. 13C NMR (CDCl3, 101 MHz) & ppm: 24.7, 24.8,
24.8,40.8,41.2,41.4,41.9,42.1,42.4,42.7,45.5,45.5, 45.6,45.7,45.9, 46.0, 46.1, 46.2, 46.8,
50.9,51.0,51.1,51.3,51.8,52.2,52.6,52.9,76.6,77.2,77.3,127.7,131.6, 131.8, 132.0, 132.6,
133.4,133.4,178.1, 178.3, 178.3.

P8:
G3: 1 mg, CTA3: 11.8 mg, M1: 2.0 g. Concentration (M1): 1 (M). DCM: 11.3 mL.

'H NMR (CDCls, 400 MHz) 8 ppm: 1.54 - 1.67, 1.82,2.04 - 2.11, 2.12 - 2.17, 2.68 - 2.80, 2.91 -
3.12,3.22 - 3.30, 3.47, 5.46 - 5.55, 5.71 - 5.78, 7.27. 3C NMR (CDCl3, 101 MHz) & ppm: 24.7,
24.8,24.8,40.8,41.2,41.4,41.9,42.1,42.4,42.9,45.6, 45.6, 45.8,45.9, 46.0, 46.1, 46.2, 50.8,
50.9,51.0,51.0,51.1,51.1, 51.8, 52.6, 53.0, 76.7, 77.2,77.3, 131.6, 131.6, 131.7, 131.8, 131.9,
132.0,132.1, 132.6, 133.4, 178.1, 178.3, 178.4.

P9:
G3: 2 mg, CTA4: 27.20 mg, M1: 601 mg. Concentration (M1): 0.1 (M). DCM: 34 mL.

'H NMR (CDCls, 400 MHz) 8 ppm: 2.00 - 2.22, 2.24 - 2.31, 5.07 - 5.21, 5.21 - 5.25, 5.39 - 5.64,
5.68-5.83,5.84-6.00, 6.14 - 6.43, 6.59 - 6.75, 7.32 - 7.40. 3C NMR (CDCl3, 101 MHz) 8 ppm:
24.7,24.8,24.9,40.8,41.2,41.4,41.9,42.1,42.4,42.7,42.9,43.1,45.6, 45.6, 45.8, 45.9, 46.0,
46.2,46.8,50.7,51.0,51.0, 51.1, 51.1, 51.1, 51.3, 51.8, 52.2, 52.6, 52.6, 52.6, 53.0, 76.7, 77 .2,
77.3,108.2,111.5,115.8, 119.7,131.1, 131.6, 131.7, 131.9, 131.9, 132.0, 132.0, 132.1, 132.7,
133.4,142.1,178.1, 178.3, 178.4.

P10:
G3: 1 mg, CTA5: 52.0 mg, M1: 401 mg. Concentration (M1): 0.1 (M). DCM: 23 mL.

'H NMR (CDCls, 400 MHz) 8 ppm: 2.00 - 2.22, 2.23 - 2.31, 5.09 - 5.28, 5.44 - 5.60, 5.62 - 5.83,
5.87-6.03,6.53-6.81,7.31-7.57,7.93 -8.07, 8.25 - 8.43. 13C NMR (CDCl3, 101 MHz) & ppm:
24.7,24.8,24.9,40.8,41.2,41.4,41.6,42.4,42.7,42.9, 45.6, 45.6, 46.0, 46.0, 46.2, 46.8, 50.7,
51.0,51.1,51.1, 51.3,51.3,51.8,52.7,53.0, 76.7, 77.0, 77.2, 77.3, 115.8, 125.1, 125.4, 125.5,
126.0, 126.1, 126.4, 128.6, 129.5, 131.5, 131.5, 131.8, 132.0, 132.1, 132.6, 132.7, 133.4,
138.7,178.3.
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P11:
G3: 1 mg, CTA6: 24.7 mg, M1: 401 mg. Concentration (M1): 0.1 (M). DCM: 23 mL.

'H NMR (CDCls, 400 MHz) & ppm: 2.00 - 2.23, 2.28, 3.82, 4.61 - 4.68, 5.13, 5.17 - 5.27, 5.39 -
5.64,5.64 - 5.87,5.87 - 6.04, 6.13 - 6.41, 6.81 - 6.94. 13C NMR (CDCls, 101 MHz) & ppm: 24.7,
24.8,40.8,41.2,41.4,41.9,42.1,42.4,42.7,42.9,45.6, 45.6, 45.8, 46.0, 46.0, 46.2, 46.9, 47.9,
50.8, 51.0, 51.1, 51.1, 51.4, 51.8, 52.3, 52.6, 52.7, 53.0, 65.3, 76.7, 77.2, 77.3, 114.3, 114.5,
114.8,127.6, 130.3, 130.6, 131.6, 131.8, 132.1, 132.7, 133.4, 137.7, 178.3, 178.4.

P12:
G3: 2 mg, CTAS8: 8.5 mg, M1: 80.1 mg. Concentration (M1): 0.4 (M). DCM-d: 1.1 mL.

'H NMR (CDCl3, 400 MHz) 8 ppm: 1.99 - 2.22, 2.23 - 2.31, 3.85 - 3.99, 5.08 - 5.27, 5.38 - 5.65,
5.65 - 5.85, 5.85 - 6.06, 6.34, 6.50 - 6.79, 7.33 - 7.57, 7.90 - 8.09. *C NMR (CDCls, 101 MHz)
O ppm: 24.7, 24.8, 24.8, 40.8, 41.2, 41.4, 41.6, 41.8, 41.9, 42.1, 42.4, 42.7, 42.9, 43.1, 43.6,
45.5,45.6,45.8,45.9,46.0, 46.1, 46.2, 46.2, 46.8, 50.7, 51.0, 51.0, 51.1, 51.3, 51.3, 51.8, 52.0,
52.2,52.6,52.9,76.7,77.2,77.3,115.7,115.7,126.1, 126.3, 128.4, 128.5, 128.8, 129.0, 129.4,
129.5, 129.9, 130.0, 130.3, 131.2, 131.7, 131.8, 131.9, 132.0, 132.0, 132.1, 132.6, 132.9,
133.1, 133.4,138.7,138.7, 138.8, 166.8, 178.1, 178.3, 178.3, 178.4.

P13:
G3:2 mg, CTA9: 76.7 mg, M1: 1.2 g. Concentration (M1): 0.2 (M). DCM: 34 mL.

'H NMR (CDCls, 400 MHz) 8 ppm: 1.44 - 1.73, 4.14 - 4.31, 4.42 - 4.59, 5.11, 5.20, 5.35 - 5.62,
5.62-5.82,5.82 - 6.01, 6.45, 6.79 - 6.96. 1*C NMR (CDCls, 101 MHz) & ppm: 24.7, 24.8, 30.6,
40.8,41.1,41.4,41.6,41.9,42.0,42.4,42.7,42.8,43.1,43.6, 45.5, 45.6,45.7,45.7, 45.9, 46.0,
46.1,46.2, 46.8, 50.7, 50.9, 51.1, 51.3, 51.8, 51.9, 52.1, 52.6, 52.9, 53.2, 64.1, 65.6, 76.7, 77 .2,
77.3,114.4,114.5,114.8, 115.7,127.5, 130.2, 130.5, 131.6, 131.8, 131.8, 131.8, 132.0, 132.0,
132.1, 132.6, 132.9, 133.3, 133.4, 133.4, 133.8, 138.7,171.6, 178.1, 178.3, 178.4.

P14:
G3: 2 mg, CTA10: 12.7 mg, M1: 80.13 mg. Concentration (M1): 0.4 (M). DCM-d>: 1.1 mL.

'H NMR (CDCl3, 400 MHz) 8 ppm: 2.00 - 2.22, 2.24 - 2.31, 4.26 - 4.39, 5.08 - 5.32, 5.40 - 5.64,
5.64 - 5.86, 5.86 - 6.07, 6.40, 6.49 - 6.77, 7.29 - 7.54, 7.85 - 8.03. 3C NMR (CDCls, 101 MHz)
O ppm: 24.7, 24.8, 24.8, 33.3, 40.8, 41.2, 41.4,41.8, 42.1, 42.4, 42.7, 42.9, 45.6, 45.6, 45.7,
45.8,45.9,46.2,46.8,50.7,50.9,51.0,51.1, 51.1, 51.3, 51.8, 52.6, 53.0, 76.7,77.2,77 .3, 115.7,
126.3, 126.5, 127.2, 127.3, 127.3, 127.7, 127.8, 128.6, 128.9, 129.1, 129.1, 129.3, 131.6,
131.8,131.8,131.9, 132.0, 132.6, 133.2, 133.4, 178.3.
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P15:
G3: 1 mg, CTA2: 18.1 mg, M2: 319.4 mg. Concentration (M2): 0.1 (M). DCM: 34 mL.

'H NMR (CDCl3, 400 MHz) 8 ppm: 1.24 - 1.51, 2.34 - 2.60, 2.71 - 2.94, 3.76 - 3.88, 4.85 - 4.93,
5.14 - 5.44,5.69 - 5.89, 6.12 - 6.24, 6.35 - 6.55, 6.55 - 6.72, 6.82 - 6.91, 7.29 - 7.40. 13C NMR
(CDCls, 101 MHz) 6 ppm: 31.7, 31.8, 32.2, 32.4, 32.9, 33.1, 33.2, 38.4, 38.5, 38.7, 38.8, 39.1,
40.7,41.4,41.5,41.5,41.9,42.1,42.8,43.1,43.2,43.3,43.4,43.5,43.8,44.2,44.5, 55.3, 76.7,
77.0,77.2,77.3,112.2, 112.3, 112.3, 114.0, 127.3, 127.4, 127.5, 128.9, 130.5, 132.9, 133.0,
133.2,133.7,133.8, 133.8, 133.9, 134.0, 134.1, 143.3, 143.5.

P16:
G3: 2 mg, CTA5: 52.0 mg, M2: 534.0 mg. Concentration (M2): 0.2 (M). DCM: 29 mL.

'H NMR (CDCls, 400 MHz) 8 ppm: 0.87 - 1.15, 4.84 - 5.03, 5.13 - 5.43, 5.74 - 5.92, 6.35 - 6.49,
6.49 - 6.65, 6.78 - 7.04, 7.31 - 7.54, 7.93 - 8.08, 8.24 - 8.44. 1*C NMR (CDCl3, 101 MHz) & ppm:
32.2,32.4,32.9,33.1,33.1,38.4,38.7,41.4,42.1,42.7,42.8,43.1,43.4,76.7,77.2,77.3,125.1,
125.1, 125.2, 125.3, 126.1, 128.6, 128.7, 131.5, 132.9, 133.0, 133.1, 133.7, 133.8, 133.8,
133.9, 134.0, 134.1.

P17:
G3: 2 mg, CTA7: 92.6 mg, M2: 534.0 mg. Concentration (M2): 0.2 (M). DCM: 28 mL.

'H NMR (CDClz, 400 MHz) 8 ppm: 0.89 - 1.16, 1.54, 1.69 - 1.99, 2.31 - 2.57, 2.69 - 2.92, 4.25 -
4.38,4.56-4.71,4.83-4.92,4.92 -5.07,5.14 - 5.44,5.71 - 5.90, 6.53 - 6.74, 6.84 - 7.02, 7.36
-7.47,7.89 - 8.06. 13C NMR (CDCl3, 101 MHz) & ppm: 28.3, 32.2, 32.4, 32.9, 33.1, 33.1, 38.4,
38.7,41.4,42.1,42.8,43.1,43.4,50.9,63.1,76.7,77.2,77.3,114.9, 117.3, 131.1, 132.9, 133.0,
133.1, 133.8, 133.8, 133.9, 134.0.

P18:
G3: 2 mg, CTA9: 77.0 mg, M2: 534.0 mg. Concentration (M2): 0.2 (M). DCM: 29 mL.

'H NMR (CDCls, 400 MHz) 8 ppm: 0.94 - 1.16, 1.94 - 1.96, 4.13 - 4.33, 4.46 - 4.60, 4.86 - 5.03,
5.13-5.42,5.71-5.89, 6.34 - 6.52, 6.79 - 7.03. 13C NMR (CDCl3, 101 MHz) 3 ppm: 30.7, 31.6,
31.8,32.2,32.4,32.9,33.1, 38.2,38.4,38.6,40.7,41.3,41.4,42.1,42.7,42.8,42.9,43.1, 43 4,
44.2, 445, 55.5, 64.2, 65.6, 76.7, 77.2, 77.3, 112.2, 112.3, 114.4, 114.5, 114.9, 127.3, 130.1,
130.4, 132.8,133.0, 133.1, 133.5, 133.7, 133.8, 133.9, 134.0, 134.1, 143.3,171.7.

P19:

G3: 2 mg, CTA10: 108.0 mg, M2: 724.0 mg. Concentration (M2): 0.2 (M). DCM: 40 mL.
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Molecular weight determination by *H NMR spectroscopy:

IN]
©

s m
=
[
T

S
L
!
N
[

=
)

2p0 3.0p 495
= i
2100 2.9 496
L
f g9 e
2.00 295 298
— =
B B e e e e T e B T e e e A e B e e e e L I e e e e e e L
7.0 6.5 8.0 5.5 5.0 4.5 4.0

Chemical Shift (ppm)

Fig. S5: Number average molecular weight (M,) determination by end group analysis using H
NMR (400 MHz) spectroscopy (olefinic region only, in CDCls). P2: red spectrum, P5: blue
spectrum, P3: magenta spectrum, P4: green spectrum.
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'H NMR kinetics experiment:

(o}

/ N\
(M1)
o
. Br
(1000 equiv.)
X AN o 7 n
G3 + Br -
P
N

. Br
(1 equiv.) (60 equiv.) |

(50 equiv.)

In an NMR tube, 1,3,5 trimethoxy benzene (as an internal standard), M1 (1000 equiv., 1.13
mmol, 200 mg), 3 bromopyridine (60 equiv., 0.067 mmol, 11 mg) and CTA3 (50 equiv., 0.056
mmol, 11.8 mg) were mixed in 0.9 mL CDCl; and *H NMR were measured. Then, G3 (1
equiv., 0.0011 mmol, 1 mg) dissolved in 0.2 mL was added quickly, and *H NMR was
measured overtime. Consumption of both M1 and CTA3 were observed overtime suggesting
a kinetically controlled mechanism.
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Fig. S6: 'H NMR (CDCls, 300 MHz) of reaction of CTA3 (50 equiv.), 3 bromopyridine (60 equiv.)
and M1 (1000 equiv.) with G3 (1 equiv.) in CDCl3 (CDCls).
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(M2) lb
(1000 equiv.) Br
O ’ "
(1 equiv.) (50 equiv.) O/(eo equiv.)

In an NMR tube, 1,3,5 trimethoxy benzene (as an internal standard), G3 (1 equiv., 0.0011
mmol, 1 mg), 3 bromopyridine (60 equiv., 0.067 mmol, 11 mg) and CTA3 (50 equiv., 0.056
mmol, 11.8 mg) were mixed in 0.9 mL CDCl; and *H NMR were measured. Then, M2 (1000
equiv., 1.13 mmol, 106 mg) dissolved in 0.2 mL was added quickly, and *H NMR was
measured overtime. Consumption of both M2 and CTA3 were observed overtime suggesting
a kinetically controlled mechanism. As the rate of propagation of M2 is very high, almost full
consumption of M2 was observed while CTA3 conversion was almost 90%.
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Fig. S7: *H NMR (CDCls, 300 MHz) of reaction of CTA3 (50 equiv.), 3 bromopyridine (60 equiv.)
and M2 (1000 equiv.) with G3 (1 equiv.) in CDCl3 (CDCls).
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1H NMR Reactions:
The reaction of CTA11 with G3:

7N o
0. Lo}
0 WW\)J\O/\/
[N <] ~F

o\

DCM-d2

Ru” ™7 o AN
G3(1 equiv.)  G3(1.1 equiv.) /\/\Q\o/\/o\n/\/V\/\)J\o/\/o . b
: o o Q\NRH
0\

DCM-d2

2 equiv.

In an NMR tube, 1,3,5-trimethoxybenzene and CTA11 (1 equiv., 0.00165 mmol, 1 mg) was
mixed in 0.5mL DCM-d,, and *H NMR was measured. A G3 stock solution of 5.83 mg (4 equiv.,
0.0066 mmol) in 0.4 mL DCM-d, was prepared. To the NMR tube, 0.1 mL of G3 Stock solution
(1 equiv.) was added, and *H NMR was measured immediately. Quickly, another 0.11 mL (1.1
equiv.) of G3 stock solution was added, and *H NMR was measured immediately. The terminal
double bond proton of CTA11 (marked as ‘@’ in the above top spectrum) consumed 48.2%
(theoretically 50%) after 1 equiv. of G3 was added, and simultaneously the same amount of
styrene was generated, which should be a byproduct upon the reaction of G3 with CTA11. An
equivalent amount of conjugated carbene was also observed (bottom spectra in blue). Adding

)

10mins (2nd 'H NMR measurement) after 2.1 equiv.
of G3 was added

30J02 5.58 15.12 20[7p
a5 S — L
5mins (1st '"H NMR measurement) after 1 equiv.
of G3 was added
/L / styrene :] M
2909 3.38 3.42 15.29 9.p8
al} S [ P  S— uu
aé\A@\ o ) o
- 0 h/\/\/\/\/uo/\/ _a b
b ?W
“b -
A B A S L
30.00 7.10 14.42 14.45 21.59
L [ — —
T —TT T T L L e e e e e e B e e e e L e e m s e ey e e
6.0 5.5 5.0 4.5 40
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10mins (2nd 'H NMR measurement) after 2.1 equiv. of G3 was
added

5mins (1st "TH NMR measurement) after 1 equiv. of G3 was added

J

4.10
|

19.4 19.3 19.2 19.1 19.0 18.9 18.8 18.7 18.6 18.5 18.4 18.3 18.2 18.1 18.0
Chemical Shift (ppm)

Fig. S8: 'H NMR (CDCl,, 400 MHz) of reaction of CTA11 (1 equiv.) with G3 (2.1 equiv.).

1.1 equiv. more G3 catalyst gives complete consumption of CTA terminal double bond and
integration of both styrene and conjugated carbene increased, which clearly proved
attachment of two Ru complex to both chains ends of CTA11. A clear shift of methoxy proton
(b) of CTA11 was also observed over time.

'H NMR Reaction using CTA13:

—_—

DCM-d,
\©\%¢L/

In an NMR tube, 1,3,5-trimethoxybenzene and CTA13 (1 equiv., 0.00275 mmol, 2mg) were
mixed in 0.6 mL DCM-d, and *H NMR was measured. Then, G3 (3 equiv., 0.00825 mmol, 7.3
mg) was dissolved in 0.2 mL DCM-d; and added to the NMR tube, and again NMR was
measured. Three equivalents of Ru complexes fully functionalized CTA to give a trifunctional
initiator, and at the same time, styrene was generated in the process (See 'H NMR spectra
below).

o o
o_~o o0
\w\/©/ O\M/ G3
0”0 0
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Fig. S9: 'H NMR (CD,Cl,, 300 MHz) of polymerization of M1 using CTA13.
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'H NMR polymerization reaction monitoring using CTA14:

A control *H NMR tube polymerization reaction was performed where first G3 (1 equiv.) and
CTA14 (20 equiv.) were dissolved in dichloromethane-d;, and a *H NMR spectrum was
recorded (Figure S10, bottom, blue spectrum). Signals of the CTA14 protons were visible at
5.25 ppm (marked as "a") and 6.75-7.00 ppm (marked as "b"). A monomer (M1, 300 equiv.)
solution in dichloromethane-d> was prepared beforehand and quickly added to the NMR
tube. Immediate 'H NMR measurement revealed complete consumption of the monomer (no
peak at 6.25 ppm) as well as CTA14 (disappearance of "a" protons and shift of "b" protons
detected, also CTA14 peaks at 7.3 ppm and 8 ppm broadened significantly). At the same time,
the polymer chain end protons (marked as "c" protons) and backbone protons (marked as "d"
protons) were also visible. SEC measurement further verified the catalytic nature of the
polymerization as the molecular weight obtained (P22, My, sec (cHciz) =4.5 kDa) was very close
to that specified by the M1/CTA14 (M, m1/cta1a =3.4 kDa).

()& M1 (300 Lqm\ )
DCM dy
(I equiv.)

Ll | ama[ﬁ_ i

.0 6.5 6.0 55 5.0 45
Chemical shift (ppm)

Fig. $10: *H NMR (CD2Clz, 300 MHz) of polymerization of M1 using CTA14.
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Table S2: Catalytically Synthesis of branched polymers-

Entry | CTA | Monomer | G3:CTA: M, (Non- | M, Y/ Y/ b Polymer
(M) Monomer | catalytic, | (Catalytic, | (*H (SEC, Yield®
ratio M/G3) M/CTA) NMR) | CHCIs) (%)
(kDa) kDa kDa kDa
P20 CTA12 | M1 1:50:1000 177 4.0 5.0 6.8 1.52 | 85
P21 CTA13 | M1 1:100:2000 354 4.3 4.0 4.6 1.72 | 82
P22 CTA14 | M1 1:20:300 53.5 34 3.2 4.5 1.47 | 85
P23 CTA14 | M1 1:20:8000 1416 71 -2 70 1.72 | 88
P24 CTA12 | M2 1:100:4000 376.5 4.3 4.8 7.7 20 |85
P25 CTA14 | M3 1:64:1300 365.4 6.4 6.2 6.5 1.45 | 78

a= due to very high molecular weight of the polymer end group analysis could not be performed.

b= polymer yield is determined as follows-

Yield (%) = [amount of polymer obtained (in mg) / (amount of monomer used (in mg) + amount of CTA

used (in mg))]*100

P20:

G3: 2 mg, CTA12: 62.0 mg, M1: 401.0 mg. Concentration (M1): 0.1 (M). DCM: 23 mL.
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'H NMR (CDCl3, 400 MHz) 8 ppm: 1.23 - 1.35,2.31-2.37,4.12 - 4.24,4.38 - 4.47,5.04 - 5.32,
5.45-5.61, 6.82 - 6.95.

P22:
G3: 2 mg, CTA14: 34.4 mg, M1: 122.0 mg. Concentration (M1): 0.5 (M). DCM-d»: 1.3 mL.

'H NMR (CDCls, 400 MHz) 8 ppm : 2.00 - 2.23,2.24 - 2.32,4.59 - 4.82,5.06 - 5.31, 5.43 - 5.67,
5.85-6.08, 6.23 - 6.47, 6.47 - 6.59, 6.59 - 6.89, 7.32 - 7.48, 7.90 - 8.06. 1*C NMR (CDCl3, 101
MHz) 6 ppm: 24.7, 24.8, 40.8, 41.4, 41.5, 41.8, 42.0, 43.1, 45.6, 46.8, 50.7, 50.7, 50.8, 51.0,
51.0,51.1,51.1,52.6,76.7,77.2,77.3,115.8, 129.0, 129.2, 129.6, 129.7, 130.0, 130.2, 131.6,
131.7,131.8,132.1, 132.7, 133.4, 138.7, 165.8, 178.3.

P23:

G3: 0.5 mg, CTA14: 8.6 mg, M1: 801.0 mg. Concentration (M1): 1 (M). DCM: 4.5 mL.

P24:
G3: 1.5 mg, CTA12: 93 mg, M2: 639.0 mg. Concentration (M2): 0.2 (M). DCM: 34 mL.

'H NMR (CDCl3, 400 MHz) 8 ppm: 1.59 - 1.68, 2.29 - 2.38, 4.13 - 4.25, 4.36 - 4.49, 4.83 - 5.07,
5.13-5.42,5.72 - 5.89, 6.04 - 6.30, 6.30 - 6.52, 6.52 - 6.71, 6.81 - 6.95. 1*C NMR (CDCl3, 101
MHz) 6 ppm: 24.8, 29.0, 29.0, 31.6, 31.8, 32.2, 32.4, 32.7, 32.9, 33.1, 33.1, 34.1, 38.4, 38.7,
40.7,41.3,41.4,42.1,42.7,42.8,43.1,43.2,43.3,43.4,44.2,44.5, 62.6, 66.0, 66.0, 76.7, 77 .2,
77.3,112.2,112.3,112.3, 114.3,114.4, 114.7, 115.1, 127.3, 127.5, 130.1, 130.3, 130.3, 130.4,
132.8,132.9,133.0,133.1,133.2,133.7,133.7,133.8, 133.9, 134.0, 134.1, 143.3, 143.5, 173.7.

P25:
G3: 1 mg, CTA14: 55 mg, M3: 413.0 mg. Concentration (M3): 0.1 (M). DCM: 14.7 mL.

'H NMR (CDCls, 400 MHz) & ppm: 3.43 - 3.73 (m, 42 H), 4.59 - 4.81 (m, 8 H), 4.82 - 5.08 (m, 6
H), 5.17 - 5.47 (m, 37 H), 7.31 - 7.54 (m, 9 H), 7.91 - 8.08 (m, 9 H). 3C NMR (CDCls, 101 MHz)
d ppm: 11.7, 12.0, 12.1, 12.3, 17.9, 18.1, 28.6, 35.6, 36.5, 40.9, 41.1, 41.5, 41.8, 42.0, 42.2,
42.4,43.1,43.7,44.8,45.0,45.1,47.1,47.6,48.3,49.3, 63.6,65.0,66.8, 76.7,77.2,77.3,121.2,
126.2, 126.3, 127.4, 127.7, 128.9, 129.0, 129.1, 129.1, 129.6, 129.6, 130.0, 130.1, 132.7,
133.4,134.7,136.9, 142.5, 165.8, 165.9.
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End Capping Experiments:

CTA6
o
MeO,C~ O Ph

DCM D2 )

Ph

G3 (1 equiv., 0.0057 mmol, 5 mg) was dissolved in 0.5 mL dichloromethane-d, (CD,Cl>) in an
NMR tube and to it exo-MNI (M1) (20 equiv., 0.12 mmol, 20 mg) in 0.2 mL CD,Cl, was quickly
added. *H NMR was measured. Then, CTA6 (2 equiv., 0.012 mmol, 2.5 mg) dissolved in 0.2 mL
CD2Cl; was added, and 'H NMR was measured immediately. Thereafter, the CD,Cl, mixture
was concentrated under reduced pressure at room temperature, and the formed polymer
was precipitated in methanol. The polymer (P26) was obtained as a grey solid in quantitative
yield.

6mins after CTA was added LL

Fully initiated G3 Carbene A

I e e e e e I e L e e e e e e e e e LA A e e e s e e e e LA B s e e e e e e
20.0 19.5 19.0 18.5 18.0 17.5 17.0

Chemical Shift {ppm)

Fig. S11: *H NMR spectrum (CD>Cl, 400 MHz) of end-capping reaction with CTA6.

51



2870.27
3047.32
3224.36
3401.39
3578.41

2693.2

3755.43

3932.41

4109.41

4287.39

4464.37

4641.33

4818.28

2500 3000 3500

Ph

1,

N o Ag

Chemical Formula: Cj9gHp17N19033Ag"
Mono-isotopic Mass: 3575.47

(o)

m

4000

S

z

3578.41

.

%3575.42

4

g

.

4500

3574 3576 3578 3580 3582 3584

m/z

Fig. S12: MALDI-ToF mass spectrum (DCTB, AgTFA) of P26.
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CTA15

G3 MNI n n o X ~Ru
DCM D2 (o] 0 +
N o DCM D2 N
/ / o

G3 (1 equiv., 0.0045 mmol, 4 mg) was dissolved in 0.5 mL dichloromethane-d, (CD,Cl>) in an
NMR tube and to it M1 (20 equiv., 0.09 mmol, 16 mg) in 0.2 mL CD,Cl, was quickly added. H
NMR was measured. Then, CTA15 (10 equiv., 0.045 mmol, 7.9 mg) dissolved in 0.3 mL CD,Cl,
was added, and *H NMR was measured over time. After 40 mins, the CD,Cl, mixture was
concentrated under reduced pressure at room temperature, and the formed polymer was
precipitated in methanol. The polymer (P27) was obtained as a grey solid in quantitative yield.

35ming
A

22mins

A 10mins - L\ L

A Fully initiated G3 Carbene J/\(\w ﬂ A

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)
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Fig. S13: 'H NMR spectrum (CD,Cl,, 400 MHz) of end-capping reaction with CTA15. Full-
spectrum is shown in the first image. The second and third spectra show zoomed regions
corresponding to a proton (alkylidene region) and B proton to the Ru complex of G3,
respectively.
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Fig. S14: MALDI-ToF mass spectrum (DCTB, AgTFA) of P27.
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CTA17
\
CONHM
G3 —>MNI n n ° X “Ru
DCM D2 o o +
N DCM D2
(o] N
/ / o

G3 (1 equiv., 0.0045 mmol, 4 mg) was dissolved in 0.7 mL dichloromethane-d, (CD,Cl>) in an
NMR tube and to it (M1) (20 equiv., 0.09 mmol, 16 mg) in 0.2 mL CD,Cl, was quickly added.
'H NMR was measured. Then, CTA17 (10 equiv., 0.045 mmol, 8.5 mg) dissolved in 0.2 mL
CD,Cl; was added, and *H NMR was measured over time. After 40 mins, the CD,Cl, mixture
was concentrated under reduced pressure at room temperature, and the formed polymer
was precipitated in methanol. The polymer (P28) was obtained as a grey solid in quantitative
yield.

30mins 1
J
10mins J I

Fully initiated G3 carbene A

B e N HNL A m s e e e S S e e e e B S IS S m m e — T — T —
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Chemical Shift (ppm)

Fig. S15: 'H NMR spectrum (CD,Cl,, 400 MHz) of end-capping reaction with CTA17.
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Fig. S16: MALDI-ToF mass spectrum (DCTB, AgTFA) of P28.

CTA19

o x__CHO
A /©/W Ph CHO
, VNI | Br g N
DCM D2 o +
N DCM D2 Br

o
N
/ (o]

G3 (1 equiv., 0.0045 mmol, 4 mg) was dissolved in 0.5 mL dichloromethane-d, (CD,Cl>) in an
NMR tube and to it (M1) (20 equiv., 0.09 mmol, 16 mg) in 0.2 mL CD,Cl, was quickly added.
'H NMR was measured. Then, CTA19 (10 equiv., 0.045 mmol, 10.7 mg) dissolved in 0.3 mL
CD,Cl; was added, and *H NMR was measured over time. After 50 mins, the CD,Cl, mixture
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was concentrated under reduced pressure at room temperature, and the formed polymer
was precipitated in methanol. The polymer (P29) was obtained as a grey solid in quantitative

yield.
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Fig. S17: *H NMR spectrum (CD,Cl,, 400 MHz) of end-capping reaction with CTA19.
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Fig. S18: MALDI-ToF mass spectrum (DCTB, AgTFA) of P29. The smaller distribution did not
match with any possible non-regioselective metathesis.

CTA21

DCM D2
DCM D2

G3 (1 equiv., 0.0045 mmol, 4 mg) was dissolved in 0.5 mL dichloromethane-d, (CD,Cl>) in an
NMR tube and to it (M1) (20 equiv., 0.09 mmol, 16 mg) in 0.2 mL CD,Cl, was quickly added.
'H NMR was measured. Then, CTA21 (20 equiv., 0.045 mmol, 23.0 mg) dissolved in 0.3 mL
CD2Cl; was added, and *H NMR was measured over time. After 50 mins, a few drops of ethyl
vinyl ether was added, the CD,Cl> mixture was concentrated under reduced pressure at room
temperature, and the formed polymer was precipitated in methanol. The polymer (P30) was
obtained as a grey solid in quantitative yield.

59



60mins after CTA7 added

30mins after CTA7 added JL
s i

10mins after CTA7 added

Fully initiated G3 Carbene ~’/’\

B e e e e e B e o e e e e e e LA B B e e e S LA B S B e e e e pe e B e e e e e
19.5 19.0 18.5 18.0 17.5 17.0
Chemical Shift (ppm)

Fig. $19: *H NMR spectrum (CD,Cl,, 400 MHz) of end-capping reaction with CTA21.

Although *H NMR showed strictly regioselective chain transfer with CTA21, MALDI-ToF mass
spectrum showed a minor distribution indicating another chain transfer. See following-
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Fig. S20: MALDI-ToF mass spectrum (DCTB, AgTFA) of P30.

CTA24

X Ph
Ph Ru o f/* NNy
MNI o n
G3Z — > n o * o
DCM D2 o |
DCM D2 N" o
F o /

G3 (1 equiv., 0.0045 mmol, 4 mg) was dissolved in 0.5 mL dichloromethane-d, (CD,Cl>) in an
NMR tube and to it (M1) (20 equiv., 0.09 mmol, 16 mg) in 0.2 mL CD,Cl, was quickly added.
'H NMR was measured. Then, CTA24 (5 equiv., 0.022 mmol, 4.0 mg) dissolved in 0.2 mL CD2Cl>
was added, and *H NMR was measured over time. After 20 mins, the CD,Cl, mixture was
concentrated under reduced pressure at room temperature, and the formed polymer was
precipitated in methanol. The polymer (P31) was obtained as a grey solid in quantitative yield.

MALDI-ToF analyses (see below) of the precipitated polymer showed the main mass
distribution bearing a phenyl group (G3) on one chain end and a methyl group (CTA24) on the
other along with another smaller distribution suggesting a non-regioselective cross-
metathesis between the propagating Ru carbene and the CTAs. We believe that the smaller
distribution would have corresponded to the formation of a ruthenium alkylidene complex
which was formed at concentrations too low to be observed by *H NMR spectroscopy.
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Fig. S21: *H NMR spectrum (CD,Cl,, 400 MHz) of end-capping reaction with CTA24.
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3415.37

Ph

i

N 0 Ag

Chemical Formula: CqggH0gN13036Ag*

o

Mono-isotopic Mass: 3412.40
Chemical Formula: C4g7H203N17035Ag* 5
Mono-isotopic Mass: 3353.37 ™ o
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™ ™
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Fig. S22: MALDI-ToF mass spectrum (DCTB, AgTFA) of P31.

CTA25

AP N Ph
Ph Ru m % A “Ru
~
3 MNI g o no, o
DCM D2 o o |
DCM D2 N"So
Mo /

G3 (1 equiv., 0.0045 mmol, 4 mg) was dissolved in 0.5 mL dichloromethane-d, (CD,Cl>) in an
NMR tube and to it (M1) (20 equiv., 0.09 mmol, 16 mg) in 0.2 mL CD,Cl, was quickly added.
H NMR was measured. Then, CTA25 (5 equiv., 0.022 mmol, 4.25 mg) dissolved in 0.2 mL
CD,Cl; was added, and *H NMR was measured over time. After 20 mins, the CD,Cl, mixture
was concentrated under reduced pressure at room temperature, and the formed polymer
was precipitated in methanol. The polymer (P32) was obtained as a grey solid in quantitative
yield.

MALDI-ToF analyses (see below) of the precipitated polymer showed the main mass
distribution bearing a phenyl group (G3) on one chain end and an ethyl group (CTA25) on
the other along with another smaller distribution suggesting a non-regioselective cross-
metathesis between the propagating Ru carbene and the CTAs. We believe that the smaller
distribution would have corresponded to the formation of a ruthenium alkylidene complex
which was formed at concentrations too low to be observed by *H NMR spectroscopy.
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Fig. $23: 'H NMR spectrum (CD,Cl,, 300 MHz) of end-capping reaction with CTA25.
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Fig. S24: MALDI-ToF mass spectrum (DCTB, AgTFA) of P32.
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1H NMR reactions:
The reaction of CTA15-23 with G3:

JL L A

19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 3
Chemical Shift (ppm)
After 50min, 100% conversion J
A
After 20min, 84% conversion LJ
) ) I
After 10min, 40% conversion J
— T T T T T T T T T T T T T T T T [ T T T T T T —T
19.5 19.0 18.5 18.0

Chemical Shift (ppm)

Fig. S25: 'H NMR (CD2Cl,, 400 MHz) of reaction of CTA15 (5 equiv.) with G3 (1 equiv.).
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After 180min, 100% conversion

MWWWWWWM*WWWMMWW

After 60min, 80% conversion

A, A M A et

After 10min, 30% conversion

. -, \ A "

G3

L

T — — T — 7T ——
19.5 19.0 18.5 18.0
Chemical Shift (ppm)

Fig. $26: 'H NMR (400 MHz) of reaction of CTA16 (10 equiv.) with G3 (1 equiv.) in THF-ds.

After 8mins, 100% conversion

19.5 19.0 18.5 18.0
Chemical Shift (ppm)

Fig. $27: *H NMR (CD.Cl, 400 MHz) of reaction of CTA17 (10 equiv.) with G3 (1 equiv.).
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A A
u‘/HPhAJLJkJL
L

6.4 6.3 6.2 6.1 6.0 5.9 58 5.7 5.6 55 5.4 53 52
Chemical Shift (ppm)

After 200min, Conversion-98%

M
After 140min, Conversion-97%
J
After 75min, Conversion-94%
After 55min, Conversion-92% M
After 25min, Conversion-75%
L I .
After 15min, Conversion-67%
A S —

After 5min, Conversion-45% L

G3 J\

19.5 19.0 18.5 18.0 17.5
Chemical Shift (ppm)

Fig. S28: 'H NMR (CD>Cl,, 400 MHz) of reaction of CTA17 (1 equiv.) with G3 (1 equiv.). The
regioselective cross-metathesis reaction produced a cinnamyl amide derivative as a side
product upon reaction with G3, which could also be observed via *H NMR spectroscopy (signal
at 6.42 ppm).
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After 30min, 100% conversion " ‘\
G3 ‘k

19.5 19.0 18.5 18.0
Chemical Shift (ppm)

Fig. $29: 'H NMR (CD-Cl,, 400 MHz) of reaction of CTA19 (5 equiv.) with G3 (1 equiv.).

)

T ——— — T ——— — ——
19.5 19.0 18.5 18.0
Chemical Shift (ppm)

Fig. $30: *H NMR (CD,Cl,, 400 MHz) of reaction of CTA20 (5 equiv.) with G3 (1 equiv.).
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After 30min, 100% conversion

AL
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18.5 18.0
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. 19.5 19.0
Chemical Shift (ppm)

Fig. S31: 'H NMR (CD.Cl, 400 MHz) of reaction of CTA21 (20 equiv.) with G3 (1 equiv.).
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Fig. $32: 'H NMR (CD,Cl,, 400 MHz) of reaction of CTA22 (5 equiv.) with G3 (1 equiv.).
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Fig. $33: 'H NMR (CD,Cl,, 400 MHz) of reaction of CTA23 (2 equiv.) with G3 (1 equiv.) in over
180 mins.

The reaction of CTAS with G3:

X

Ru

X
X
c ) o
Cco0 - U

Inan NMR tube, G3 (1 equiv., 0.0034mmol, 3 mg) and 1,3,5 trimethoxybenzene (as an internal
standard) were dissolved in 0.5mL dichloromethane-d, (DCM-d,), and *H NMR was measured.
CTA5 (2 equiv., 0.0068mmol, 1.56 mg) in 0.2mL DCM-d2 was added, and *H NMR was
measured immediately.
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6.1 6.0 5.9 5.8 5.7 56 5.5 5.4 5.3 5.2
Chemical Shift (ppm)

1.20

19.10 19.05 19.00 18.95 18.90 18.85 18.80 18.75 18.70 18.65 18.60 18.55 18.50
Chemical Shift (ppm)

Fig. S34: 'H NMR (CDClz, 400 MHz) of reaction of CTA5 (2 equiv.) with G3 (1 equiv.). The green
line in the top spectrum shows only CTAS5, and the blue spectrum is after adding G3 to it. The
formation of styrene was clearly observed.
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Mechanism of One-pot Heterotelechelic Polymer Synthesis:

The mechanism is as follows-

First, commercially available Grubbs 3 generation catalyst (G3) was pre-functionalized using
an excess of CTAs. Due to the aforementioned regioselective attack of G3 towards a given
carbon-carbon double bond, the first reaction produced selectively only one type of
ruthenium carbene complex. Upon introduction of a monomer, this conjugated ruthenium
complex reacted immediately with monomers to produce a ruthenium alkylidene complex.
As the rate of monomer propagation is way larger than the chain transfer with a CTA, the
polymerization happened almost without any secondary metathesis. When all the monomer
is consumed, propagating alkylidene species reacted with excess CTA present in situ in a
similar regioselective manner to produce a heterotelechelic polymer.

(excess)

In situ end capping = R,
with excess CTA alredy /\ VY 7

5 R W%
present in the system 1

Fig. S35: Mechanism of one-pot heterotelechleic polymer synthesis.
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Polymerization in an NMR tube using CTA17:

\
©A\/\/CONHMe o NH
=
MNI \/\‘{’ S

G3 n
DCM D2 DCM D2 o

G3 (1 equiv., 0.0045 mmol, 4 mg) was dissolved in 0.5 mL dichloromethane-d, (CD,Cl>) in an
NMR tube and to it CTA17 (5 equiv., 0.023 mmol, 4.3 mg) in 0.2 mL CD,Cl, was quickly added.
'H NMR was measured over time. After 20 mins, M1 (20 equiv., 0.09 mmol, 16 mg) dissolved
in 0.2 mL CD,Cl, was added, and *H NMR was measured over time. After 80 mins, the CD,Cl,
mixture was concentrated under reduced pressure at room temperature, and the formed
polymer was precipitated in methanol. The heterotelechelic polymer (P37) was obtained as a
grey solid in quantitative yield.

40mins

1.17
—
10mins
[ Y i Aoy A -~ """‘m"“w FRFTTSA AN AN A i P vy =
0.70 0.49
L | |
20mins j t
1.40
_
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—

(=)
N
[=e]
-
N
S

Only G3

[z =T

19.4 19.3 19.2 19.1 19.0 18.9 18.8 18.7 18.6 18.5 18.4 18.3 18.2 18.1 18.0
Chemical Shift (ppm)

Fig. $36: 'H NMR (CDyCly, 400 MHz) of polymerization reaction of M1 using CTA17. Pre-
functionalization of G3 was achieved fully within 20 mins using only 5 equiv. of CTA17
(spectrum in purple). The addition of monomer (M1) immediately formed polymer followed
by chain transfer with in situ present excess CTA17 (Red spectrum followed by black).
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General Procedure to synthesize one-pot heterotelechelic polymers:

A NMR tube was degassed and backfilled with argon. To the NMR tube, dichloromethane-d,
solution of G3 and CTA was added sequentially. The ratio of CTA and G3 required to convert
G3 to the new functional catalyst entirely depends on the CTA structure (as shown above).
Complete pre-functionalization of G3 was confirmed via 'H NMR spectroscopy. Then, the
prerequisite amount of monomer (M1 or M3) was dissolved in CD,Cl, and added quickly to
the same NMR tube. Complete monomer consumption was observed within 10 to 15 mins via
1H NMR spectroscopy. When all the propagating G3-alkylidene was converted to a conjugated
carbene (sharp doublet), a few drops of ethyl vinyl ether were added to deactivate the G3.
The resulting solution was concentrated under reduced pressure and precipitated using cold
methanol to obtain the heterotelechelic polymer as a grey solid. Since the catalyst loading
was stoichiometric, polymers obtained via this method were always colored.

Depending upon the reactivity of the CTA, different ratios of G3 to CTA were employed to
synthesize the next heterotelechelic polymers as shown in the Table S3 below. All polymers
showed isotopically resolved MALDI-ToF mass spectra matching the two expected end-
groups.

To confirm the non-regioselective metathesis associated with a sterically congested CTA,
CTA20 was utilized to synthesize a polymer (CTA20, P43, My, sec (cHciz)=6.3 kDa, b =1.22)
showing two mass distributions in MALDI-ToF mass spectrometry as predicted (Fig. $188). A
slightly broader dispersity (1.19-1.37) was observed in all the above cases, which could be
attributed to the known slower initiation rate of conjugated ruthenium complexes. CTA21
showed a non-regioselective reaction with G3; therefore, it was not used for synthesizing
heterotelechelic polymer. Similarly, the reaction of CTA16 and CTA22 with G3 turned out to
be extremely sluggish, and a large equivalent of both was required to pre-functionalize G3.
Hence, they were also not used here.

Although heterotelechelic ROMP polymers can be obtained via this one-shot route, but the
slow chain transfer of these CTAs during propagation stage of the polymerization strongly
suggested they are not suitable for producing ROMP polymers catalytically.
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Table $3: One Pot Heterotelechelic Polymer Synthesis-

Entry CTA Monomer G3: CTA:M M (Max, Y/ b
(M) M/G3) (SEC,
(kDa) CHCls)
kDa

P33 CTA15 M1 1:70:70 124 11 1.19
P34 CTA15 M1 1:70:35 6.2 5.3 1.37
P35 CTA15 M3 1:20:60 10.6 55 1.17
P36 CTA15 M1 1:40:200 36 30 2.0
P37 CTA17 M1 1:5:20 3.7 5.5 1.23
P38 CTA18 M1 1:70:35 6.2 7.8 1.26
P39 CTA19 M1 1:5:35 6.2 8.2 1.24
P40 CTA19 M1 1:25:50 9 10 1.21
P41 CTA19 M1 1:70:70 12.4 13 1.20
P42 CTA19 M1 1:70:35 6.2 6.8 1.21
P43 CTA20 M1 1:70:20 3.5 6.3 1.22
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P33:

'H NMR (CDCls, 400 MHz) d ppm: 0.04 - 0.10, 1.12 - 1.40, 1.55 - 1.83, 2.00 - 2.22,2.24 - 2.31,
2.57,2.67 - 2.88,2.89 - 3.15, 3.19 - 3.40, 5.44 - 5.65, 5.65 - 5.84, 6.21 - 6.41, 7.26 - 7.36. 13C
NMR (CDCl3, 101 MHz) ¢ 15.2, 24.7, 24.8, 24.9, 40.8, 41.2, 41.4, 41.9, 42.4, 45.6, 45.6, 46.0,
46.2, 51.0, 51.1, 51.8, 52.7, 53.0, 65.8, 76.7, 77.2, 77.3, 126.3, 128.6, 131.8, 132.1, 132.1,
132.7,133.5,178.3.

P37:
G3: 4 mg, CTA17: 4.23 mg, M1: 16.0 mg. Concentration (M1): 0.1 (M). DCM-d>: 0.9 mL.

'H NMR (CDCl3, 400 MHz) 8 ppm: 1.36 - 1.74, 1.99 - 2.34, 2.67, 2.67 - 3.13, 3.17 - 3.23,3.39 -
3.49,5.35-5.65, 5.65-5.86, 5.86 - 6.03, 6.38, 6.47 - 6.64, 6.72 - 6.96, 7.19 - 7.25, 7.31 - 7.48.
13C NMR (CDCl5, 101 MHz) 8 15.2, 24.7, 24.8, 24.9, 40.8, 41.2, 41.4, 41.9, 42.4, 45.6, 45.6,
46.0,46.2,51.0,51.1,51.8,52.7,53.0,65.8,76.7,77.2,77.3,126.3,128.6, 131.8, 132.1, 132.1,
132.7,133.5,178.3.

P38:
G3: 2 mg, CTA17: 23.5 mg, M1: 14.0 mg. Concentration (M1): 0.1 (M). DCM-d>: 0.8 mL.

'H NMR (CDCl3, 400 MHz) d ppm: 0.04 - 0.10, 1.12 - 1.40, 1.55 - 1.83, 2.00 - 2.22, 2.24 - 2.31,
2.57,2.67 - 2.88, 2.89 - 3.15, 3.19 - 3.40, 5.44 - 5.65, 5.65 - 5.84, 6.21 - 6.41, 7.26 - 7.36. 13C
NMR (CDCl3, 101 MHz) ¢ 15.2, 24.7, 24.8, 24.9, 40.8, 41.2, 41.4, 41.9, 42.4, 45.6, 45.6, 46.0,
46.2, 51.0, 51.1, 51.8, 52.7, 53.0, 65.8, 76.7, 77.2, 77.3, 126.3, 128.6, 131.8, 132.1, 132.1,
132.7,133.5,178.3.

P40:
G3: 2 mg, CTA19: 13.4 mg, M1: 20.0 mg. Concentration (M1): 0.1 (M). DCM-d>: 1.13 mL.

'H NMR (300 MHz, CDCls) 8 ppm: 0.05 - 0.09, 1.46 - 1.74, 1.99 - 2.34, 2.67, 2.77 - 3.13,3.17 -
3.36,3.39-3.52,5.42 - 5.62, 5.65 - 5.84, 7.20 - 7.46. 3C NMR (CDCl3, 101 MHz) 8 15.2, 24.7,
24.8,24.9,40.8,41.2,41.4,41.9,42.4,45.6, 45.6, 46.0, 46.2, 51.0, 51.1, 51.8, 52.7, 53.0, 65.8,
76.7,77.2,77.3,126.3, 128.6, 131.8, 132.1, 132.1, 132.7, 133.5, 178.3.
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'H NMR reaction of (1E,3E,5E)-1,6-diphenylhexa-1,3,5-triene (CTA26) with G3:

CDCI
Ph 3 X
G3 + pp NN 7 PhwRu] + PhMRu]

G3 (1 equiv., 0.0068 mmol, 6 mg) was dissolved in 0.5 mL dichloromethane-d, (CD,Cl>) in an
NMR tube, and *H NMR was measured. Then, (1E,3E,5E)-1,6-diphenylhexa-1,3,5-triene
(CTA26) (10 equiv., 0.068 mmol, 16 mg) dissolved in 0.5 mL CD,Cl, was added and *H NMR
was measured over time. As shown below, it took 150 mins to convert all the G3-benzylidene
to a mixture of doublets.

S

[ T ‘ | T T T T T T T T T

19.5 19.0 18.5 18.0 17.5
Chemical Shift (ppm)

Fig. $37: *H NMR (CD.Cl,, 300 MHz) of reaction of CTA26 (10 equiv.) with G3 (1 equiv.).

End capping experiment with CTA26:

Ph Ph
Ph Ru S _Ph %ﬁ”h Ph / Ph
IR
MNI Ph n +
G — n fe) n +
cDcly o coel, N o
N / o N o
/ /

G3 (1 equiv., 0.0068 mmol, 6 mg) was dissolved in 0.5 mL CDCls (CDCl3) in an NMR tube, and
to it, M1 (20 equiv., 0.136 mmol, 24 mg) in 0.2 mL CDCl; was quickly added. *H NMR was
measured. Then, CTA26 (10 equiv., 0.068 mmol, 16 mg) dissolved in 0.5 mL CDCl; was added
and 'H NMR was measured over time. After 200 mins, the CDCls mixture was concentrated
under reduced pressure at room temperature, and the formed polymer was precipitated in
methanol. The polymer (P44) was obtained as a yellow solid in quantitative yield.

77



After 180 mins
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After 60 mins

After 5 mins
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Fig. S38: 'H NMR spectrum (CD,Cl,, 400 MHz) of end capping reaction with CTA26.
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Ph 74
13
o
N
Ph
Ph Na+
13 Chemical Formula: Cq4¢H157N1302¢Na+
o Mono-isotopic Mass: 2531.13

N o -
/ -
+ N
Na g
Chemical Formula: Cq44H155N1302¢6Na+ N

Mono-isotopic Mass: 2505.11

Chemical Formula: Cq4gH159N¢30,6Na+
Mono-isotopic Mass: 2557.14

——12531.12
4

L 2505.16

N
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Fig. S39: MALDI-ToF mass spectrum (DCTB, AgTFA) of P44.
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Synthesis of Block co-polymers:
ROMP-ATRP block copolymer-

/‘%Br —> n
CuBr, PMDETA 0 0

0,
95°c I P13-b-PS

Br

The macroinitiator P13 (1 equiv., 0.07073 mmol, 400 mg) and CuBr (1 equiv., 0.07073 mmol,
10.2 mg) were weighed inside the glovebox, mixed in a 10 mL Schlenk flask, and removed
from the glovebox. The flask was kept under argon. Styrene was passed through basic alumina
and further degassed via three freeze-thaw cycles. A stock solution of N,N,N’,N",N"-
pentamethyldiethylenetriamine (PMDETA) (30 puL in 0.4 mL DMF) was prepared and further
degassed as before. Then, to the mixture of catalyst and macroinitiator, degassed styrene
(500 equiv., 35.37 mmol, 3.76 mL) was added, followed by the addition of 0.2 mL of PMDETA
(1 equiv., 0.07073 mmol, 15 pL) stock solution in DMF. The resulting mixture was stirred at
90°C for 19h. The reaction mixture was quenched by removing the hating and exposing it to
air. The resulting mixture was diluted with dichloromethane, passed through basic alumina
to remove copper salts, and concentrated under reduced pressure. The concentrated solution
was then precipitated into cold methanol to obtain the block copolymer P13-b-PS as a white
powder.

'H NMR (CDCl3, 400 MHz) 8 ppm: 0.82 - 1.12,1.12-1.31, 1.36 - 1.56, 1.59, 1.61 - 1.63, 1.64 -
1.66,1.78 -1.95,1.95-2.24, 2.28,5.14,5.40 - 5.64, 5.64 - 5.88, 6.19 - 6.43, 6.43 - 6.55, 6.55 -
6.85, 6.89-7.18,7.18 - 7.24.

Mn= 19.4 kDa, b=1.29

12 14 16 18 20 22
Retention time(min)

Fig. S40: SEC (CHCI3) trace of P13-b-PS.
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Block copolymer by Native Chemical Ligation (NCL)-

o )
NHBoC
o DCC, DMAP
]Lo)JV. fu o+ TrtS/\(u\OH { )k/o
= " NHBoC Tpemre (O

PLA k- Boc-Cys(Trt)-OH

Commercially available poly (L-lactide) of 20,000 g/mol molecular weight (PLA2ok) (1 €q.) was
dissolved in dry DCM. Then N-(tert -butoxycarbonyl)-S-trityl-L-cysteine (10 eq.) was added.
After that, the solution was cooled in an ice bath, and DCC (12 eq.) was added slowly. After
complete addition, DMAP (2 eq.) was added to the solution. The reaction mixture was stirred
for 3 days under an argon atmosphere. Then it was filtered and extracted with DCM. Then the
organic layer was concentrated and precipitated in cold diethyl ether 3 times. Then the
precipitate was filtered and dried in a vacuum to obtain PLA2ok- Boc-Cys (Trt)-OH.

STrt
o} NH2
TFA
o
S _op e o folo
J[o S DCM 7 o
: n

PLA,ok-cysteine

The polymer PLAzok- Boc-Cys (Trt)-OH was stirred with 0.1 M TFA in DCM (10 mL) for 30
minutes with a few drops of triisopropylsilane. After that, a saturated sodium bicarbonate
solution (20 mL) was added and extracted with DCM (3x 50 mL). Then the DCM layer was
concentrated and precipitated into cold diethyl ether and used for the next step without
further purifications.'H NMR confirmed the absence of protons from Trityl and BoC groups.
Kaiser amine test (showing intense blue color) was also performed to confirm the attachment
of cysteine moiety with the polymers.

SH

o
o) NH, Et3N
N o+ ol " \/’ﬁ
n Ph ~ o —
W Fol™
[¢) (o] =

DMF
N P14 P14-b-PLA

! PLA,-cysteine

(o] o]

H,N
W/U\S/\ph HSM NSNS N

leq. of the cysteine end functional polymer (PLAzgk-cysteine) was mixed with 1 eq. of
thioester mono end functional polymer (P14) in dry DMF and chloroform (3:1). A few drops
of triethylamine were added, and the mixture was stirred for 1 hour under an argon
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atmosphere. After completion of the reaction (SEC monitoring), the solvent was evaporated
in a vacuum, the solid residue redissolved in DCM, and then precipitated into methanol (10
fold excess) to give the corresponding conjugated polymer (P14-b-PLA).

l\/ln: 19.3 kDa, b=1.70

10 12 14 16 18 20 22
Retention time(min)

Fig. S41: SEC (CHCls) trace of P14-b-PLA.
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1H NMR Reaction of PEG2« macroinitiator with G3:

o (o]
. ]0 P o DCM-d2 ‘ Rt

Tn o [| — 0

G3 + *O

CL ‘ o 4mins o

1 equiv. 1 equiv.

PEG, macroinitiator

G3 and PEG2k macroinitiator stock solution was prepared in DCM-d>. Then, in an NMR tube, 1
equivalent of G3 and 1 equivalent of PEG2k macroinitiator were mixed. 'H NMR was measured
immediately, which took around 4 to 5 mins. The spectrum is shown below (top spectrum,
the blue one). 'H NMR spectrum of PEG2x macroinitiator was measured separately in CDCl3
to avoid overlapping peaks (bottom spectrum, the green one). Clearly, chain-end protons of
the macroinitiator vanished completely (marked as ‘a’ and ‘b’), and at the same time, styrene
protons were visible. This simple experiment proved efficient end functionalization of a
macroinitiator using an exactly stoichiometric amount of G3.

internal standard

styrene

. ![MJMLMJ L

Tl LI L S B B B B R B B B LA [ (N S B B B B LN S S B B S (L B B B S SN B B B N B B B B S S R S |

=TT
- 6.0 5.5 b.0 4.5 4.0 3.5 3.0
Chemical Shift (ppm)

Fig. S42: Stacked 'H NMR (400 MHz) spectrum showing pre-functionalization of G3 using
PEG2k macroinitiator.
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PEG-ROMP block copolymer-

? o)
(o] (o] DCM 1
G3 + (o] n o (o) — 0 }o ‘ (o] ©
. In
o 4mins o) | Ru
1 equiv. 1 equiv.
PEG,, macroinitiator o W "Ry
N, gﬁiN’ 10mins
o (200 equiv.)
(0]
10 Il o
° 4
N
PEGy-b-P ©
2k-b-P(M1) N g
/

G3 and PEG2k macroinitiator stock solution was prepared in dry degassed dichloromethane
and kept under argon in a Schlenk flask. In a separate Schlenk flask, MNI (M1) (200 equiv.,
0.68 mmol, 120 mg) was degassed and then dissolved in 3.3 mL dichloromethane to give 0.2
M of monomer concentration. 1 equiv. of G3 (0.0034 mmol, 3 mg) (stock solution was
prepared) and 1 equiv. of PEG2x macroinitiator (0.0034 mmol, 7.9 mg) (the stock solution was
prepared) was mixed in an argon atmosphere, and the mixture was stirred at room
temperature for 5 mins. Then, MNI solution was added quickly, and the resulting mixture was
stirred for 10 mins, upon which no monomer was left as confirmed by *H NMR spectroscopy.
The mixture was quenched by adding a few drops of ethyl vinyl ether, concentrated under
vacuum, and precipitated from cold diethyl ether two times. A grey solid (83% yield, PEG2k-b-
P(M1)) was obtained as a diblock copolymer.

'H NMR (CDCls, 400 MHz) 8 ppm: 1.99 - 2.22,2.22 - 2.34, 3.39, 3.52 - 3.74, 5.44 - 5.64, 5.64 -
5.84. 3C NMR (CDCls, 101 MHz) 3 ppm: 24.8, 24.8, 24.9, 40.8, 45.6, 45.8, 46.2, 51.0, 51.1,
52.7,53.0,70.6,76.7,77.2,77.3, 131.9, 133.5, 178.3.
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M= 36.5 kDa, b= 1.32
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Fig. S43: SEC (DMF) trace of PEGk-b-P(M1).
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Table S4: Stability of Chain Transfer Agents-

Stability of purified chain transfer agents has been summarized as follows-

CTA

Storage temperature

Time stable up to

CTA1-10, CTA23-25 -20°C >8 months
CTA11,12 -20°C 2 months
CTA13 room temperature 2-3 hours
CTA14 room temperature 60 minutes
CTA13,14 -20°C 24-48 hours
CTA15,17,26 room temperature >1 year
CTA18,19 -20°C >10 months
PEG2x macroinitiator -20°C 2-4 months
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Table S5: Chemical shift data

CTA Solvent Structure Chemical
Shift(ppm)
CTA15 | CD,Cl; ©/\ARU 18.73
CTA16 | CaD:O <OJ©MRU 18.68
(THF-D8) o
CTA17 | CD.Cl, ©/MRu 18.73
CTA18 | CD,Cl, Ru 18.55
o.
\ 7
CTA19 | CD-Cl, @MRU 18.82
Br
CTA20 | CD,Cl> ©/\ARU 18.73
CTA21 | CD-Cl, @Mm 18.83
Br
CTA22 | CD.Cl; <OJ©MRU 18.51
(0]
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CTA2 CD-Cl> NXNgy 18.45
~o
CTA5 CD,Cl, 18.77
CTA4 CD,Cl, 18.56
CTA1 CD.Cl NNgy 18.56
MeO,C~ >0
CTA6 CD,Cl, /@/\ﬁmm 18.54,18.64,
18.72 & 19.29
MeO,C”~ >0
CTA8 CD,Cl, NRg, 18.53-18.63,
o 19.02-19.06,
19.57-19.61
CTA11 | CD.Cl, 18.55
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Fig. S45: 13C NMR (CDCls, 101 MHz) spectrum of I1.
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Fig. S46: 'H NMR (CDCls, 400 MHz) spectrum of 12.
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Fig. S52: 'H NMR (CDCls, 400 MHz) spectrum of CTA2.
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Fig. S57: 3C NMR (CDCls, 101 MHz) spectrum of CTAA4.
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Fig. S64: 'H NMR (CDCls, 400 MHz) spectrum of I5.
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Fig. S68: 'H NMR (CDCls, 400 MHz) spectrum of CTA7.

=) O D= = DO = 0D
- VONNONMAOOROOME T Q-Qga I 0 N
© ANON-TODDINNO N T T NONOG© o~
© TONNOAANNNN — = — SNNNGOG Q0 ©
~— T T T T T T T T T e e WOMNMNNMNN OO o~
L P ! T - - R B
I Ht ) R R B et i
L o L e o e e B EEE s
180 160 140 120 100 80 60

Chemical Shift (ppm)
Fig. S69: 3C NMR (CDCls, 101 MHz) spectrum of CTA7.

101



3.9
3.9

X" XCH,
o
HyC”
o}
|
|
|
I
| N 1 "
1.92 1.99 0.98 1.95 2.00 3.01
[ - (- [

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 25 2.0 1.5 1.0 0.5 0
Chemical Shift (ppm)

Fig. S70: *H NMR (CDCls, 400 MHz) spectrum of CTAS.

166.74
51.95

77.32
©77.00

~76.69

Ml “l J.Ill. ;

| ENLINLILINLE L L L L L L I L L L L L I L L LB O L L L L I L B L LB B

180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

Fig. S71: 3C NMR (CDClsz, 101 MHz) spectrum of CTAS.

102



12.92

HO,C

K

0.86 2.04218 3.23 2.00

UL L L I I R I R L I R L R N L LN RN LR R RN R R RN RER RN RRn RS

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

Fig. S72: 'H NMR (Dimethylsulfoxide-d6, 400 MHz) spectrum of 17.

- COTOCTOANDONDND =
~ NMANRKMONROTNONSOD VTON—— D
™~ CTENANCTORDDDOND MO IDOO
© TTOOOMONNNNNANN — SOOI D
-~ T T T T e T T T s FTITOODBOO
. ‘ ol - E S
R B o B o o L o o s R
180 160 140 120 100 80 60 40 20

Chemical Shift (ppm)
Fig. S73: 13C NMR (Dimethylsulfoxide-d6, 101 MHz) spectrum of 17.

103



232 0.291.27 0.71 2.02 2.00 2.00 5.96
[ = =

75 7.0 6.5 6.0 55 5.0 45 4.0 35 3.0 25 2.0 1.5 1.0 0.5 0
Chemical Shift (ppm)

Fig. S74: 'H NMR (CDCls, 400 MHz) spectrum of CTA9.
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Fig. S75: 3C NMR (CDCls, 101 MHz) spectrum of CTA9.
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Fig. S82: 'H NMR (CDCls, 400 MHz) spectrum of 110.
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NMR Spectra of polymers:
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Fig. S171: *H NMR (CD,Cl,, 400 MHz) spectrum of P14-b-PLA.
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Fig. $172: DOSY *H NMR (CDCls, 400 MHz) spectrum of a mixture of P14 and PLA2ok-Boc-Cys
(Trt)-OH before coupling.
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Fig. $173: DOSY *H NMR (CDCl3, 400 MHz) spectrum of P14-b-PLA.
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Fig. S174: 'H NMR (CDCl3, 400 MHz) spectrum of MeOPEG2« acid. DMAP as an impurity (peaks
at around 3, 6.6, and 8.25 ppm).
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MALDI-ToF mass spectra of Polymers:

Sample preparation: A stock solution of a DCTB matrix of 20 mg/mL concentration in CHCls
was prepared. 1M solution of AgTFA (or NaTFA) salt in THF was also prepared. Then, 2 mg
polymer solution was dissolved in 0.6 mL CHCls.In an Eppendorf tube, 20 pL of matrix solution,
2 pL of polymer solution, and 1 pL of salt solution were mixed homogeneously. Finally, from
the mixture, 1 uL of the solution was spotted in a MALDI-ToF plate and kept for a few minutes
to let the solvent evaporate. The polymer samples were calibrated against either using CSl3
or using poly (styrene) standards.

1418.92
1596.13

1773.33
195025%9.93

2127.66
2304.81
2482.94
2659.05

2837.17
3014.27

—— 3191.34
D

3368.42
3545.47
3722.53
—— 3899.58

— 4077.6

4

| : | ;i | ) | |
1500 2000 2500 3000 3500 4000 4500

m/z

15 4254.64
~ 4431.64

158



MeO,C.__o

—0

12
(0]

2482.94

r 0 A

Chemical Formula: Cq34Hq4gN1202¢Ag"
Mono-isotopic Mass: 2479.96

2479.93

e

| s | s | v I . | : |
2478 2480 2482 2484 2486 2488

m/z

Fig. S181: MALDI-ToF mass spectrum (DCTB, AgTFA) of P4.
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Fig. S182: MALDI-ToF mass spectrum (DCTB, AgTFA) of P6. The tiny distribution corresponds
to a broad spectrum, as shown above on the right-hand side, which did not match any possible
non-regioselective metathesis reaction or chain end coupled products. This minimal broader
peak was observed in the following spectrum too.
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Fig. S183: MALDI-ToF mass spectrum (DCTB, AgTFA) of P7.
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Fig. S184: MALDI-ToF mass spectrum (DCTB, AgTFA) of P9.
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Mono-isotopic Mass: 2284.88
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Fig. S185: MALDI-ToF mass spectrum (DCTB, AgTFA) of P10.
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Mono-isotopic Mass: 2804.10

Fig. S186: MALDI-ToF mass spectrum (DCTB, AgTFA) of P11.
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Fig. S187: MALDI-ToF mass spectrum (DCTB, AgTFA) of P12.
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Fig. $188: MALDI-ToF mass spectrum (DCTB, AgTFA) of P13. Elimination of HBr in high laser
energy of MALDI machine, presumably, generates the above structure.
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Fig. S189: MALDI-ToF mass spectrum (DCTB, AgTFA) of P14.
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Fig. S190: MALDI-ToF mass spectrum (DCTB, AgTFA) of P15.

2500 3000 3500 4000 4500 5000

2000

m/z

168



2786.14

Ag*
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Fig. S191: MALDI-ToF mass spectrum (DCTB, AgTFA) of P16.
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Fig. S192: MALDI-ToF mass spectrum (DCTB, AgTFA) of P17 showing the difference in
repeating unit of mass 94 (mass of norbornene) as isotopically resolved end group analysis
was not possible (arguably, due to the presence of amineBoc group) due to unidentified
degradation under MALDI-ToF high energy laser condition.
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Fig. S193: MALDI-ToF mass spectrum (DCTB, AgTFA) of P18.
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Fig. S194: MALDI-ToF mass spectrum (DCTB, AgTFA) of P19.
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Chemical Formula: C;,4H;41NgO2,Ag* - 2
Exact Mass: 2246.91 N
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Fig. S195: MALDI-ToF mass spectrum (DCTB, AgTFA) of P20.
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Fig. S196: MALDI-ToF mass spectrum (DCTB, AgTFA) of P21.
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Fig. S197: MALDI-ToF mass spectrum (DCTB, AgTFA) of P22.
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Chemical Formula: Cy4gH30,06Ag*
Mono-isotopic Mass: 3099.24
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Fig. S198: MALDI-ToF mass spectrum (DCTB, AgTFA) of P24.
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Fig. S199: MALDI-ToF mass spectrum (DCTB, AgTFA) of P25.
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Chemical Formula: Cy54H44N44030Ag+
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Fig. S200: MALDI-ToF mass spectrum (DCTB, AgTFA) of P34. The minor distribution matching
with a methylene end group came from the ethyl vinyl ether (which was used to deactivate
the ruthenium complex).
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Fig. S201: MALDI-ToF mass spectrum (DCTB, AgTFA) of P37.
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Fig. S202: MALDI-ToF mass spectrum (DCTB, AgTFA) of P38.
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Fig. S203: MALDI-ToF mass spectrum (DCTB, NaTFA) of P39.
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Fig. S204: MALDI-ToF mass spectrum (DCTB, NaTFA) of P42.
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Fig. S205: MALDI-ToF mass spectrum (DCTB, NaTFA) of P43.

182



-
§1'9262 ]
122882
L8682
99'66.2
$9°0S.2
19°90.2
65°2992
§5'8192 )
AR IR TA E
§°0£S2T
9v'98¥2Z
I A 4 LA
¥'86€2
9e¥SET
€€°0LEZ
62'9922
92'2222
ZT8LLT
8LvELZ
¥1°0602
1'9p0Z K|
90°2002 :
10°8S61 .
L6'EL6L M
€6'6981 .
68'SZ81 .
98’18/l .
6L LELL A
€1'¢69) !

896791

e

1800 2000 2200 2400 2600 2800 3000
m/z

1600

9zeeee

OH

o}

45

to

W

Ag*

gz'ozee

Chemical Formula: Cg5HggO49Ag+

Mono-isotopic Mass: 2220.13

2222 2224 2226 2228

2220

m/z

Fig. $206: MALDI-ToF mass spectrum (DCTB, AgTFA) of PEG2k carboxylic acid.
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Fig. $207: MALDI-ToF mass spectrum (DCTB, AgTFA) of PEGzk macroinitiator. Shallow
intensity peaks corresponded to monomethoxy PEG that could come from hydrolysis of PEG,«
carboxylic acid during the reaction.
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SEC traces of polymers:
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Fig. $208: SEC (CHClI3) trace for P1.
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Fig. $209: SEC (CHClI3) trace for P2.
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Fig. $210: SEC (CHClI3) trace for P3.
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Fig. $211: SEC (CHClI3) trace for P4.
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Fig. $212: SEC (CHClI3) trace for P5 (crude polymer).
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Fig. $213: SEC (CHClI3) trace for P5 (precipitated polymer).
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Fig. $214: SEC (CHClI3) trace for P6.
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Fig. $215: SEC (CHClI3) trace for P7.
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Fig. $216: SEC (CHClI3) trace for P8.
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Fig. $217: SEC (CHClI3) trace for P9.
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Fig. $218: SEC (CHClI3) trace for P10.

\

! | y I ) | ' | > |
0 5 10 15 20 25 30
Retention time(min)

Fig. $219: SEC (CHClI3) trace for P11.
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Fig. $220: SEC (CHClI3) trace for P12.
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Fig. $221: SEC (CHClI3) trace for P13.
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Fig. $222: SEC (CHClI3) trace for P14.
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Fig. $223: SEC (CHClI3) trace for P15.

T T T v 1 ' | ' I ! |
0 5 10 15 20 25 30
Retention time(min)

Fig. $224: SEC (CHClI3) trace for P16.
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Fig. $225: SEC (CHCl3) trace for P17.
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Fig. $226: SEC (CHClI3) trace for P18.
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Fig. $227: SEC (CHClI3) trace for P19.

T

| : | > ) | 2 ! , |

| |
0 5 10 15 20 25 30

Retention time(min)

Fig. $228: SEC (CHClI3) trace for P20.
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Fig. $229: SEC (CHClI3) trace for P21.
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Fig. $230: SEC (CHClI3) trace for P22.
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Fig. $231: SEC (CHClI3) trace for P23.
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Fig. $232: SEC (CHClI3) trace for P24.

"

g | |
0 5 10 15 20 25 30

Retention time(min)

Fig. $233: SEC (CHClI3) trace for P25.
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Fig. $234: SEC (CHClI3) trace for P28.
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Fig. $235: SEC (CHClI3) trace for P30.
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Fig. $236: SEC (CHClI3) trace for P31.
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Fig. $237: SEC (CHClI3) trace for P32.
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Fig. $238: SEC (CHCl3) trace for P33.
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Fig. $239: SEC (CHClI3) trace for P34.
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Fig. $240: SEC (CHClI3) trace for P35.
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Fig. $241: SEC (CHClI3) trace for P37.
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Fig. $242: SEC (CHCl3) trace for P38.
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Fig. $243: SEC (CHCl3) trace for P39.
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Fig. $244: SEC (CHClI3) trace for P40.

T T I ! ) ' I v I 5 1
0 5 10 15 20 25 30
Retention time(min)

Fig. $245: SEC (CHCI3) trace for P41.
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Fig. $246: SEC (CHCI3) trace for P42.
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Fig. $247: SEC (CHClI3) trace for P43.
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Fig. $248: SEC (DMF) trace for PEG2x macroinitiator.
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Fig. $249: SEC (CHClI3) trace for PLA2ok- Boc-Cys (Trt)-OH.
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Fig. $250: SEC (DMF) trace for PEGz-b-P(M1).
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High-Resolution Mass Spectrometric Data:
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Fig. $251: HR-MS spectrum of CTA1.
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Fig. $252: HR-MS spectrum of CTA3.
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Fig. $253: HR-MS spectrum of CTAS.
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Fig. $254: HR-MS spectrum of 16.
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Fig. $255: HR-MS spectrum of CTA7.
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Fig. S256: HR-MS spectrum of CTA9.
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Fig. $257: HR-MS spectrum of CTA11.
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Fig. $258: HR-MS spectrum of CTA12.
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Fig. S259: HR-MS spectrum of CTA13.
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Fig. S260: HR-MS spectrum of CTA23.
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Fig. $261: HR-MS spectrum of CTA24.
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Fig. $262: HR-MS spectrum of CTA25.
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Kinetic studies:

Determination of rate constants:

(o)

/ N\
(M1)
(o}
. Br
(1000 equiv.)
XN > 7 n
G3 + Br -
1 equiv Br (ﬁ/ o 0
(1 equiv) (50 equiv.) N

-~ (60 equiv.) |

The procedure is previously described in this work and is as follows- In an NMR tube, 1,3,5
trimethoxy benzene (as an internal standard), G3 (1 equiv., 0.0011 mmol, 1 mg), 3
bromopyridine (60 equiv., 0.067 mmol, 11 mg) and CTA3 (50 equiv., 0.056 mmol, 11.8 mg)
were mixed in 0.9 mL CDCls and *H NMR were measured. Then, M1 (1000 equiv., 1.13
mmol, 200 mg) dissolved in 0.2 mL was added quickly, and *H NMR was measured overtime
(See Fig. S6). 3 bromopyridine was added to decrease the propagation as well as chain
transfer events to measure the individual rate constants for CTA (CTA3) and monomer (M1)
consumptions more precisely.
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Fig. S263: Plot of In({M1}o/M1) against time.
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Here, {M1}o correspond to the initial concentration of monomer (M1) and M; represents
the concentration of monomer at a given time. In({ M1}o/M1) vs time provided a linear
correlation and the slope of the linear regression corresponded to the rate constant for
monomer consumption (k) under the given reaction conditions. Thus, kmi= 0.01531 min.

Similarly, rate constant for CTA consumption (kcra) was also determined utilizing the same
reaction conditions as follows-

2.5 -
1 slope= 0.01434
2.0 R°= 0.9881
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o
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>
= l
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Fig. S264: Plot of In({CTA3}o/CTA3) against time.

From the linear plot, slope i.e. CTA3 consumption rate constant (kcras) is 0.01434 min™.,

Thus, as predicted, rate constants for the consumption of both monomer and CTA are of the
same magnitude which definitively proved the proposed kinetically controlled chain transfer
mechanism.

Additionally, the measured linear relation between In([So]/[St]) (S= substrate) and time
confirmed the first-order dependence in concentration of both monomer (M1) and CTA
(CTA3) as expected for a chain-growth process.
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CTA concentration effects on kinetically controlled ROMP:

To understand how concentration of chain transfer agents influence kinetics the following
'H NMR experiments were conducted where concentration of G3 (1 equiv.), monomer
(1000 equiv.) and 3 bromopyridine (60 equiv.) were kept constant and CTA concentration
were varied (20 equiv./40 equiv. /50 equiv.).

General procedure is as follows-

In an NMR tube, 1,3,5 trimethoxy benzene (as an internal standard), M1 (1000 equiv., 1.13
mmol, 200 mg), 3 bromopyridine (60 equiv., 0.067 mmol, 11 mg) and CTA3 (xx equiv., Xx
mmol, xx mg) were mixed in 0.9 mL CDCl; and 'H NMR were measured. Then, G3 (1 equiv.,
0.0011 mmol, 1 mg) dissolved in 0.2 mL was added quickly, and *H NMR was measured
overtime.

(o)
Br AN
e T e
N” Br 1 (M) w.r.t M1
(0] CTA3 1 equiv.
M1
60 equiv. 1000 equiv. 20 equiv.
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Fig. $265: 'H NMR (CDCls, 300 MHz) of reaction of CTA3 (20 equiv.), 3 bromopyridine (60
equiv.) and M1 (1000 equiv.) with G3 (1 equiv.) in CDCls.
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Fig. $266: A plot of monomer (M1, 1000 equiv.) and CTA3 (20 equiv.) conversion vs. time
determined by *H NMR spectroscopy (CDCls, 300 MHz) showing both monomer and CTA

were consumed at a similar rate during the polymerization, thus, suggesting a kinetically
controlled mechanism.
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Fig. $267: 'H NMR (CDCls, 300 MHz) of reaction of CTA3 (40 equiv.), 3 bromopyridine (60
equiv.) and M1 (1000 equiv.) with G3 (1 equiv.) in CDCls.
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Fig. $268: A plot of monomer (M1, 1000 equiv.) and CTA3 (40 equiv.) conversion vs. time
determined by *H NMR spectroscopy (CDCls, 300 MHz) showing both monomer and CTA

were consumed at a similar rate during the polymerization, thus, suggesting a kinetically
controlled mechanism.
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Fig. $269: 'H NMR (CDCls, 300 MHz) of reaction of CTA3 (50 equiv.), 3 bromopyridine (60
equiv.) and M1 (1000 equiv.) with G3 (2.1 equiv.) in CDCls.
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Fig. S270: A plot of monomer (M1, 1000 equiv.) and CTA3 (50 equiv.) conversion vs. time
determined by *H NMR spectroscopy (CDCls, 300 MHz) showing both monomer and CTA
were consumed at a similar rate during the polymerization, thus, suggesting a kinetically
controlled mechanism.
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Fig. S271: A plot of monomer (M1, 1000 equiv.) conversion vs. time at different
concentration of CTA3 (20 equiv. /40 equiv. /50 equiv.) determined by *H NMR
spectroscopy (CDCls, 300 MHz) showing rate of consumption of M1 decreased with the
increase in the concentration of CTA3.
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Fig. S272: Plot of In({M1}o/M1) against time at different CTA3 concentration.

Table S6: Data for the determination of km1 for different CTA3 concentration in CDCls:

Degree of G3:CTA3:M1° Concentration of R2value km1

polymerization (DP) CTA3 (mmol/L) (1/min)
50 1:20:1000 20.00 0.9921 0.03235
25 1:40:1000 40.01 0.9795 0.01888
20 1:50:1000 50.02 0.9967 0.01531

a: 60 equiv. of 3 bromopyridine was used to decrease the overall rate of the polymerization.

Thus, as the concentration of the CTA3 increased, rate constant for the consumption of M1
(km1) decreased i.e. overall time for polymerization increases. In other words, rate of
polymerization is inversely proportional to the concentration of the CTA.
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Structure-property relationship for monosubstituted 1,3 diene CTAs

Hammett Plot:

To determine the Hammett plot, first an electro-neutral CTA (CTA27) was synthesized via
following Wittig olefination reaction-

+ MePPh, —— >
Z>cHo 3 THF NG

Br

Methyltriphenylphosphonium bromide (1.1 equiv., 58.26 mmol, 21 g) was dissolved in 100
mL THF and cooled to 0°C. Solid potassium tert-butoxide (1.1 equiv., 58.26 mmol, 6.5 g) was
added in one shot, and the THF solution immediately became yellow. The solution was stirred
at 0°C for 10 mins. trans-cinnamaldehyde (1 equiv., 52.97 mmol, 7 g, 6.65 mL) was added
slowly to the precooled mixture. Then, the resulting solution was stirred at room temperature
for 15 mins. THF was evaporated under reduced pressure, and crude was dissolved in
dichloromethane and worked up against brine two times. The organic part was dried over
magnesium sulfate, concentrated under reduced pressure, and further purified by column
chromatography (only hexanes) to obtain CTA27 as a colorless liquid (6.6 g, 52.97 mmol, 96%
yield).

DOANNMNIOTAND ~OANNMNM~— COHOOTONNND OOOOMO - O v
QOO NNNNT MNOWT T ONNNN«——O TONN O R ©
NENNNNNMNNN ©OOO0C BOWOLWWWWY S e e e coo
|
|
5.17 292 2.00
I [E— I

7.5 7.0 6.5 8.0 55 5.0 4.5 4.0 3.5 3.0 25 2.0 1.5 1.0 0.5 0
Chemical Shift (ppm)

Fig. $273: 'H NMR (CDCls, 300 MHz) spectrum of CTA27. The peaks in the aliphatic region
(0.7-1.4 ppm) is from grease as the eluent for column chromatography was pure hexanes.
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Fig. $274: 13C NMR (CDCls, 300 MHz) spectrum of CTA27.
CTAs considered for Hammett studies:
(o}
NS N NF o,
CTA27 CTA2 CTA3 CTAS

[o}

AN NN XA N
N— + ANt MeO, + /@M + /@N\ + N+ C38H40Br2CI2N4Ru —Jm
o B
I r vi
v

[m
)
0] mn v vi]

In a 5 mL glass vial, M1 (30 equiv., 0.10 mmol, 18 mg), CTA8 (15 equiv., 0.05 mmol, 9.6 mg),
CTA2 (15 equiv., 0.05 mmol, 8.1 mg), CTA3 (15 equiv., 0.05 mmol, 10.6 mg), CTA27 (15
equiv., 0.05 mmol, 6.6 mg) and n-decane (15 equiv., 0.05 mmol, 9.9 uL) were dissolved in
1.7 mL of CHCls. 80 L of this solution was taken and injected for gas chromatography —mass
spectrometry (GC-MS) measurement to give initial area (Ao) of the substrates. Then, G3 (1
equiv., 3.4 umol, 3 mg) was weighed into a separate vial and the CHCl; mixture was added
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to the vial in one-shot. The resulting yellow solution was kept at room temperature for 5
mins. Then, 80 pL of the resulting solution was taken for another GC-MS measuerment. The
amount of CTA consumed in the process was determined by following GC-MS analysis with
respect to n-decane.

It is noteworthy that initial attempts were made to study Hammett realtionship using
stoichimetric ratio of Grubbs’ catalyst which led to erroneous results. This may be because
change in conecentration of the mixture, after addition of catalyst, is significantly higher
when stoichiometric amount of catalyst was used, thus affecting the overall area
(concentration of unreacted species) meaured via GC-MS.

X N
/©/\/§ G3 /@MRU o Ph
R R

R= H, CTA27
= OMe, CTA2
= Br, CTA3
= CO,Me, CTA8

N NS Krel A X ¢t S NRu
NRu  + /@M e /@/\/\
R R R :

Table S7: Data analysis for Hammett plot

Entry GC-MS Initial Final In(A/Ao) In(A/Ao)/ logKrel Opara°
peak area (Ao) | area (A) In(An/Ano)= Krel

CTA27 7.88 4813862 | 3213345 | -0.404187 1 0 0.00

(H)

CTA2 10.47 7091024 | 3820190 | -0.618529 1.53030 0.42546 -0.27

(OMe)

CTA3 10.66 5131951 | 3607275 | -0.352533 0.87220 -0.05938 0.23

(Br)

CTA8 11.55/12.01 | 6032684 | 4648163 | -0.260719 0.64504 -0.19041 0.44

(COzME)
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Fig. S275: Hammett plot (logKrel vs Opara) for differently para-substituted CTAs differing in
electron donation capabilities.

From the slope, the reaction constant (p) is determined to be -0.88 which suggested the
reaction builds positive charge during the metathesis mechanism. Therefore, electron-
donation CTA (such as CTA2) will stabilise the transition state most (possessing highest
logKrel value) and CTA8 will destabilise the process. This further explain why electron rich

substrates such as this kind of CTAs were extremely successful for this catalytic ROMP

mechanism.

Table S8: Synthesis of higher molecular weight polymers by catalytic ROMP:

Entry | CTA Monomer | G3:CTA: M, (Non-| M, Y/ b Polymer
(M) Monomer catalytic, (Catalytic, (SEC, Yield
ratio M/G3) M/CTA) CHCls) (%)
(kDa) kDa kDa
P45 CTA2 M1 1:20:10000 1770 88.5 83.0 1.65 92
P46 CTA2 M1 1:20:20000 3540 177 165.0 1.68 92
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P45:

G3: 1.0 mg, CTA2: 3.6 mg, M1: 2.0 g. Concentration (M1): 1 (M). DCM: 11.3 mL.

P46:

G3: 0.5 mg, CTA2: 1.8 mg, M1: 2.0 g. Concentration (M1): 1 (M). DCM: 11.3 mL.

P45 and P46 were prepared using the general procedure described before. In both cases,
>99% conversion of monomer was observed as determined from crude *H NMR
spectroscopy from the polymerization mixture given below-

o e T B e o o o e e e e L B e e e e o e e e . B e e e e e e e e e e I s e s
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Fig. $276: Crude *H NMR (CDCls, 400 MHz) spectra of polymerization mixture of P45
showing olefinic region. Absence of any peak at 6.26 ppm confirmed full consumption of
M1.
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Fig. S277: Crude *H NMR (CDCls, 400 MHz) spectra of polymerization mixture of P46
showing olefinic region.

SEC traces of P45 and P46:
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Fig. $278: SEC (CHClI3) trace for P45.
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Fig. $279: SEC (CHClI3) trace for P46.
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Polymer pictures:
a) b)

Fig. S280: a) Image of P15, b) Image of P16.
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