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A Experimental data1

The data describes the expression of MxA and IFIT1 after IFN-α stimulation in a popu-2

lation of Huh7.5 cells. The experiments were done in the following way: First, cells were3

transfected with a BAC (Bacterial Artificial Chromosome) containing the studied ISGs4

(mxa and ifit1) fused with the reporter eGFP genes. Subsequently cultures were treated5

with different concentrations of human IFN-α. Cells were seeded and left to attach for6

24 h. Then, treatment started for 32 h. until all cells including non-treated ones were7

harvested at the same time point, fixed with 2% PFA to stop further protein expression8

and applied to flow cytometry. Then, fluorescence in the cultures was monitored using9

flow cytometry (Figs A and B). We tested the temporal IFN response at time points 8,10

12, 16, 20 and 32 hours (Fig C).11

12

A.1 IFN treatments and Flow cytometry analysis13

Figure A. MxA flow cytometry data The data shows the expression of MxA after
IFN-α stimulation in a population of Huh7.5 cells. Distributions represent the flow
cytometry measurements of MxA expression under control conditions (first column, no
IFN treatment), subsequent columns represent the MxA expression after multiple IFN
doses (from 10 to 1250 UI/mL of IFN-α). In the different IFN treatments, the mean
fluorescence level shifts from 8x103 a.u. (arbitrary units of fluorescence) to 4.5x104

a.u. for MxA.
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Figure B. IFIT1 flow cytometry data The data describes the expression of IFIT1
after IFN-α stimulation in a population of Huh7.5 cells. Distributions represent the
flow cytometry measurements of MxA expression under control conditions (first
column, no IFN treatment), subsequent columns represent the MxA expression after
multiple IFN doses (from 10 to 1250 UI/mL of IFN-α). In the different IFN
treatments, the mean fluorescence level shifts from 2x104 to 9x104 a.u. for IFIT1.

Figure C. Temporal analysis of the IFN response. The plot shows the mean
values of the distributions given in Figs A and B. IFIT1 reaches its maximum
response 16 hours after IFN stimulation, whereas the maximum response for MxA was
obtained after 32 hours.
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B Modeling biological systems14

B.1 Stochastic COPASI Model15

Receptor dynamics.16

IFN +R2
f1−−→ RC, (M.1)

RC +R1
f2−−→ AR, (M.2)

IR
f45−−→ R1 +R2, (M.3)

AR+ SOCS
f44−−→ IR+ SOCS, (M.4)

Receptor-dependent signal transduction.17

AR+ STAT1c
f3−−→ pSTAT1 +AR, (M.5)

AR+ STAT2c
f4−−→ pSTAT2 +AR, (M.6)

pSTAT1
f5−−→ STAT1c, (M.7)

pSTAT2
f6−−→ STAT2c, (M.8)

pSTAT1 + pSTAT2
f7−−→ dimerSTAT , (M.9)

dimerSTAT + IRF9c
f8−−→ ISGF3c, (M.10)

ISGF3c
f9−−→ ISGF3n, (M.11)

Receptor-independent signal transduction.18

STAT2c + IRF9c
f10−−→ STAT2− IRF9c, (M.12)

STAT2− IRF9c
f11.1−−−→ STAT2− IRFn, (M.13)

STAT2− IRF9n
f11.2−−−→ STAT2− IRF9c, (M.14)

Promoter activation and inactivation.19

I irf9 + ISGF3n
f12.1−−−→ irf9, (M.15)

I irf9 + STAT2− IRF9n
f12.2−−−→ irf9∗, (M.16)

irf9
f13.1−−−→ I irf9 + ISGF3n, (M.17)

irf9∗ f13.2−−−→ I irf9 + STAT2− IRF9n, (M.18)
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I socs+ ISGF3n
f14.1−−−→ socs, (M.19)

I socs+ STAT2− IRF9n
f14.2−−−→ socs∗, (M.20)

socs
f15.1−−−→ I socs+ ISGF3n, (M.21)

socs∗ f15.2−−−→ I socs+ STAT2− IRF9n, (M.22)

I mxa+ ISGF3n
f16.1−−−→ mxa, (M.23)

I mxa+ STAT2− IRF9n
f16.2−−−→ mxa∗, (M.24)

mxa
f17.1−−−→ I mxa+ ISGF3n, (M.25)

mxa∗ f17.2−−−→ I mxa+ STAT2− IRF9n, (M.26)

I ifit1 + ISGF3n
f18.1−−−→ ifit1, (M.27)

I ifit1 + STAT2− IRF9n
f18.2−−−→ ifit1∗, (M.28)

ifit1
f19.1−−−→ I ifit1 + ISGF3n, (M.29)

ifit1∗ f19.2−−−→ I ifit1 + STAT2− IRF9n, (M.30)

Transcription.20

irf9
f20.1−−−→ irf9 +mIRF9n, (M.31)

irf9∗ f20.2−−−→ irf9∗+mIRF9n, (M.32)

socs
f21.1−−−→ socs+mSOCSn, (M.33)

socs∗ f21.2−−−→ socs∗+mSOCSn, (M.34)

mxa
f22.1−−−→ mxa+mMxAn, (M.35)

mxa∗ f22.2−−−→ mxa∗+mMxAn, (M.36)

ifit1
f23.1−−−→ ifit1 +mIFIT1n, (M.37)

ifit1∗ f23.2−−−→ ifit1∗+mIFIT1n, (M.38)

Translocalization / Posttranscriptional Modifications.21
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mIRF9n
f24−−→ mIRF9c, (M.39)

mSOCSn
f25−−→ mSOCSc, (M.40)

mMxAn
f26−−→ mMxAc, (M.41)

mIFIT1n
f27−−→ mIFIT1c, (M.42)

mRNA degradation.22

mIRF9c
f28−−→ ∅, (M.43)

mSOCSc
f29−−→ ∅, (M.44)

mMxAc
f30−−→ ∅, (M.45)

mIFIT1c
f31−−→ ∅, (M.46)

Translation.23

mIRF9c
f32−−→ mIRF9 + IRF9c, (M.47)

mSOCSc
f33−−→ mSOCSc + SOCS, (M.48)

mMxAc
f34−−→ mMxAc +MxA, (M.49)

mIFIT1c
f35−−→ mIFIT1c + IFIT1, (M.50)

Protein degradation.24

IRF9c
f36−−→ ∅, (M.51)

IRF9n
f36−−→ ∅, (M.52)

SOCS
f37−−→ ∅, (M.53)

MxA
f38−−→ ∅, (M.54)

IFIT1
f39−−→ ∅, (M.55)

IFN
f46−−→ ∅, (M.56)

Transcription factor release and translocalization.25

ISGF3n
f40−−→ IRF9n + STAT1n + STAT2n, (M.57)
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IRF9n
f41−−→ IRF9c, (M.58)

STAT1n
f42−−→ STAT1c, (M.59)

STAT2n
f43−−→ STAT2c, (M.60)

STAT2− IRF9n
f43−−→ STAT2n + IRF9n, (M.61)

STAT2− IRF9c
f43−−→ STAT2c + IRF9c, (M.62)

The reaction rates are given in Table A.26

27

Table A. Reaction rates considered in the model
Name Definition

f1 k1 ·R2 · IFN
f2 k2 ·RC ·R1
f3 k3 · STAT1c ·AR
f4 k4 · STAT2c ·AR
f5 k5pSTAT1
f6 k6pSTAT2
f7 k7 · pSTAT1 · pSTAT2
f8 k8 · dimerSTAT1 · IRF9c
f9 k9 · ISGF3c
f10 k10 · STAT2c · IRF9c
f11.1 k11.1 · STAT2− IRF9c
f11.2 k11.2 · STAT2− IRF9n
f12.1 k12 · I irf9 · ISGF3n
f12.2 k12 · I irf9 · STAT2− IRF9n
f13.1 k13.1 · irf9
f13.2 k13.2 · irf9∗
f14.1 k14 · I socs · ISGF3n
f14.2 k14 · I socs · STAT2− IRF9n
f15.1 k15.1 · socs
f15.2 k15.2 · socs∗
f16.1 k16 · I mxa · ISGF3n
f16.2 k16 · I mxa · STAT2− IRF9n
f17.1 k17.1 ·mxa
f17.2 k17.2 ·mxa∗
f18.1 k18 · I ifit1 · ISGF3n
f18.2 k18 · I ifit1 · STAT2− IRF9n
f19.1 k19.1 · ifit1
f19.2 k19.2 · ifit1∗
f20.1 k20 · irf9
f20.2 k20 · irf9∗
f21.1 k21 · socs

Name Definition
f21.2 k21 · socs∗
f22.1 k22 ·mxa
f22.2 k22 ·mxa∗
f23.1 k23 · ifit1
f23.2 k23 · ∗ifit1
f24 k24 ·mIRF9n
f25 k25 ·mSOCSn

f26 k26 ·mMxAn

f27 k27 ·mIFIT1n
f28 k28 ·mIRF9c
f29 k29 ·mSOCSc

f30 k30 ·mMxAc

f31 k31 ·mIFIT1c
f28 k32 ·mIRF9c
f29 k33 ·mSOCSc

f30 k34 ·mMxAc

f31 k35 ·mIFIT1c
f36.1 k36 · IRF9c
f36.2 k36 · IRF9n
f37 k37 · SOCS
f38 k38 ·MxA
f39 k39 · IFIT1
f40 k40 · ISGF3n
f41 k41 · IRF9n
f42 k42 · STAT1n
f43 k43 · STAT2n
f44 k44 ·AR · SOCS
f45 k45 · IR
f46 k46 · IFN
f47.1 k47 · STAT2− IRF9n
f47.2 k47 · STAT2− IRF9c

B.2 Stochastic modeling28

Considering a system of N different chemical species S = {S1, ..., SN} , the state of the29

system is defined as the number of molecules of each element in S at time t: X(t) =30 (
X1(t), ..., XN (t)

)
. The evolution of the system is given by the interaction of the31

chemical species through M reaction channels {R1, ..., RM}. Each reaction channel is32

represented by the following general scheme:33
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v̄1jX1 + ...+ v̄NjXN → v̂1jXN + ...+ v̂NjXN , (1)

for j = 1, ...,M , where vij = v̂ij − v̄ij are the reaction stoichiometries. The stoichiome-34

try matrix v is composed of all the reaction stoichiometries.35

36

Given the microscopic random processes that govern chemical reactions, it is possible37

to describe the evolution of X(t) as a homogeneous Markov process in continuous time.38

Considering this framework, the Chemical Master Equation (CME) describes the prob-39

ability that the system has a specific copy number of each Si at a given point in the40

future:41

∂P (X, t)

∂t
=

M∑
j=1

[
aj(X− vj)P (X− vj , t|X0, t0)− aj(X)P (X, t|X0, t0)

]
(2)

where the two terms within brackets give the rate at which the probability of being in42

state X increases or decreases over time because of reactions into or out of state X,43

respectively. aj indicates the probability that the reaction Rj will occur in the next44

infinitesimal interval [t, t+ dt).45

B.3 Stochastic simulations46

Calculating the PDE directly by solving the chemical master equation is in most cases47

computationally infeasible. Therefore, in this study we approximated the PDE by48

repeated stochastic simulation runs. Each simulation run results in one realisation49

of a stochastic time series, and the combined runs let us estimate the evolution of the50

probabilities of the system being in a certain state at various time points. For reasons of51

computational efficiency we used an approximate stochastic simulation algorithm, the52

adapted τ -leap method [1]. In contrast to exact stochastic simulation methods, that53

simulate each single reaction event, the τ -leap methods estimate the number of reaction54

events for each biochemical reaction in the model during a suitable chosen time step.55

We use the method as implemented in the software COPASI [2], which is based on a56

time step selection scheme and other improvements by Cao et al. [1].57

In order to verify the appropriateness of the approximative simulation method, we58

compared the distributions obtained by 1000 runs of exact simulation using the original59

direct method [3] with distributions obtained from approximative simulations (which60

are at least 2 orders of magnitude faster in this model). Fig D shows the differences in61

the resulting distributions, which are neglectable in the context of this study.62
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Figure D. Comparison of simulation results using the exact direct method
for stochastic simulation vs. the adapted τ-leap method as used in this
study. Time dependent PDEs were estimated using 1000 simulations using the exact
direct method and the adapted τ -leap method, respectively. The heatmap shows the
KS-distance for the two methods at different time points for different variables. The
distances are below 0.05 for all variables and timepoints, which is not relevant in the
context of this study.

B.4 Statistical moments63

Solving the CME or calculating the PDFs from multiple rounds of SSA can give full in-64

formation regarding the probability of each state at any given time point. Nevertheless,65

sometimes it is more convenient to collaps the full information to estimate some char-66

acteristic properties from those distribution such as the statistical moments [4]. The67

first statistical moment is known as the mean and is calculated as the sum of each value68

weighted by the its own probability, that is:69

E(X(t)) =

∞∑
i=0

XiP (Xi(t)) (3)

The second statistical moment is also known as the variance, and higher moments can70

be computed, but this will not be discussed in the manuscript.71
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C Parameter estimation strategy72

The aim of the parameter estimation strategy is to find a unique parameter set that73

can reproduce both the cell population data (time course data from immunoblotting74

measurements) and the single-cell data (flow cytometry data). Given the different res-75

olutions and time scales in the experimental data sets we divided our optimization76

strategy in four steps that feedback each other until finding the final parameter values:77

the first step was a literature search where initial parameter guesses or values ranges78

were generated, the second step consisted in fitting the model under deterministic dy-79

namics to the cell population data, the third step involved the fitting of the stochastic80

version of the model with experimental flow cytometry distributions. The final fourth81

step validates that the stochastic model with the fitted parameter set reproduces both82

the cell population and single cell data. Concurrently, we estimated the system’s ini-83

tial condition with a similar optimization routine as the basal concentrations for many84

species incorporated in the model were unknown: Following a literature search to deter-85

mine or narrow down initial conditions (1), molecule numbers for IRF9n, mIRF9c and86

STAT2-IRF9 complexes as well as localisation distributions of STAT2 were estimated87

such that the model is in a steady state in absence of interferon under consideration88

of literature knowledge such as the presence of nuclear retention signals and observed89

localisation ratios (2). When fitting of the stochastic version of the model with experi-90

mental flow cytometry distributions (3), initial ISG particle numbers were assigned to91

the experimental FACS data of unstimulated cells using scaling factors (OP. 4-7). A92

diagram of the fitting strategy is given in Fig E. Notice that with this strategy we were93

able to fit the temporal response of the IFN system and the stochastic dynamics in the94

final ISG expression.95

Figure E. Parameter estimation strategy. The parameter estimation strategy
was divide in 4 different steps. The figure shows the parameters fitted at each step.
The final model reproduces with a single parameter set the cell population and
single-cell data. Parameter given in parenthesis represent a range of parameters. The
list with the parameter values is given in Table 1, initial conditions are given in
Table 3 of the main section.
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C.1 Integrating experimental data and model dynamics96

C.1.1 Time course data97

Time course data were produced by Maiwald et al. [5]. The data described the temporal98

dynamics of different elements of the JAK-STAT signaling pathway. Using quantitative99

immunoblotting the dynamics of phosphorylated JAK1, pSTAT1 and nuclear IRF9 were100

measured in Huh7.5 cells after stimulation with 500 UI/mL of IFN-α at different time101

points for a total time of 180 min. The experimental measurements of phosphorylated102

JAK1 (pJAK1†) were mapped with active receptor (AR) in the model as follows:103

pJAK1†(ti) = φ1 ∗
(
AR(ti)−AR(t0)

)
, (OP.1)

where φ1 is an scaling factor.104

105

Given that different complexes are detected by the used antibody against phosphory-106

lated STAT1, the experimental measurements of cytoplasmic phosphorylated STAT1107

(pSTAT1†) were mapped with the different cytoplasmatic complexes of pSTAT1 that108

are described in the model as follows:109

pSTAT1†(ti) = φ2 ∗
(
pSTAT1(ti) + dimerSTAT (ti) + ISGF3c(ti)

− pSTAT1(t0)− dimerSTAT (t0)− ISGF3c(t0)
)
,

(OP.2)

where φ2 is an scaling factor.110

111

The experimental measurements of nuclear IRF9 (IRF9†) were mapped with the nuclear112

complexes involving IRF9 in the model as follows:113

IRF9†(ti) = φ3 ∗
(
ISGF3n(ti) + STAT2-IRF9n(ti) + IRF9n(ti)

− ISGF3n(t0)− STAT2-IRF9n(t0)− IRF9n(t0)
)
,

(OP.3)

where φ3 is an scaling factor.114

115

C.1.2 Flow cytometry data116

Experimental data describing expression of MxA and IFIT1 after IFN-α stimulation in117

a population of Huh7.5 cells. Experiments were done in the following way: first, cells118

were transfected with a BAC (Bacterial Artificial Chromosome) containing MxA and119

reporter GFP and dGFP genes fused, subsequently cultures were treated with two con-120

centrations of IFN-α (100 and 1250 UI/mL). For illustrative purposes we selected the121

treatment with 250 UI/mL of IFN-α. Then, fluorescence in the cultures was monitored122

using flow cytometry at different time points during 32 hours.123

124

The experimental measurements of MxA (MxA†) were mapped with the MxA in the125

model as follows:126

MxA†(ti) = φ4 ∗MxA(ti), (OP.4)

where φ4 is an scaling factor.127

128

The experimental measurements of IFIT1 (IFIT1†) were mapped with the IFIT1 in129

the model as follows:130

IFIT1†(ti) = φ5 ∗
(
IFIT1(ti) + 65

)
, (OP.5)
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where φ5 is an scaling factor and 65 serves as numeric constant to compensate for131

IFN-independent IFI1 expression through cross-talk (e.g. STAT1-independent Trans-132

activation of ISG56 promoter by IRF-3 [6, 7]). Even though MxA is also affected by133

IFN-independent cross-talks, no compensation was applied as its expression differs from134

IFIT1 in being dependent on STAT1 signaling [7,8] and due to measurements indicating135

that IFN scores correlate strongely with monocyte MxA proteins [9, 10]136

137

The initial particle numbers of MXA and IFIT1 of the model given in Table 3 of the138

main section were calculated as follows:139

MxA(t0) = mean
(
MxA†(IFN0)

)
/(φ4 ∗ VCytoplasm), (OP.6)

140

IFIT1(t0) = mean
(
IFIT1†(IFN0)

)
/(φ5 ∗ VCytoplasm), (OP.7)

where φ4 and φ5 are scaling factors. Note that for the stochastic simulations the re-141

porter’s initial conditions were sampled from a log-normal distribution which adequately142

reproduces experimental data (Fig F) rather than taking the scaled experimental mean143

expression.144

Table B. Scaling factors

Scaling Factor Value
φ1 1.14× 10−3

φ2 5.43× 10−5

φ3 1.07× 10−3

φ4 5.099
φ5 29.62

C.2 Comparing deterministic model and cell population data145

The measurements of time course data represent the average dynamics of proteins in a146

population of Huh7.5 cells. Those measurements were related to the the corresponding147

observable chemical species in the model with a specific set of parameter values θ =148

{θ1, ..., θd}, using a squared differences functional:149

FD(θ, SO) =

m∑
i=1

n∑
j=1

(S†
ij − SO

ij (θ))
2. (OP.8)

C.3 Fitting the stochastic system to flow cytometry data150

Flow cytometry is a high-throughput technology that measures single-cell fluorescence151

from labeled biomolecules through a detector system. By an automated process, it152

measures thousands of cells at a time capturing in this way the cell-to-cell variability153

in the culture. Measurements of the same cell population at different time points can154

be taken and the temporal evolution of the whole population can be monitored. Given155

the resolution obtained by flow cytometry and the large number of repetitions it is an156

excellent source of data to fit and analyze stochastic models.157

158

The process to fit the stochastic system to flow cytometry data was developed based on159

Lillacci’s [11] and Aguilera’s works [12]. Commonly, flow cytometry measurements are160

analysed by histograms or probability density functions (PDFs). However, a drawback161

of theese representations is that their shape is dependent on the number of bins used162

for its construction. For this reason, cumulative density functions (CDFs) have been163
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suggested as more accurate representations of flow cytometry data [13]. The CDF of a164

random variable x is the probability that the random variable is less than or equal to165

some value, that is: F (a) = P (x ≤ a) [13].166

167

In our case, we build empirical CDF (ECDF) for experimental data and simulations re-168

sults. First, having nm repetitions of single-cell experimental data from flow cytometry169

measurements at I time points ti, i = 1, . . . , I, that is m(ti) = {m1(ti), ...,mnm(ti)}170

ECDFs for the experimental data F̂e(m(ti)) were built. In a similar way, considering171

a specific set of parameter values θ = {θ1, ..., θd}, we performed ns repetitions of the172

stochastic simulations s(ti) = {s1(ti), ..., sns(ti)}. The total of those stochastic simula-173

tions were used to build the ECDF for each ti that is F̂s(s(ti), θ).174

175

To calculate the distance between F̂e and F̂s we used the Kolmogorov distance (DKS),176

that is the absolute difference between two ECDFs [13]. For F̂e and F̂s their Kolmogorov177

distance is:178

DKS = max
x

|F̂e − F̂s| (OP.9)

Experimental data distributions came from measurements of tens of thousands of single179

cells by flow cytometry, whereas distributions from the stochastic model requires ns180

stochastic simulations. Computing the model distribution using ns in the order of tens181

of thousands is computationally expensive even for simple models. To reduce computa-182

tional cost in our simulations we calculated a minimal number of stochastic simulations183

n̂s needed to build the distribution with a quality good enough to be used during the184

optimization strategy. An important finding introduced by Lillacci [11,13] is the defini-185

tion of a minimal number of simulations n̂s needed to apply the Kolmogorov distance.186

It is calculated using the properties of the Kolmogorov distribution as follows:187

188

n̂s =


−log(α2 )

2
(
ϵ−

√
− 1

2·nm logα
2

)2

 , (OP.10)

where ⌈x⌉ represents the closest integer to x. α = 1 −
√
1− β and β represent a fixed189

confidence level, ϵ represents the desired tolerance [13]. In Lillacci’s implementations190

typical values for β = 0.05 (representing 95% confidence) and ϵ = 0.05 are used.191

Since the experimentally obtained flow cytometry measurements suggest a logarithmic192

normal distribution of protein concentrations in the unstimulated state, initial condi-193

tions were sampled from a log-normal distribution (Fig F).194
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Figure F. The reporter’s initial conditions were sampled using a log-normal
distribution (blue line) which adequately reproduces experimental data
(histogram).
Time series data of all flow cytometry measurements of unstimulated cells (0 UI/mL
IFN) were combined and its mean value and standard deviation calculated to
determine the formula of the logarithmic normal distribution for basal expression. The
lognormal distribution for MxA is characterized by a log mean value of 8.85 and a a
standard deviation on the log scale of 0.45, while IFIT1’s initial particle number is
sampled from a lognormal distribution with a log mean of 9.48 and a log sd of 0.45.
The IFIT initial particle number was adjusted with 65 molecules times scaling factor 5
to adress for IFIT1 expression through cross-talk (see Section S3.1.2). The
Kolmogorov-Smirnov distance DKS between experiment and log-normal distribution
is below 0.05. In the plot, the x-axis represents the fluorescence level in arbitrary units
of fluorescence. The integral over the density (area under the curve) is normalized so
that it equals one. Prior to that, it was tested whether the conditions for assuming a
normal distribution were given.
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C.4 Parameter searches195

Parameter searches consisted in optimization routines based on genetic algorithms196

(GA) [14, 15]. GAs mimic evolution and are based on the mutation, reproduction and197

selection. By the continuous process of selecting the best parameters after each gener-198

ation, the algorithm evolves towards a minimum in parameter space. Our optimization199

strategy is based on Aguilera et al. [12]. The proposed method improves its performance200

by selecting parameters values after comparing the similitude between the first statis-201

tical moment of the system and the first statistical moment in the experimental data202

distribution. By this pre-selection of parameter values most of the original parameters203

are rejected and the algorithms focus on the finding of parameters that reproduce the204

observed distribution dynamics. This pre-step significantly reduces the computational205

cost. For our optimization routine we implemented an population of 1000 individuals206

for 15 generations. The following settings for genetic operators were chosen: random207

(log-uniform) population of real values, linear-rank selection, single-point crossover and208

log-uniform random mutation. As parameters for the algorithm we used an elitism rate209

υ = 0.2, a crossover rate of 0.8 and a mutation rate µ = 0.2. At the end of the genera-210

tions the best solution of the algorithm was selected as θfit. A pseudo-code for the GA211

is given in Algorithm S2 and a graphical description is given in Fig G.212

213

Data: High-throughput PDFs. Biochemical Model.
Define: Number of Free Parameters (θfp). Ranges for Parameter Values.
Number of Generations (G). Population Size (PS). Mutation Rate (µ). Rate of
Elitism (υ).
Result: Parameter values that best reproduce the experimental data.

GENERATE a initial population of random parameters.

for i = 1 : G do
j = 1 ;
while j < PS do

Assign the jth parameter set in the model;
Run deterministic dynamics ;
Test deterministic precondition ;
if deterministic precondition is true then

RUN stochastic simulations ;
Objective Function (OF ) evaluation ;
fitness = −OF

else
Reject the jth parameter set ;
Set OF = deterministic evaluation value ;
fitness = −OF ;

end
j = j + 1

end

RANK individuals according to its fitness ;
SELECT a number of parental individuals (PI), np = PS × ϵ ;
RECOMBINE PI until generate a offspring number, no = PS − PI ;
MUTATE each offspring with a number of mutations, nm = θfp × µ;

end
Algorithm S1: Genetic algorithm with a deterministic precondition

214
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Figure G. Genetic algorithm strategy with deterministic preconditions.
Genetic algorithms are stochastic search algorithms that resemble natural selection
and sexual reproduction by mimicking the biological mechanisms of selection,
recombination and mutation. This algorithm is made of a population of individuals
(parameter sets), and each contains a genome that is defined by the number of
parameters to optimize. The individuals are ranked after solving the objective
function, and a population of parental individuals is selected according to an elitism
rate (υ). New individuals (offspring) are generated by pairing and recombining the
parental genomes (cross-over). Variability is introduced in the population by adding
mutations in the new individuals according to a given mutation rate (µ). By the
continuous process of selecting the best parameters after each generation, the
algorithm evolves towards a minimum in parameter space. Our optimization strategy
is based on Aguilera et al. [12]. The proposed method improves its performance by
selecting parameters values after comparing the similitude between the first statistical
moment of the system and the first statistical moment in the experimental data
distribution. By this pre-selection of parameter values most of the original parameters
are rejected and the algorithms focus on the finding of parameters that reproduce the
observed distribution dynamics. This pre-step significantly reduces the computational
cost.
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C.5 Parameter estimation results215

Figure H. Fitted MxA reporter single-cell data to the stochastic model.
The parameterized model can fully capture the heterogeneity in the IFN response for
the surrogate marker MxA at five different time points upon stimulation with various
IFN concentrations ranging from 0 – 1250 UI/mL. For each distribution, the median
(M) and variance (s) are given. A switch-like expression is observed for single-cell
trajectories, whilst the whole population displayed unimodality. At the higher IFN
concentrations, our model underestimates the variance of the distributions.
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Figure I. Fitted IFIT1 reporter single-cell data to the stochastic model.
The parameterized model can fully capture the heterogeneity in the IFN response for
the surrogate marker MxA at five different time points upon stimulation with various
IFN concentrations ranging from 0 – 1250 UI/mL. For each distribution, the median
(M) and variance (s) are given. A switch-like expression is observed for single-cell
trajectories, whilst the whole population displayed unimodality. Again, our model
underestimates the variance at higher IFN concentrations.
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D Effect of extrinsic noise in the signaling pathway216

Figure J. Model temporal stochastic dynamics without extrinsic noise.
Time course data describing the temporal dynamics of all species involved in the
JAK-STAT signaling pathway. The plots represent the median values calculated with
the repetitions of the stochastic model (orange lines). The y-axis has units of
Molecules per Cell (M/C). The range of the distributions is indicated by the light gray
ribbons, while dark gray ribbons represent 50% KI intervals.
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Figure K. Model temporal stochastic dynamics for a system with extrinsic
noise (σ = 0.3).
Time course data describing the temporal dynamics of all species involved in the
JAK-STAT signaling pathway. The plots represent the median values calculated with
the repetitions of the stochastic model (orange lines). The y-axis has units of
Molecules per Cell (M/C). The range of the distributions is indicated by the light gray
ribbons, while dark gray ribbons represent 50% KI intervals.
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Figure L. Model temporal stochastic dynamics for a system with extrinsic
noise (σ = 0.6).
Time course data describing the temporal dynamics of all species involved in the
JAK-STAT signaling pathway. The plots represent the median values calculated with
the repetitions of the stochastic model (orange lines). The y-axis has units of
Molecules per Cell (M/C). The range of the distributions is indicated by the light gray
ribbons, while dark gray ribbons represent 50% KI intervals.
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E Promoter analysis for MxA and IFIT1217

MxA promoter sequence218

219

MxA promoter contains two functional IRES sites (marked in red in the following se-220

quence) that have been experimentally proved to be activated by ISGF3. [16,17].221

222

TCATCAGTTAAGGCTGTTTTTACTTCTTTTGTGGATCTTCAGTTACTTTAGGCCATCTGGATGTATACCTGCAAGTC223

ACAGGGGATGCGATGGCCTGGCCTGGGATGCGATGGCCTGGCCTGACAACTATTACCTATGTTATGTTTATTATTTT224

AAGCTTTATTATTACTATTTTATTTATTTTATTTTATTTTCCTTCCACACACCCGTTTCCACCCTGGAGAGGCCAGAT225

GAGCCAGACTCCAGGGAGGCCTAGAAGTGGGCAAGGGGAAACGGGAAAGGAGGAAGATGGTATGGGTGTGCCTGGT226

TAGGGGTGGGAGTGCTGGACGGAGTTCGGGACAAGAGGGGCTCTGCAGCCATTGGCACACAATGCCTGGGAGTCCC227

TGCTGGTGCTGGGATCATCCCAGTGAGCCCTGGGAGGGAACTGAAGACCCCCAATTACCAATGCATCTGTTTTCAAA228

ACCGACGGGGGGAAGGACATGCCTAGGTTCAAGGATACGTGCAGGCTTGGATGACTCCGGGCCATTAGGGAGCCTC229

CGGAGCACCTTGATCCTCAGACGGGCCTGATGAAACGAGCATCTGATTCAGCAGGCCTGGGTTCGGGCCCGAGAAC230

CTGCGTCTCCCGCGAGTTCCCGCGAGGCAAGTGCTGCAGGTGCGGGGCCAGGAGCTAGGTTTCGTTTCTGCGCCCG231

GAGCCGCCCTCAGCACAGGGTCTGTGAGTTTCATTTCTTCGCGGCGCGGGGCGGGGCTGGGCGCGGGGTGAAAGAG232

GCGAAGCGAGAGCGGA233

234

IFIT1 promoter sequence235

236

IFIT1 promoter contains two functional IRES sites (marked in red in the following237

sequence) that have been experimentally proved to be activated by ISGF3. [18].238

TTTTAGACGGAGTCTCGCTCTGTCACCAGACTGGAGTACAGTGGTGTGATCTCGGCTCACTGCAACCTCTGCCTCC239

CAGGTTCAAGCAATTCCCCTGCCTCAGCCTCTCGAGTAGGTGGGACTACAGGTGCACACCACCACACCCAGCTAAT240

TTTTTGTATTTTAGTAGAGAGGGGGTTTCACCATGTTGGCCACGATGGTCTCCATCTCCTGACCTTGTCATCCGCC241

CACCTTGGCCTCCCAAAGTGCTGGGACTACAGGCATGAGCCACCGCACCCAGCCAAGAATCATTATTTTTAACTTG242

ATGACTGAAAATAATAATAATAATAGTTACCACTTATTTGCATGCTTCTATGTGCCAGGTAGTTGCTAACTATTTA243

AACTCAAATTCCATGAACTGTAGTGGAGGTTGTACTGGAATTTGATTCAGAATGACAGTGTCCATGATGGAGCAAT244

AGAGGGCTCTCTATTTCAAACCATACCTCCTTGCTTTTACCTCCTGCCTAAGTCATCAGGGGTTAGAAGGCTTTCT245

AGGTATTGGTCTCTTTCCTTCATTCCTAAACCAGATTGGTTGCTTATTTCCGTCAAGCTGAAACCAAAAGTAAGCA246

ACCAAAAAGCAACCAGCAACCAAAAGCCTTGTTACTCAATTAATTAAGAGTAGATTTTTATATTTGATAGTAGGTT247

CCTTCTAAATATAGAAACTGAAAATAGAGCTATCTCCTTCAATTCTCCTTTTTCTGTGTATTCATCCAGAATCCAG248

CCACCAACTGCCACAATAGGCAGCAATGGACTGATGTTCTTTAGGGAGGACGTGAATCTCGTTCCAAATGCTGGCC249

AGTCATTGGGTTTCTGCAGCACTAGAAACATCTATGGTTGCAGGTCTGCAGTTTATCTGTTTTAAAATAGAAACAA250

AGTTTCATTCCCCACCCCCCCCCGTCAGCAGGAATTCCGCTAGCTTTAGTTTCACTTTCCCCTTTCGGTTTCCCTAGG251

TTTCCAACTT252
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Figure M. ISG promoter architectures and gene expression dynamics.
Different promoter architectures in the ISG may explain the particular IFN response.
A) MxA and IFIT1 promoters only contain two transcription binding sites for ISGF3,
and cooperativity has not been proved to take place during IFN type-I responses [18].
The lack of cooperative behavior in the MxA and IFIT1 promoters can explain the
observed graded (unimodal) response. B) IRF7 promoter contains two different
transcription factors binding sites (ISRE and IRF-E) that are activated by ISGF3 and
a IRF7 dimer, respectively. Bimodality (all-or-none switch response) in IRF7
expression can be justified by circuit with a positive feedback loop and the
non-linearity caused by the complex activation of its receptor [12,19].
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F Basal state253

Figure N. Model temporal stochastic dynamics for a system without IFN
treatment (basal state).
Time course data describing the temporal dynamics of all species involved in the
JAK-STAT signaling pathway. The plots represent the median values calculated with
the repetitions of the stochastic model (orange lines). The y-axis has units of
Molecules per Cell (M/C). The range of the distributions is indicated by the light gray
ribbons, while dark gray ribbons represent 50% KI intervals.

G Effect of nucleus sizes on stochastic dynamics254
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Figure O. Stochastic dynamics of cells with a nuclear-to-cytoplasmatic
ratio of 27% (cf. 13.5% for healthy hepatocytes).
A) Model temporal stochastic dynamics for a system without extrinsic noise. Time
course data describing the temporal dynamics of all species involved in the JAK-STAT
signaling pathway. The plots represent the median values calculated with the
repetitions of the stochastic model (orange lines). The y-axis has units of Molecules
per Cell (M/C). The range of the distributions is indicated by the light gray ribbons,
while dark gray ribbons represent 50% KI intervals. B) Variability in the JAK-STAT
signaling pathway was measured during different time points and for all the elements
that form the pathway. The effects of extrinsic noise in the system were calculated by
the coefficient of variation (cv = σS/(µS + 0.1) , where the subindex s represents the
species in the pathway). In the plot the colorbar varies between 0 (white color) and
larger than 4 (blue color), dark colors represent high variability in the dynamics of the
studied species. The plots are consistent with those where a N:C ratio of 13.5% was
assumed (Fig 5B). C) Stochastic simulations of different time points after IFN
stimulation displaying a correct agreement in shape and location for multiple
nuclear-cytoplasmic ratios. Simulated time-dependent distributions were computed by
solving our model under stochastic dynamics using a distribution of values as initial
conditions and repeating the simulations 1,000 times assuming a N:C ratio of 13.5%
(black histogram) and 27% (red histogram), respectively. The red histogram is scaled
by 24% to compensate for shifted steady state conditions.
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H Abbreviations255

AR, active Interferon receptor; a.u., arbitrary units; BAC, bacterial artificial chromo-256

some; CDF, cumulative density function; dimerSTAT, heterodimer made by phosphory-257

lated forms of STAT1 and STAT2; FACS, fluorescence activated flow cytometry; IFIT1,258

Interferon-induced protein with tetratricopeptide repeats 1; IFN, interferon; IR, in-259

active interferon receptor; IRF9, Interferon regulatory factor 9; ISG, IFN-stimulated260

gene; ISGF3, Interferon-stimulated gene factor 3; GA, genetic algorithm; GFP, green261

fluorescent protein; JAK, Janus kinase; KS-distance, Kolmogorov-Smirnov distance;262

MxA, Interferon-induced GTP-binding protein MxA; CDF, cumulative density func-263

tion; pSTAT, phospho-signal transducer and activator of transcription; R1, Interferon264

receptor subunit 1; R2, Interferon receptor subunit 2; RC, Interferon receptor complex;265

SOCS, Suppressor of cytokine signaling; STAT, signal transducer and activator of tran-266

scription; SSA, stochastic simulation algorithm; UI, International Units.267

268
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layered stochasticity and paracrine signal propagation shape the type-I interferon329

response. Molecular systems biology. 2012;8(1):584.330


