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Materials and Methods: 

 

Cell lines 

The mouse glioma 261 (GL-261) cell line was purchased from NCI-Frederick Cancer Research 

Tumor Repository and cultured in RPMI-1640 medium (Gibco, 11875119). Platinum-E cells (Cell 5 

Biolabs, RV-101) were cultured in DMEM (Gibco, 11995073) and were selected in 1 μg/mL 

puromycin (InvivoGen, ant-pr-1) and 10 μg/mL blasticidin (Sigma, 15205-25MG). B16-OVA cell 

lines were generated as previously described [53] and cultured in RPMI-1640 medium. MC38 cells 

were cultured in DMEM medium. B16 cells were cultured in RPMI-1640 medium. All media were 

supplemented with 10% FBS and 1% penicillin-streptomycin (Thermo Fisher Scientific, 10 

15140122). 

 

Mice 

Wild type C57BL/6 were purchased from the Jackson Laboratory (000664). OT-1 (C57BL/6-

tg(tcra/tcrb)1100Mjb/J) mice were purchased from the Jackson Laboratory (003831) and bred in-15 

house. 7–10-week-old female mice were used for all experiments. All experimental mice were 

housed in pathogen-free conditions and were handled in accordance with animal care guidelines 

from the Harvard Medical School Standing Committee on Animals and the National Institutes of 

Health. 

 20 

Overexpression by lentiviral transduction in MC38 and B16 

Human IDH1 WT and R132H cDNAs were cloned into pLenti-EFIa-IRES-Hygro (plasmids were 

a gift from Sam McBrayer, UT Southwestern). Lentivirus was made by Turbofect-based 

transfection (Thermo Fisher Scientific, R0533) of HEK293T using lentiviral packaging plasmids. 

Supernatant was replaced after 24 hours, and viral supernatant was collected after 48 and 72 hours 25 

and filtered through a 45-μm filter. Undiluted viral supernatant was supplemented by polybrene 

(Sigma, TR-1003-G) at a final concentration of 8 μg/mL and applied to previously seeded MC38 

or B16 cell lines for 24 hours. Lentivirally infected cell lines were selected in cultured medium 

containing hygromycin (700 μg/mL for B16 and 300 μg/mL for MC38). 

 30 

Syngeneic mouse tumor models and TIL and TIF isolation 

At 8-10 weeks, female C57BL/6 were anesthetized with isoflurane, shaved at the injection site, 

and subcutaneously injected in the abdominal flank with 250,000 MC38 or B16 cells. Tumors 

were monitored every 2-3 days. On day 16, mice were sacrificed for tissue harvest. Tumor 

intestinal fluid (TIF) was harvested by centrifugation at 400 g for 15 minutes using a 20 M nylon 35 

net filter (EMD Millipore, NY2004700). Tumors were digested in 1x DPBS, containing calcium 

and magnesium, and 250 units/mL of Type I Collagenase (Worthington Biochemical Corporation, 

LS004194). Samples were then dissociated using GentleMACS (Miltenyl, 130-093-235), 

incubated for 20 minutes at 37°C with gentle rocking, further dissociated by GentleMACS, and 

then filtered through a 70 M filter. TILs were subsequentially enriched by centrifugation through 40 

a 40%/70% Percoll gradient at 800 g for 20 minutes with the acceleration and brakes off. 

Leukocytes were recovered from the interface. 

 

Chemicals 

D-2HG (11605), L-2HG (11876), Rotenone (83-79-4), and GSK2837808A (1445879-21-9) were 45 

purchased from Cayman Chemicals. Nicotinamide mononucleotide (N3501-25MG), N-Acetyl-L-



 3 

cysteine (A7250-5G), Hydrogen peroxide solution (H1009-5ML), O-

(Carboxymethyl)hydroxylamine hemihydrochloride (AOA, C13408-1G), Sodium oxamate 

(O2751-5G), Antimycin A (A8674-50MG), and Oligomycin A (O4876-5MG) were purchased 

from Sigma. FCCP (103015-100) was purchased from Agilent. U-13C6 D-Glucose (CLM-1396-

0.5) was purchased from Cambridge Isotope Laboratories. U-13C5 D-2HG and L-2HG were 5 

generously provided by Agios Pharmaceuticals.  

  

2HG uptake and quantification of intracellular concentration  

Activated CD8+ T cells were cultured for 24 hours in a range of D- or L-2HG concentrations. Cells 

were pelleted and the media was removed following careful centrifugation at 13,000 rpm for 20 10 

seconds using a microcentrifuge. Following the same procedure, 3 washes with ice-cold PBS were 

performed to ensure that all 2HG-containing media was removed. Intracellular metabolites were 

subsequently extracted in 80% MeOH. Samples were analyzed by mass spectrometry as described 

below. 2HG content (mol) inside the samples was determined by interpolation using 2HG total ion 

counts measured in the standards. 2HG content was then divided by cell number to obtain the 15 

amount per cell (mol/cell). Finally, to obtain the intracellular concentration of 2HG inside an 

activated CD8+ T cell, 2HG content expressed as mol/cell was divided by the estimated volume of 

an activated murine CD8+ T cell, which is close to 500 femtoliters, as reported in the literature 

[17]. 

 20 

Isolation and activation of naïve CD8+ T lymphocytes 

Naïve CD8+ T lymphocytes were isolated from mouse spleens by negative selection using the 

Naïve CD8a+ T cell Isolation Kit from Miltenyi Biotec (130-096-543). Following isolation, naïve 

CD8+ T lymphocytes were activated with plate-bound 4 g/mL CD3 (BioXCell, BE0001-1) and 

4 g/mL CD28 (BioXCell, BE0015-1) and cultured in RPMI-1640 supplemented with 10% heat-25 

inactivated FBS, 10 mM HEPES (Gibco, 15630080), 0.05 mM 2-mercaptoethanol (Sigma, 

M3148-100ML), and 1% penicillin-streptomycin. After 48 hours, the media was refreshed and 

100 U/mL recombinant murine IL-2 (PeproTech, 212-12-20) were added. For intracellular 

cytokine staining, CD8+ T cells were stimulated with 100 ng/mL PMA (Sigma, P1585-1MG) and 

500 ng/mL ionomycin (Sigma, I0634-1MG) in the presence Brefeldin A (BD Biosciences, 30 

555029) for 4 hours.  

 

Degranulation assay 

Naïve CD8+ T cells were activated in plates coated with CD3 and CD28 and cultured for 6 days 

in the presence of IL-2, refreshing the media every 3 days. On day 6, activated CD8+ T cells were 35 

restimulated with 5 g/mL CD3 in the presence of CD107a-PE (clone 1D4B, Biolegend), 

CD107b-PE (clone M3/84, Biolegend) and Brefeldin A. CD28 stimulation was used as a 

negative control. After 5-6 hours, cells were washed and immediately analyzed via flow cytometry. 

The percentage of PE-positive cells indicates cells that have degranulated. 

 40 

In vitro killing assay 

Naïve CD8+ OT-1 T cells were activated for 72 hours in plates coated with 1 g/mL CD3 and 1 

g/mL CD28 in the presence of 100 U/mL IL-2 and 10 ng/mL IL-12 (PeproTech, 210-12-50). 

After 72 hours, 5,000 activated CD8+ OT-1 T cells and 30,000 OVAwt or OVAΔ257-264-expressing 

GFP+B16 cancer cells were plated together in a 96-well plate. After 24 hours, plates were 45 
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trypsinized, resuspended in MACS buffer (1X PBS, 1% FBS, and 2 mmol/L EDTA) and analyzed 

by flow cytometry.  

 

Overexpression by retroviral transduction in CD8+ T cells 

The cDNAs of D-2HGDH and bacterial cytoLbNOX were cloned into pMSCV PIG (Addgene, 5 

21654) using MIuI and BamHI restriction sites. Recombinant retrovirus was made by co-

transfection of pMSCV PIG and pCL-Eco (Addgene, 12371) into Platinum-E cells using 

TurboFect transfection reagent. Viral supernatants were collected 48 and 72 hours after 

transfection and cellular debris was removed by filtrating the supernatants through 45-μm filters 

(Thermo Fisher Scientific, 723-9945). Naïve CD8+ T lymphocytes were stimulated for 24 hours 10 

with plate-bound 1 g/mL CD3 and 1 g/mL CD28 and cultured in complete RPMI supplement 

with 100 M non-essential amino acids (Gibco, 11140050), 1 mM sodium pyruvate (Gibco, 

11360-070) and 100 U/mL recombinant IL-2. After 24 hours, T cells were spinfected at 37°C and 

1900 rpm for 90 minutes with freshly collected, undiluted retrovirus containing 10 g/mL 

polybrene. 4 hours post-spinfection, the viral media was removed and fresh complete RPMI media 15 

was added. A second round of transduction was performed the next day, and the media was once 

again refreshed 4 hours after spinfection. GFP+ transduced T cells were selected by flow-cytometry 

sorting using a 70-μm nozzle. 

 

Seahorse assays 20 

The Agilent Seahorse XF Real-Time ATP Rate Assay Kit (Agilent, 103592–100) was used to 

detect the ATP production rates of mitochondrial oxidative phosphorylation and glycolysis, 

respectively. Oxygen consumption rates (OCR), extracellular acidification rates (ECAR) and ATP 

production rates of mitochondrial oxidative phosphorylation and glycolysis were determined on 

the XFe96 Extracellular Flux Analyzer (Agilent), according to the manufacturer’s instructions and 25 

protocols. The day before measurement, the probe plate was hydrated with HPLC grade water in 

a CO2-free incubator and the solution was replaced the following day with XF Calibrant and kept 

in a 37 °C CO2-free incubator for at least one hour. For all assays, activated CD8+ T cells were 

pre-treated with drugs for 24 hours. After 24 hours of treatment, activated CD8+ T cells were 

seeded into poly-L-lysine-coated XF96 cell culture microplates (Agilent, 101085-004) at the 30 

density of 60,000 cells/well. Cells were seeded in Seahorse XP RPMI medium (Agilent, 103576-

100), containing 5 mM glucose (Sigma, G8270-100G), 2 mM L-glutamine (Thermo Fisher 

Scientific, 25030081), 1 mM sodium pyruvate, 1% FBS. To measure maximal respiratory capacity, 

1.5 M FCCP was injected from port A.  

 35 

Mitochondrial membrane potential quantification 

CD8+ T cells were seated in a 96 well plate and stained with 200 nM TMRE (Abcam, ab113852) 

at 37 °C for 30 minutes. As a control, to depolarize the mitochondrial membrane, 20 nM FCCP 

was added for 10 minutes prior to TMRE staining. To modulate the state of the membrane 

potential, the following ETC inhibitors were added for 15 minutes prior to TMRE staining: 2 M 40 

rotenone, 1 M antimycin A, 1 M oligomycin, and 1.5 M FCCP. Cells were washed twice with 

PBS, and immediately analyzed on the LSR II flow cytometer.  

 

Reactive oxygen species quantification 

CD8+ T cells were seated in a 96 well plate and stained with 5 M CellROX Green (Thermo Fisher 45 

Scientific, C10444). 10 mM NAC and 100 M H2O2 were included as negative and positive 
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controls, respectively. Cells were wash twice with PBS, and immediately analyzed on the LSR II 

flow cytometer.  

 

Western blotting 

RIPA buffer containing 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 25 mM 5 

Tris (pH 7.4) and supplemented with protease inhibitors (Roche, 11873580001) and phosphate 

inhibitors 2/3 (Sigma, P5726 and P0044) was used to prepare lysates. Proteins were denatured at 

95°C unless they were used to blot for ETC complexes and were therefore denatured at 50°C. 

Protein levels were normalized using Pierce BCA protein assay kit (Thermo Fisher Scientific, 

23225). Western blotting was performed using the following primary antibodies: ATP5a (Abcam, 10 

ab14748), MTCO1 (Novus, RB24524), SDHa (Thermo Fischer Scientific, 459200), UQCRC2 

(Proteintech, 14742-1-AP), Tubulin (Cell Signaling, 2144S), VDAC1 (Abcam, ab14734), FLAG 

(Cell Signaling, 2368S), D-2HGDH (Proteintech, 13895-1-AP), L-2HGDH (Proteintech, 15707-

1-AP), and tri-methyl histone H3 antibody sampler kit (Cell Signaling, 9783T). 

 15 

Mitochondrial DNA quantification 

Total DNA was extracted using DNeasy Blood and Tissue Kit (Qiagen, 69506) and analyzed by 

real time quantitative PCR. Mitochondrial DNA quantification was performed with mitochondrial 

markers: CO1 (F: TGCTAGCCGCAGGCATTAC, R: GGGTGCCCAAAGAATCAGAAC), 

ND1 (F: CCGCAAGGGAAAGATGAAAGAC, R: TCGTTTGGTTTCGGGGTTTC), and 16S 20 

(F: CCGCAAGGGAAAGATGAAAGAC, R: TCGTTTGGTTTCGGGGTTTC). Mitochondrial 

DNA was normalized to nuclear DNA marker: NDUFV1 (F: CTTCCCCACTGGCCTCAAG, R: 

CCAAAACCCAGTGATCCAGC) 

 

Metabolite measurement by mass spectrometry 25 

For steady state metabolomics experiments comparing D- to L-2HG as shown in Fig. 2B, 0.5 

million activated CD8+ T cells were cultured for 24 hours in the presence of 20 mM D-2HG, 20 

mM L-2HG or left untreated. 

For 13C6 glucose tracing studies as shown in Figure 2E and supplementary figure 5B, 10 mM 13C6 

glucose (CLM-1396-1, Cambridge Isotope Laboratories) was provided at the same time as 20 mM 30 

D-2HG, 20 mM L-2HG, 20 mM oxamate, or 10 M GSK2837808A to activated CD8+ T cells and 

metabolites were analyzed after 24 hours of treatment. For all 13C6 tracing studies, RPMI-1640 was 

replaced by glucose-free RPMI-1640 (Thermo Fischer Scientific, 11879020) and FBS was 

replaced by dialyzed FBS.    

For 13C6 glucose tracing studies with antimycin A treatment as shown in Figure 3C, activated CD8+ 35 

T cells were pre-treated with 20 mM D-2HG for 2 hours, before 10 mM 13C6 glucose was added 

in the presence or absence of 1 M antimycin A for an additional 2 hours. D-2HG was kept for 

the entirety (4 hours) of the assay. 

For 13C5 2HG tracing studies as shown in supplementary figure 2E, 20 mM 13C5 D-2HG (Agios 

Pharmaceuticals), or 20 mM 13C5 L-2HG (Agios Pharmaceuticals) were provided to activated 40 

CD8+ T cells for 2 days.  

To harvest samples, cells were transferred to Eppendorf tubes, rapidly pelleted at 4°C (20 seconds, 

13,000 rpm), and the supernatants were then transferred to a new tube. Next, pellets were washed 

twice with ice-cold PBS using the same centrifugation protocol. To extract metabolites from 

cultured cells, 100 mL 80% MeOH were added to each tube. To extract metabolites from media, 45 

10 mL of media were combined with 90 mL of 80% MeOH. Samples were left on ice for 15 
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minutes, and vortexed every 5 minutes. Methanol extracts were then centrifuged at 4°C for 10 min 

at 13,000 rpm and the upper phase containing polar metabolites was collected and dried using a 

SPD111V Modular Concentrator (Thermo Fisher Scientific). Dried metabolites were stored at -

80°C until ready for analysis. Dried metabolites were resuspended in 50% water/50% acetonitrile, 

and the extract was separated by using an iHILIC column (5μm, 150 × 2.1 mm I.D., HILICON) 5 

coupled to a Thermo Fisher Scientific SII UPLC system. The iHILIC column was used with the 

following buffers and linear gradient: A = water with 20 mM ammonium carbonate with 0.1% 

ammonium hydroxide, B = acetonitrile. The gradient was run at a flow rate of 0.150 mL/min as 

follows: 0 – 20 min linear gradient from 80% to 20% B; 20 – 20.5 min linear gradient from 20% 

to 8-% B; 20.5 – 28 min hold at 80% B; 28 – 30 min hold to waste at 80% B. Mass spectrometry 10 

detection was carried out on a Q Extractive HF-X orbitrap mass spectrometer with a HESI source 

operated in negative mode. Analysis was performed using TraceFinder (Thermo Fisher Scientific) 

and raw ion counts were normalized based on protein levels. 2HG measurements were sometimes 

determined using the Agilent 6470 Triple Quadrupole mass spectrometer (Agilent LC-MS). 

Analytes were eluted in buffer A (97 % H2O, 3% MeOH, 10 mM Tributylamine, 15 mM Glacial 15 

Acetic Acid, pH 5.5) and buffer B (10 mM Tributylamine, 15 mM Glacial Acetic Acid in 100% 

MeOH), and samples were run on a ZORBAX Extend-C18, 2.1 x 150 mm, 1.8 μm (Agilent). The 

gradient was run at a flow rate of 0.25 mL/min for 2.5 minutes of buffer A, followed by a linear 

gradient (100% buffer A to 80% buffer A) for 5 minutes, followed by a linear gradient (80% buffer 

A to 55% buffer A) for 5.5 minutes, followed by a linear gradient (55% buffer A to 1% buffer A) 20 

for 7 minutes, followed by 4 minutes with (1% buffer A). Samples were ionized (with negative 

polarity) using Agilent Jet Spray ionization.  
For TIF analysis, 1 L of TIF was extracted in 50 L of 80% MeOH. D-2HG concentrations were 

determined using an internal standard curve with 13C5 D-2HG. 

 25 

 

Flow cytometry 

Cells were pelleted and washed twice in PBS prior to staining with Fixable Viability Dye 

(eBioscience, 65-0866-14) or LIVE/DEAD Fixable near-IR dead cell stain kit (Thermo Fisher 

Scientific, L34976). Surface staining was performed on ice in FACS Buffer (1X PBS, 3% FBS). 30 

Cell surface markers used: CD25 (clone PC61) and CD69 (clone H1.2F3), CD45.2 (Clone 104), 

CD8b (Clone YTS156.7.7), CD3 (Clone 17A2), CD4 (Clone RM4-5), CD11b (Clone M1/70), and 

CD44 (Clone IM7). Intracellular markers used: Granzyme B (Clone QA18A28), FoxP3 (Clone 

FJK-16s), Interferon- (Clone XMG1.2), and Ki-67 (Clone 16A8). Intracellular granzyme B 

staining was performed using the FoxP3 fix/perm kit (eBioscience). Intracellular cytokine staining 35 

was performed using BD Cytofix/Cytoperm kit (BD Biosciences, BDB554714). All antibodies 

were purchased from BD Bioscience or Biolegend. Proliferation was assessed by CellTrace Violet 

staining (Thermo Fisher Scientific, C34571). Division index was calculated from the total number 

of divisions divided by the number of live cells at the start of culture. Data were analyzed on an 

LSR II flow cytometer and FlowJo software (TreeStar) 40 

 

NAD+/NADH ratio 

0.25 million CD8+ T cells were plated in the presence of 20 mM D-2HG, 20 mM L-2HG, 1 mM 

NMN (positive control), 20 mM oxamate, or 10 M GSK2837808A for 24 hours. NAD+/NADH 

ratio was determined using a commercially available kit (Abcam, ab65348), following the 45 

manufacturer’s instructions.  
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ELISA 

50,000 naïve CD8+ T cells were plated in triplicates in a 96-well plate coated with 4 g/mL CD3 

and 4 g/mL CD28. 48 hours after activation, cells were pelleted by centrifugation and culture 

media was transferred to a new plate and frozen at -80°C for later analysis. The concentration of 5 

IFN- (430804) in the supernatant was assessed with an ELISA kit (Biolegend), following the 

manufacturer’s instructions.  

 

LDH-A/B enzyme activity 

LDH activity was measured in the direction of reduction of pyruvate to lactate by examining the 10 

rate of NADH depletion at 340 nm at room temperature over time using an Epoch Microplate 

Spectrophotometer (BioTek). Briefly, 0.02 ng of recombinant human LDH (R&D Systems, LDH-

A: 9158-HA-010, LDH-B: 9205-HB-050) were diluted in assay buffer (25 mM Tris, 100 mM 

NaCl, pH 7.5) and pre-incubated with varying concentrations of D-2HG or L-2HG for 5 minutes. 

The reaction was initiated by adding a substrate mixture containing NADH (0.8 mM, Sigma, 15 

N8129-100MG) and sodium pyruvate (varying concentrations) and was monitored in kinetic mode 

on the plate reader.  

 

Human glioma tissue samples for MSI and CyCIF 

Glioma specimens were obtained under Institutional Review Board protocols approved at Brigham 20 

and Women’s Hospital (BWH) and Dana–Farber Cancer Institute with informed written consent. 

Each tissue specimen underwent histological evaluation for classification according to the World 

Health Organization classification system by board-certified neuropathologists. Specimens were 

flash-frozen in liquid nitrogen, sectioned to 10 µm thickness at –20°C, and thaw-mounted onto an 

indium tin oxide (ITO) coated glass slide. Serial sections were collected on glass microscope slides 25 

for hematoxylin and eosin (H&E) and cyclic immunofluorescence staining.          

 

Quantification of 2HG by MSI 

A tissue phantom was prepared from post-mortem human brain tissue which was homogenized 

and dispensed into a cryomold and frozen for calibration of the 2HG signal from tissue. A serial 30 

dilution of 2HG ranging from 0.0-20 mM was prepared in rat tail collagen type I, pipetted into a 

1.5 mm channel of a 40% gelatin tissue microarray (TMA) mold, and frozen. The autopsy tissue 

homogenate block was cryo-sectioned to 10 µm thickness and thaw-mounted onto the same ITO 

slide containing the human tumor specimens. The TMA mold was then cryo-sectioned at 10 µm 

thickness and placed on top of the sectioned tissue homogenate. A stock solution of 2HG-d3 was 35 

prepared at 100 mM in water for use as an internal imaging standard. The 2HG-d3 stock solution 

(5 µL) was added to a 1,5-diaminonaphthalene hydrochloride (4.3 mg/mL) matrix solution 

prepared in 5 mL of 4.5/5/0.5 HPLC grade water/ethanol/1 M HCl (v/v/v). Using a TM-sprayer, 

the matrix was sprayed onto the whole slide to coat the matrix evenly with a four-pass cycle, flow 

rate (0.09 mL/min), spray nozzle velocity (1200 mm/min), spray nozzle temperature (75°C), 40 

nitrogen gas pressure (10 psi), and track spacing (2 mm). A 15 Tesla solariX FT-ICR (Bruker 

Daltonics, Billerica, MA) mass spectrometer operating in negative ion mode with a dual 

ESI/MALDI source was used for the quantitative imaging of 2HG and profiling lactate abundance 

from the human glioma specimens. The mass range scanned was between m/z 46.07-3,000 and 

calibrated using a tune mix solution (Agilent Technologies, Santa Clara, CA). The laser frequency 45 

was set to 1,000 Hz, and the step size was set to 100 µm with 200 laser shots per pixel. A 
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continuous accumulation of selected ions (CASI) window was applied with Q1 at m/z 150 with an 

isolation window of 200 m/z. SCiLS Lab software version (2019c premium, Bruker Daltonics, 

Billerica, MA) was used for ion image visualization and data analysis. Each 2HG calibration point 

(1.5 mm TMA spot) and tissue specimens were considered as separate ROIs and the intensity 

values normalized to the 2HG-d3 internal standard at m/z 147.0299 were exported. For each 5 

calibrant concentration 4 replicates were used. The ion intensity from each calibration ROI was 

plotted against the concentration to construct a linear regression model for 2HG quantitation.  

 

Pixel-wise MSI correlation 

The ion images for lactate ([M-H] m/z 89.0244) and 2HG ([M-H] m/z 147.0299) were exported to 10 

imzML using SCiLS Lab software version (2019c premium, Bruker Daltonics, Billerica, MA). 

The R package rMSIproc (https://github.com/prafols/rMSIproc) [54] was used for data loading, 

binning (2 ppm bin size) and visualization. An in-house R package was used for pixel-wise 

calibration of 2HG using the method described in the previous section. The correlation between 

lactate and 2HG in MSI was studied using an in-house R script. 15 

 

Registration of MSI and CyCIF images 

The CyCIF images in pyramided OME.TIFF format were imported using Open Microscopy 

Environment’s (OME) Bio-Formats scripts for MATLAB (https://github.com/ome/bioformats). 

The MSI images in imzML format were imported using rMSIproc and an in-house MATLAB 20 

script. The lowest resolution pyramid level available in each CyCIF image was used for 

registration to minimize resolution mismatch between CyCIF-MSI image pairs. The 2HG MSI 

channel and Hoechst (DNA) CyCIF channels were used in the registration procedure. For each 

image pair, 20 to 30 pairs of fiducial markers were specified manually around the contour of the 

tissue. A projective transformation was used in highly similar image pairs. A piecewise linear 25 

geometric transformation was used in highly dissimilar image pairs. The MATLAB function 

fitgeotrans was used to obtain the transformation matrix. The 2HG and lactate MSI ion images 

were transformed and exported to TIFF format. The intensity scales of each image channel were 

adjusted to match the uint16 maximum value in the TIFF images to the maximum value for each 

ion channel (2x107 a.u. for the 2HG images and 2x106 a.u. for the lactate images). 30 

 

t-CyCIF 

The t-CyCIF approach to multiplex immunofluorescence imaging has been described previously 

[55]. A detailed protocol can be found at Protocols.io 

(dx.doi.org/10.17504/protocols.io.bjiukkew). Briefly, multiplex microscopy data of primary GBM 35 

tissue specimens were collected at 20x (0.75 NA) magnification with 2x2 pixel binning using a 

RareCyte CyteFinder II scanning microscope. Individual image tiles had dimensions of 1280x1080 

pixels and a corresponding pixel size of 0.65 μm/pixel. Four-channel (BV421, AF488, Sytox, 

AF647) imaging data were collected from each of three rounds of CyCIF using the following 

antibodies: cycle 1—Hoechst, autofluorescence (AF488), autofluorescence (AF555), 40 

autofluorescence (AF647); cycle 2—Hoechst, autofluorescence (AF488), Ki67 (Thermo Fisher, 

41-5699-80) , CD8 (Thermo Fisher, 50-0008-82); cycle 3—Hoechst, CD68 (Cell Signaling, 

24850S), SOX2 (Cell Signaling, 5179S), and CD45RB (Thermo Fisher, 50-9458-82). Incubation 

of tissue with blocking solution with secondary antibodies alone during the first cycle served to 

block non-specific antibody binding in the subsequent cycles. Reservation of the ultraviolet 45 

channel for nuclear counterstain (Hoechst) at each cycle allowed for cross-cycle image registration 

https://github.com/prafols/rMSIproc
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based on cell nuclei. Raw RCPNL image files were processed into stitched, registered, and 

segmented multi-resolution OME-TIFF files using the MCMICRO pipeline for multiplex image 

processing [56]. Derived single-cell data were passed through CyLinter: a quality control filter for 

removing cell segmentation instances impacted by microscopy and image-processing artifacts 

(Baker, G. 2021. CyLinter (Version 0.0.36) [Computer software]. 5 

https://github.com/labsyspharm/cylinter). A combination of UMAP and HDBSCAN instantiated 

in CyLinter were used to cluster the data according to integrated antibody signal intensities. 

 

Correlating CD8+ T Cells with 2HG levels in the human glioma microenvironment 

Registered MSI/CyCIF images were partitioned into equal-sized regions of tissue by applying a 10 

grid over the tissue whose x and y intervals corresponded to the pixel size of the original MSI 

images. For each box in the grid, the number of CD8+ T cells (cluster 2 cells) was counted and the 

mean D-2HG pixel intensity was computed. To account for the influence of tissue density on D-

2HG signal, mean 2-HG signals were divided by the total number of cells per box to yield tissue 

density-corrected values. Boxes with < 5 total cells, > 20% of cells affected by microscopy artifacts 15 

as determined by CyCIF analysis, or those at a tissue border were censored from the analysis to 

ensure data quality. Two-way, independent Welch’s t-tests were used to compare tissue density-

corrected D-2HG values between grid boxes with and without at least 1 CD8+ T cell. Spearman’s 

rank-order method was used to compute correlation coefficients (⍴) between tissue density-

corrected D-2HG values and CD8+ T cell numbers for each sample. Statistsical significance for 20 

both tests was determined at an alpha level of 0.05 (p < 0.05). 

 

Low-input RNA-seq 

CD8+ T cells were activated in plates coated with CD3 and CD28 in the presence of 20 mM D-

2HG, 20 mM L-2HG or left untreated. After 6 hours, cells were washed twice with PBS and the 25 

PBS was carefully removed following centrifugation. Cells were then resuspended in TCL buffer 

(Qiagen, 1031576) freshly supplemented with 1% BME in the proportion of 5 L per 1000 cells. 

Lysates were incubated at room temperature for 5 minutes and then stored in -80°C for later 

analysis. RNA-seq was performed with 5 L of the lysate using the standard ImmGen ultra-low-

input RNA-seq protocol 30 

(https://www.immgen.org/img/Protocols/ImmGenULI_RNAseq_methods.pdf). Briefly, reads 

were aligned to the GRCm38 mouse reference genome with STAR (v2.7.3a) and gene-level 

quantification was performed by featureCounts (http://subread.sourceforge.net/; version 2.0.0). 

Raw reads counts were normalized by median of ratios method using DESeq2 package from 

Bioconductor (https://bioconductor.org/packages/release/bioc/html/DESeq2.html). Samples with 35 

less than 1 million uniquely mapped reads were automatically excluded from normalization to 

mitigate the effect of poor-quality samples on normalized counts and downstream 

analysis. Differential gene expression analysis was performed in R (version 4.0.0) with DESeq2 

default Wald test and p-values were corrected for multiple testing using FDR/Benjamini-Hochberg 

method. The adjusted p-value cutoff (FDR) of <0.05 was set as a significance cut-off value. The 40 

enrichment Gene Ontology (GO) terms associated with the list of significantly differentially 

expressed genes (FDR <0.05) were assessed by clusterProfiler R package. 

 

Single cell RNA sequencing analysis 

We carried out analyses of annotated T cells [38] using the R package Seurat (v4.0) 45 

(https://github.com/satijalab/seurat) [57]. T cell clustering was performed using non-negative 

https://github.com/labsyspharm/cylinter
https://www.immgen.org/img/Protocols/ImmGenULI_RNAseq_methods.pdf
http://subread.sourceforge.net/
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://github.com/satijalab/seurat
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matrix factorization (NMF) as previously described [38]. To identify differentially expressed 

genes between IDH-WT and IDH-mut T cells, we used t-test implemented in FindMarkers, and 

used the Bonferroni correction to perform multiple hypothesis testing on p-values. To score cells 

for their expression of identified genes, we calculated the signature scores using AddModuleScore. 

 5 

Quantitative Real-Time PCR 

Total RNA was isolated using Direct-zol RNA MiniPrep Kit (Genesee Scientific, 11-330). One 

microgram of RNA was reverse transcribed using iScript cDNA Synthesis Kit (Bio-Rad, 

1708891). The qPCR was performed using PerfeCTa® SYBR® Green FastMix (QuantaBio, 

101414-270) on a Roche LightCycler 480 (Roche) detection system according to the 10 

manufacturer’s instruction. The following primers were used:  

mGlut1 (F: GGGCATGTGCTTCCAGTATGT, R: ACGAGGAGCACCGTGAAGAT),  

mHk2 (F: TGATCGCCTGCTTATTCACGG, R: AACCGCCTAGAAATCTCCAGA),  

mPfk1 (F: CAGATCAGTGCCAACATAACCAA, R: CGGGATGCAGAGCTCATCA), 

mLdha (F: TGTCTCCAGCAAAGACTACTGT, R: GACTGTACTTGACAATGTTGGGA),  15 

mIFN- (F: TTCTTCAGCAACAGCAAGGC, R: TCAGCAGCGACTCCTTTTCC),  

mIrf1 (F: GGCCGATACAAAGCAGGAGAA, R: GGAGTTCATGGCACAACGGA), 

mGbp6 (F: AAGACCATGATATGATGCTGA, R: GAAAATCCATTTAAGAGAGCC), 

mCxcl10 (F: CCAAGTGCTGCCGTCATTTTC, R: GGCTCGCAGGGATGATTTCAA), 

mIfit3 (F: GACAGCAGTGAGAGAAGACAGAGG, R: 20 

TCTCCTTACTGATGACCATCTGATAGC), 

mXaf1 (F: AGCCATGTGTCTGAGTGCAAA, GCAAAGATCACAACGGGTTTTTC), 

mIigp1 (F: CAGGACATCCGCCTTAACTGT, R: AGGAAGTAAGTACCCATTAGCCA),  

mGbp5 (F: CAGGACATCCGCCTTAACTGT, R: CATCGACATAAGTCAGCACCAG), 

mLy6a (F: GAGGCAGCAGTTATTGTGGAT, R: CGTTGACCTTAGTACCCAGGA), 25 

mGbp2 (F: GCAGCACCTTCATCTACAACAGC, R: 

CACAAAGTTAGCGGAATCGTCTACC), 

mStat1(F: TCACAGTGGTTCGAGCTTCAG, R: CGAGACATCATAGGCAGCGTG), 

mIgtp (F: CTCATCAGCCCGTGGTCTAAA, R: TCACCGCCTTACCAATATCTTCA), 

mGbp3 (F: CTGACAGTAAATCTGGAAGCCAT, R: CCGTCCTGCAAGACGATTCA), 30 

mTgtp2 (F: TGGGACCACTAACTTCACACC, R: GGCCAGTTGTGCATCATTTTC), 

mIrgm2 (F: TCTCCGACGCTGTATTCATTCC, R: CTTCTTTCACGGCAGTCTCAAT), 

mIrgm1 (F: TTTCATCAATGCACTTCGAGTCA, R: AATCCAGGTAAGTCCCACAGC), 

mbActin (F: GGCTGTATTCCCCTCCATCG, R: CCAGTTGGTAACAATGCCATGT), 

mGapdh (F: TTGTCTCCTGCGACTTCAACAG, R: GGTCTGGGATGGAAATTGTGAG). 35 

 

Statistical analysis 

Statistical analysis was performed in GraphPad Prism 9 software. Unpaired Student’s t-test was 

used when comparing two groups. One-way analysis of variance (ANOVA) followed by Tukey-

Kramer’s post-hoc analysis was used when comparing three or more groups. Two-way ANOVA 40 

was used for multiple comparisons within groups. Graphs display mean ± standard deviation. P-

values are denoted as *P < 0.05, **P <0.01, ***P < 0.001, ****P < 0.0001. 

 

Table 1. Clinical and metabolic features of glioma patients samples used for MSI and CyCIF.  
Diagnosis WHO Grade Surgery IDH1 Status MGMT Case Pyruvate 

(ion count) 
c2HG  
(mM) 

Diffuse Astrocytoma 2 Recurrent R132H Unmethylated #01 295348.7 N/A 
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#01 346490.6 N/A 

#01 279764.2 N/A 

Anaplastic Astrocytoma 3 Recurrent R132H Unmethylated #02 464613.9 9.19 

Glioblastoma 4 Recurrent WT Unmethylated #03 237869.4 N/A 

#03 220094.6 N/A 

#03 311961.9 N/A 

#03 230248.3 N/A 

#03 262390.8 N/A 

#03 364593.4 N/A 

#03 227976.9 N/A 

Oligodendroglioma 3 Recurrent R132H Unmethylated #04 192186.4 27.90 

#04 211060.1 51.22* 

#04 219944.7 155.71* 

Astrocytoma 4 Recurrent R132H Methylated #05 275612.9 188.38* 

#05 270072.8 10.34 

#05 317571.2 5.12 

Glioblastoma 4 Recurrent WT Unmethylated #06 223750.4 N/A 

#06 352665.1 N/A 

Diffuse Glioma N/A N/A R132H  N/A #07 190251.3 2.87 

#07 282130.8 18.08 

#07 295680.5 17.98 

#07 293911.1 6.61 

#07 221516.7 2.30 

Residual 
Oligodendroglioma 

2 N/A IDH-Mutant 1p/19q co-deleted #08 249370.3 2.03 

#08 212681.1 5.05 

Diffuse Astrocytoma 2 N/A IDH-Mutant   #09 223833.4 3.67 

#09 81640.39 N/A 

#09 192630.3 N/A 

Anaplastic Astrocytoma 3 Recurrent R132H Methylated #10 264573.4 9.52 

#10 297182.6 11.42 

#10 243211.8 11.36 

#10 232207.3 18.26 

#10 212280 17.84 

Anaplastic Astrocytoma 3 Recurrent R132H Methylated #11 160976.5 N/A 

#11 278303.1 0.12 

#11 250703.9 0.02 

Anaplastic Astrocytoma 3 Recurrent R132H Methylated #12 231139.5 N/A 

#12 287784.7 16.99 

#12 307744.0 8.91 
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Oligodendroglioma 2 Primary R132H Methylated #14 144949.9 N/A 

#14 230237.2 33.60* 

#14 239597.1 N/A 

Residual Diffuse 
Astrocytoma 

2 N/A IDH-Mutant N/A #15 230996.6 70.81* 

#15 157243.6 N/A 

#15 240971.5 9.01 

#15 257925.9 53.73* 

#15 235417.5 12.11 

Oligodendroglioma 2 Recurrent R132H Methylated #16 235459.4 48.53* 

#16 188716.3 19.34 

#16 316835.1 89.14* 

#16 253718.3 5.49 

#16 234145.1 32.85* 

#16 225551.5 98.61* 

Diffuse Astrocytoma 2 Primary R132H N/A #17 261512.5 52.06* 

Astrocytoma 4 Recurrent R132H N/A #18 56756.66 1.25 

#18 58903.98 5.84 

#18 42286.26 N/A 

#18 14053.93 0.03 

#18 7497.919 N/A 

#18 89646.11 N/A 

Astrocytoma 4 Recurrent R132H N/A #19 73793.59 38.50* 

#19 61162.15 57.49* 

#19 37290.28 3.29 

#19 68269.65 51.10* 

#19 28495.6 0.17 

Astrocytoma 4 Recurrent WT N/A #20 2930.304 N/A 

#20 26729.67 N/A 

#20 17057.56 N/A 

#20 42720.31 N/A 

#20 43167.72 N/A 

#20 95339.29 N/A 

Glioblastoma 4 Primary WT Unmethylated #21 76241.08 N/A 

#21 61300.73 N/A 

#21 3276.722 N/A 

Astrocytoma 4 Recurrent R132H Unmethylated #22 50654.16 19.48 

Glioblastoma 4 Primary WT Unmethylated #23 74753.06 N/A 

 * Values above limit of quantification 

 



 13 

Extended figure 1. D-2HG impairs CD8+ T cell proliferation, cytotoxicity, and interferon- 

signaling in an acute and reversible fashion. (A) Time course of total 2HG levels in activated 

CD8+ T cells after treatment with 20 mM D-2HG or L-2HG. Total ion count was normalized to 

cell number (N=3). (B) Viability at day 1, 3, and 6 of CD8+ T cells activated with CD3/CD28 

mAbs in the presence of 20 mM D-2HG, 20 mM L-2HG, or left untreated (N=3). (C) Induction of 5 

activation markers, CD69 and CD25, at day 3, following activation with CD3/CD28 mAbs in the 

presence of 20 mM D-2HG, 20 mM L-2HG, or left untreated. (D) Division index of CD8+ T cells 

treated with increasing concentrations of D-2HG for 3 days (N=3). (E) Schematic for washout 

experiment to assess reversibility of proliferation phenotype. (F) Schematic of degranulation 

assay. (G) % degranulation of CD8+ T cells treated with increasing concentrations of D-2HG 10 

(N=3). (H). Intracellular LAMP-1 levels in CD8+ T cells treated with 20 mM D-2HG, 20 mM L-

2HG, or left untreated (N=3).  (I) % degranulation assessed by CD107a/b co-staining in CD8+ T 

cells treated according to S1F. (J) % IFN-+ (left) and IFN- MFI (right) of CD8+ T cells treated 

with increasing concentrations of D-2HG (N=3). (K) GO enrichment analysis of most 

downregulated genes in CD8+ T cells activated with 20 mM D-2HG relative to untreated. (L) 15 

Relative expression of ISGs in CD8+ T cells activated with 20 mM D-2HG, 20 mM L-2HG, or left 

untreated (N=2-3). (M) Schematic of killing assay. (N) Nonspecific killing of B16 OVA- tumor 

cells by OT1 CD8+ T cells that were activated in the presence of 20 mM D-2HG, 20 mM L-2HG, 

or left untreated (N=3). (O) Antigen-specific killing of B16 OVA+ tumor cells by OT1 CD8+ T 

cells that were activated in the presence of increasing concentrations of D-2HG (N=3). *P < 0.05, 20 

**P < 0.01, ***P < 0.001, ****P < 0.0001 (One-way ANOVA). Data are representative of at least 

two independent experiments. 
 

Extended figure 2. D-2HG alters glycolysis in CD8+ T cells. (A) Histone methylation western 

blot of CD8+ T cells treated with 20 mM D-2HG, 20 mM L-2HG, or left untreated for 24 hours. 25 

(B) Protein levels of D-2HGDH and L-2HGDH in fully activated mouse CD8+ T cells and mouse 

liver. (C) % enrichment of intracellular M+5 D-2HG after time course treatment of 20 mM 13C5 

D-2HG, showing steady state conditions (N=3). (D) % enrichment of intracellular M+5 L-2HG 

after time course treatment of 20 mM 13C5 L-2HG, showing steady state conditions (N=3). (E) % 

enrichment of 13C into 2HG and KG after 20 mM 13C5 D-2HG or 20 mM 13C5 L-2HG are 30 

provided to CD8+ T cells for 2 days (N=3). (F). Heat map showing log2 fold changes of TCA 

intermediates, nucleotides, and amino acids in 20 mM D-2HG- and 20 mM L-2HG-treated CD8+ 

T cells relative to control (N=3). (G) Consumption and secretion map of key metabolites in the 

medium of cells treated with 20 mM D-2HG, 20 mM L-2HG or left untreated (N=3). (H) Western 

blot of HIF-1 stabilization in response to 20 mM D-2HG, 20 mM L-2HG, or no treatment for 24 35 

hours. (I) Expression of genes involved in glucose catabolism in response 20 mM D-2HG or 20 

mM L-2HG relative to the untreated control (N=3). Data are representative of at least two 

independent experiments. 
 

Extended figure 3. D-2HG inhibits LDH-A activity in vitro and in CD8+ T cells. (A) 40 

Intracellular lactate (M+3)/pyruvate (M+3) ratio of CD8+ T cells treated with increasing 

concentrations of D-2HG (N=3). (B) LDH-A-mediated NADH depletion at a fixed pyruvate 

concentration (1 mM) and varying D-2HG concentrations (N=3). (C) Rate vs. substrate plot using 

varying concentrations of substrate and D-2HG, showing non-competitive inhibitory properties of 

D-2HG (N=3). (D) In vitro enzymatic assessment of 3 mM D-2HG, 80 M oxamate, and 10 nM 45 

GSK2837808A on LDH-B activity (N=3). (E) LDH-A-mediated NADH depletion at a fixed 
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pyruvate concentration (1 mM) and varying L-2HG concentrations (N=3). (F) Rate vs. substrate 

plot using varying concentrations of substrate and L-2HG, showing non-competitive inhibitory 

properties of L-2HG (N=3). (G) Lineweaver-Burk plot for L-2HG. *P < 0.05, **P < 0.01, ***P < 

0.001, ****P < 0.0001 (One-way ANOVA). Data are representative of at least two independent 

experiments. 5 
 

Extended figure 4. Cytosolic NAD(H) imbalance drives mitochondrial membrane 

hyperpolarization in D-2HG-treated CD8+ T cells. (A) OCR of 24-hour 20 mM D-2HG-treated 

CD8+ T cells relative to untreated (N=10). (B) ECAR of 24-hour 20 mM D-2HG-treated CD8+ T 

cells relative to untreated (N=10). (C) Quantification of ECAR levels in S4B. (D) Dose-dependent 10 

effects of D-2HG on mitochondrial membrane potential as assessed by TMRE fluorescence (N=3). 

(E) Mitochondrial membrane potential kinetics as assessed by TMRE fluorescence in response to 

CD8+ T-cell activation in the presence or absence of 20 mM D-2HG (N=3). (F) Schematic for 

washout experiment to assess reversibility of mitochondrial membrane potential phenotype. (G) 

Mitochondrial (mt) DNA/nuclear (n) DNA ratio in response to 20 mM D-2HG or 20 mM L-2HG 15 

after 24 hours of treatment (N=3). (H) Protein expression of ETC subunits in response to 20 mM 

D-2HG treatment for 3 days (N=3). (I) Oxygen consumption rates of 24-hour 20 mM D-2HG-

treated and untreated CD8+ T cells in response to FCCP treatment (N=10). (J) Quantification of 

maximal respiration from S4I. (K) TMRE staining of EV-overexpressing CD8+ T cells treated 

with 20 mM D-2HG or left untreated for 24 hours. (L) TMRE staining of LbNOX-overexpressing 20 

CD8+ T cells treated with 20 mM D-2HG or left untreated for 24 hours. (M) Intracellular ROS 

levels as assessed by CellROX staining in CD8+ T cells treated with 20 mM D-2HG, 20 mM L-

2HG, or control for 24 hours. (N) Total GSH levels in CD8+ T cells treated with 20 mM D-2HG, 

20 mM L-2HG, or control for 24 hours (N=3). (O) Total GSSG levels in CD8+ T cells treated with 

20 mM D-2HG, 20 mM L-2HG, or control for 24 hours (N=3). (P) GSH/GSSG ratio of CD8+ T 25 

cells treated with 20 mM D-2HG, 20 mM L-2HG, or control for 24 hours (N=3). *P < 0.05, **P 

< 0.01, ***P < 0.001, ****P < 0.0001 (Student’s t-test, One-way ANOVA and Two-way 

ANOVA). Data are representative of at least two independent experiments. 
 

Extended figure 5. LDH inhibition recapitulates the effects of D-2HG on CD8+ T-cell 30 

metabolism, proliferation, cytotoxicity, and interferon- signaling. (A) Schematic of expected 

incorporation of heavy carbons into glycolytic intermediates after 13C6 glucose is provided for 24 

hours and cells are simultaneously treated with control, D-2HG, or two LDH inhibitors. (B) Ion 

intensities of glycolytic intermediates and their respective 13C-isotopologues after 24-hour co-

treatment of 13C6 glucose with 20 mM D-2HG, 20 mM oxamate, 10 M GSK2837808A, or control 35 

(N=3). (C) Levels of secreted pyruvate isotopologues in 20 mM D-2HG-, 20 mM oxamate-, 10 

M GSK2837808A-treated, or untreated CD8+ T cells (N=3). (D) Levels of secreted lactate 

isotopologues in 20 mM D-2HG-, 20 mM oxamate-, 10 M GSK2837808A-treated, or untreated 

CD8+ T cells (N=3). (E) Oxygen consumption rates of CD8+ T cells treated with control, 20 mM 

D-2HG, 20 mM oxamate, or 10 M GSK2837808A for 24 hours (N=10). (F) Extracellular 40 

acidification rates of CD8+ T cells treated with control, 20 mM D-2HG, 20 mM oxamate, or 10 

M GSK2837808A for 24 hours (N=10). (G) Quantification of figure S5E. (H) mtDNA/nDNA 

ratio in CD8+ T cells treated with 20 mM D-2HG, 20 mM oxamate, 10 M GSK2837808A, or left 

untreated for 24 hours (N=3). (I) Viability at day 2 of CD8+ T cells activated with CD3+ CD28 

antibodies in the presence of 20 mM D-2HG, 20 mM oxamate, 10 M GSK2837808A, or left 45 

untreated (N=3). (J) % degranulation assessed by LAMP-1/CD107 staining in CD8+ T cells 
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activated in the presence of 20 mM D-2HG, 20 mM oxamate, 10  GSK2837808A, or left 

untreated. (K) Intracellular cytokine staining of IFN- in CD8+ T cells activated with PMA and 

ionomycin in the presence of 20 mM D-2HG, 20 mM oxamate, 10  GSK2837808A, or left 

untreated. (L) Nonspecific killing of B16 OVA- tumor cells by OT1 CD8+ T cells that were 

activated in the presence of 20 mM D-2HG, 20 mM oxamate, 10  GSK2837808A, or left 5 

untreated (N=3). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (One-way ANOVA). Data 

are representative of at least two independent experiments. 
 

Extended figure 6. Altered metabolic and cytotoxicity signatures in IDH1-mutant relative to 

IDH1WT cancers. (A) Tumor weight of IDH1WT and IDH1R132H MC38 or B16 tumors on day 16 10 

post inoculation (N=9-15). (B) Flow cytometry analysis of TILs from of IDH1WT and IDH1R132H 

MC38 or B16 tumors on day 16. Parental gate is shown below horizontal lines (N=6-10). (C) 

Quantification of percentage of Ki67+ CD4+ T cells in spleen and tumor of IDH1WT and IDH1R132H 

MC38 and B16 syngeneic tumor mouse models (N=6-10). (D) Calibration curve ranging from 0-

20 mM and corresponding ion image used to determine 2HG levels in human brain tumors. (E) 15 

H&E stained and corresponding MSI image showing relative 2HG levels from case #19, an 

IDH1R132H astrocytoma patient. Border between tumor and non-tumor cells is marked with a white 

line. (F) H&E stained and corresponding MSI image showing relative 2HG and lactate levels in 

IDH1WT GBM (case #3) and IDH1R132H astrocytoma (case #19) samples.  (G) Per-pixel lactate and 

2HG ion counts across all sections from case #6, an IDH1WT GBM patient, and case #20, an 20 

IDH1WT astrocytoma patient. Sections were annotated based on high cellularity (HC), low 

cellularity (LC), non-tumor (NT), and transition (T). (H) Per-pixel lactate and 2HG ion counts 

across all sections from case #18, an IDH1R132H astrocytoma patient, and case #22, an IDH1R132H 

astrocytoma patient. Sections were annotated based on high cellularity (HC), low cellularity (LC), 

non-tumor (NT), and transition (T). (I) Identification of cluster 2 cells (green scatter points) as 25 

CD8+ T cells based on their morphology and co-expression of CD8α (red) and CD45RB (blue). 

IDH1R132H astrocytoma Case #19, sample 1 shown. (J) H&E-stained section from Case #18, 

sample 3 of an IDH1R132H astrocytoma showing densely cellular and even distribution of tumor 

cells. (K) Colormap of tissue density (i.e., cells per grid box) in Case #18, sample 3 (an IDH1R132H 

astrocytoma) with the locations of CD8+ T cells indicated by white scatter points. (L) Regression 30 

plot showing positive correlation between CD8+ T cells and other cells in grid boxes from Case 

#18, sample 3. (M) H&E-stained section from Case #19, sample 1 of an IDH1R132H astrocytoma 

showing low cellular and even distribution of tumor cells. (N) Colormap of tissue density (i.e., 

cells per grid box) in Case #19, sample 1 (an IDH1R132H astrocytoma) with the locations of CD8+ 

T cells indicated by white scatter points. (O) Regression plot showing positive correlation between 35 

CD8+ T cells and other cells in grid boxes from Case #19, sample 1. (P) Left: density plot of 

expression of top DE upregulated genes in CD8+ T-cell subpopulation in IDWT relative to IDH-

mutant samples. Right: density plot of expression of top DE upregulated genes in CD4+ T cell 

subpopulation in IDHWT relative to IDH-mutant samples. (Q) Density plot of expression of top DE 

upregulated genes in cytotoxicity, interferon, and Treg subclusters for CD4+ T cells in IDHWT and 40 

IDH-mutant samples. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (Student’s t-test and 

Two-way ANOVA). Data are representative of at least two independent experiments. 
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