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Supplementary Figure 1: Results on a simulated scRNA-seq dataset of 500 unsynchronized cells with mean
library size of 10000 UMI. a) Empirical cumulative distribution function (eCDF) of the errors for each method’s
cell phase point estimates, where all methods were run using the true core clock genes as input. b) Calibration
of Tempo’s uncertainty estimates when run using the true core clock genes as input. c) Tempo’s de novo cycler
detection procedure d) eCDF of the errors for method cell phase point estimates, where methods were run using
all genes as input. e) Calibration of Tempo’s uncertainty estimates when run with all genes as input. f) Model
stability when methods were run 5 times using all genes as input. Source data are provided as a Source Data
file.
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Supplementary Figure 2: Results on a simulated scRNA-seq dataset of 500 unsynchronized cells with mean
library size of 20000 UMI. a) Empirical cumulative distribution function (eCDF) of the errors for each method’s
cell phase point estimates, where all methods were run using the true core clock genes as input. b) Calibration
of Tempo’s uncertainty estimates when run using the true core clock genes as input. c) Tempo’s de novo cycler
detection procedure d) eCDF of the errors for method cell phase point estimates, where methods were run using
all genes as input. e) Calibration of Tempo’s uncertainty estimates when run with all genes as input. f) Model
stability when methods were run 5 times using all genes as input. Source data are provided as a Source Data
file.

2



ed

a b c

Supplementary Figure 3: Results on a simulated scRNA-seq dataset of 2000 unsynchronized cells with mean
library size of 5000 UMI. a) Empirical cumulative distribution function (eCDF) of the errors for each method’s
cell phase point estimates, where all methods were run using the true core clock genes as input. b) Calibration
of Tempo’s uncertainty estimates when run using the true core clock genes as input. c) Tempo’s de novo cycler
detection procedure d) eCDF of the errors for method cell phase point estimates, where methods were run using
all genes as input. e) Calibration of Tempo’s uncertainty estimates when run with all genes as input. Source
data are provided as a Source Data file.
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Supplementary Figure 4: Results on a simulated scRNA-seq dataset of 5000 unsynchronized cells with mean
library size of 3000 UMI. a) Empirical cumulative distribution function (eCDF) of the errors for each method’s
cell phase point estimates, where all methods were run using the true core clock genes as input. b) Calibration
of Tempo’s uncertainty estimates when run using the true core clock genes as input. c) Tempo’s de novo cycler
detection procedure d) eCDF of the errors for method cell phase point estimates, where methods were run using
all genes as input. e) Calibration of Tempo’s uncertainty estimates when run with all genes as input. Source
data are provided as a Source Data file.
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Supplementary Figure 5: Results on a simulated scRNA-seq dataset of 5000 unsynchronized cells with mean
library size of 5000 UMI. a) Empirical cumulative distribution function (eCDF) of the errors for each method’s
cell phase point estimates, where all methods were run using the true core clock genes as input. b) Calibration
of Tempo’s uncertainty estimates when run using the true core clock genes as input. c) Tempo’s de novo cycler
detection procedure d) eCDF of the errors for method cell phase point estimates, where methods were run using
all genes as input. e) Calibration of Tempo’s uncertainty estimates when run with all genes as input. Source
data are provided as a Source Data file.
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Supplementary Figure 6: Results on a simulated scRNA-seq dataset of 5000 unsynchronized cells with mean
library size of 10000 UMI. a) Empirical cumulative distribution function (eCDF) of the errors for each method’s
cell phase point estimates, where all methods were run using the true core clock genes as input. b) Calibration
of Tempo’s uncertainty estimates when run using the true core clock genes as input. c) Tempo’s de novo cycler
detection procedure d) eCDF of the errors for method cell phase point estimates, where methods were run using
all genes as input. e) Calibration of Tempo’s uncertainty estimates when run with all genes as input. Source
data are provided as a Source Data file.

6



fed

a b c

Supplementary Figure 7: Results on a simulated scRNA-seq dataset of 500 cells collected over a light-
dark cycle (ZT0, ZT6, ZT12, ZT18) with mean library size of 5000 UMI. a) Empirical cumulative distribution
function (eCDF) of the errors for each method’s cell phase point estimates, where all methods were run using
the true core clock genes as input. b) Calibration of Tempo’s uncertainty estimates when run using the true
core clock genes as input. c) Tempo’s de novo cycler detection procedure d) eCDF of the errors for method cell
phase point estimates, where methods were run using all genes as input. e) Calibration of Tempo’s uncertainty
estimates when run with all genes as input. f) Model stability when methods were run 5 times using all genes
as input. Source data are provided as a Source Data file.
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Supplementary Figure 8: Results on a simulated scRNA-seq dataset of 3000 cells collected over a light-dark
cycle (ZT0, ZT6, ZT12, ZT18) with mean library size of 20000 UMI. a) Empirical cumulative distribution
function (eCDF) of the errors for each method’s cell phase point estimates, where all methods were run using
the true core clock genes as input. b) Calibration of Tempo’s uncertainty estimates when run using the true
core clock genes as input. c) Tempo’s de novo cycler detection procedure d) eCDF of the errors for method cell
phase point estimates, where methods were run using all genes as input. e) Calibration of Tempo’s uncertainty
estimates when run with all genes as input. Source data are provided as a Source Data file.
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Supplementary Figure 9: Results on a simulated scRNA-seq dataset of 5000 cells collected over a light-dark
cycle (ZT0, ZT6, ZT12, ZT18) with mean library size of 10000 UMI. a) Empirical cumulative distribution
function (eCDF) of the errors for each method’s cell phase point estimates, where all methods were run using
the true core clock genes as input. b) Calibration of Tempo’s uncertainty estimates when run using the true
core clock genes as input. c) Tempo’s de novo cycler detection procedure d) eCDF of the errors for method cell
phase point estimates, where methods were run using all genes as input. e) Calibration of Tempo’s uncertainty
estimates when run with all genes as input. Source data are provided as a Source Data file.
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Supplementary Figure 10: Density of method cell phase predictions for aorta fibroblasts at various sample
collection times. Tempo’s densities represent the pseudobulk approximate posterior distributions at each sample
collection time point. Competing method densities represent method point estimates. a) Method cell phase
predictions densities when run using only the core clock genes. b) Method cell phase predictions densities when
run using all genes as input. Source data are provided as a Source Data file.
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Supplementary Figure 11: Density of method cell phase predictions for aorta endothelial cells at various
sample collection times. Tempo’s densities represent the pseudobulk approximate posterior distributions at each
sample collection time point. Competing method densities represent method point estimates. a) Method cell
phase predictions densities when run using only the core clock genes. b) Method cell phase predictions densities
when run using all genes as input. Source data are provided as a Source Data file.
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Supplementary Figure 12: Density of method cell phase predictions for aorta macrophages at various sample
collection times. Tempo’s densities represent the pseudobulk approximate posterior distributions at each sample
collection time point. Competing method densities represent method point estimates. a) Method cell phase
predictions densities when run using only the core clock genes. b) Method cell phase predictions densities when
run using all genes as input. Source data are provided as a Source Data file.
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Supplementary Figure 13: Density of method cell phase predictions for liver hepatocytes at various sample
collection times. Tempo’s densities represent the pseudobulk approximate posterior distributions at each sample
collection time point. Competing method densities represent method point estimates. a) Method cell phase
predictions densities when run using only the core clock genes. b) Method cell phase predictions densities when
run using all genes as input. Source data are provided as a Source Data file.
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Supplementary Figure 14: Method results (clock genes as input) on light-dark cycle aorta smooth muscle
cells. Treating the sample collection phase in the light-dark cycle as the true cell circadian phases: a) eCDF
of the errors for each method’s cell phase point estimates b) Calibration of Tempo’s uncertainty estimates. c)
Method out of sample core clock gene likelihood analysis. LD corresponds to treating sample collection times
as the true cell phases. Out of sample core clock likelihoods were computed for each method, and reported
in terms of standard deviations from the median of a distribution of random likelihoods. d) Method stability
analysis. Each methods was run 5 times on the dataset. The circular standard deviation of predictions for each
cell was computed and visualized as a distribution. e) Method relative shift analysis. Each dot represents a
pair of sample collection times in the light-dark cycle (e.g. all 6 possible pairs of ZT0, ZT6, ZT12, ZT18), and
conveys the relationship between the expected phase difference between a pair of time points and the actual
phase difference for each method. As the phase difference is a circular random variable, methods with points
lying along either y = x or y = 24 – x denote perfect performance. Source data are provided as a Source Data
file.
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Supplementary Figure 15: Method results (clock genes as input) on light-dark cycle aorta fibroblasts.
Treating the sample collection phase in the light-dark cycle as the true cell circadian phases: a) eCDF of the
errors for each method’s cell phase point estimates b) Calibration of Tempo’s uncertainty estimates. c) Method
out of sample core clock gene likelihood analysis. LD corresponds to treating sample collection times as the
true cell phases. Out of sample core clock likelihoods were computed for each method, and reported in terms
of standard deviations from the median of a distribution of random likelihoods. d) Method stability analysis.
Each methods was run 5 times on the dataset. The circular standard deviation of predictions for each cell
was computed and visualized as a distribution. e) Method relative shift analysis. Each dot represents a pair
of sample collection times in the light-dark cycle (e.g. all 6 possible pairs of ZT0, ZT6, ZT12, ZT18), and
conveys the relationship between the expected phase difference between a pair of time points and the actual
phase difference for each method. As the phase difference is a circular random variable, methods with points
lying along either y = x or y = 24 – x denote perfect performance. Source data are provided as a Source Data
file.
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Supplementary Figure 16: Method results (all genes as input) on light-dark cycle aorta fibroblasts. Treating
the sample collection phase in the light-dark cycle as the true cell circadian phases: a) eCDF of the errors for
each method’s cell phase point estimates b) Calibration of Tempo’s uncertainty estimates. c) Method out of
sample core clock gene likelihood analysis. LD corresponds to treating sample collection times as the true cell
phases. Out of sample core clock likelihoods were computed for each method, and reported in terms of standard
deviations from the median of a distribution of random likelihoods. d) Method stability analysis. Each methods
was run 5 times on the dataset. The circular standard deviation of predictions for each cell was computed and
visualized as a distribution. e) Method relative shift analysis. Each dot represents a pair of sample collection
times in the light-dark cycle (e.g. all 6 possible pairs of ZT0, ZT6, ZT12, ZT18), and conveys the relationship
between the expected phase difference between a pair of time points and the actual phase difference for each
method. As the phase difference is a circular random variable, methods with points lying along either y = x or
y = 24 – x denote perfect performance. Source data are provided as a Source Data file.
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Supplementary Figure 17: Method results (clock genes as input) on light-dark cycle aorta endothelial cells.
Treating the sample collection phase in the light-dark cycle as the true cell circadian phases: a) eCDF of
the errors for each method’s cell phase point estimates b) Calibration of Tempo’s uncertainty estimates. c)
Method stability analysis. Each methods was run 5 times on the dataset. The circular standard deviation of
predictions for each cell was computed and visualized as a distribution. d) Method relative shift analysis. Each
dot represents a pair of sample collection times in the light-dark cycle (e.g. all 6 possible pairs of ZT0, ZT6,
ZT12, ZT18), and conveys the relationship between the expected phase difference between a pair of time points
and the actual phase difference for each method. As the phase difference is a circular random variable, methods
with points lying along either y = x or y = 24 – x denote perfect performance. Source data are provided as a
Source Data file.
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Supplementary Figure 18: Method results (all genes as input) on light-dark cycle aorta endothelial cells.
Treating the sample collection phase in the light-dark cycle as the true cell circadian phases: a) eCDF of
the errors for each method’s cell phase point estimates b) Calibration of Tempo’s uncertainty estimates. c)
Method stability analysis. Each methods was run 5 times on the dataset. The circular standard deviation of
predictions for each cell was computed and visualized as a distribution. d) Method relative shift analysis. Each
dot represents a pair of sample collection times in the light-dark cycle (e.g. all 6 possible pairs of ZT0, ZT6,
ZT12, ZT18), and conveys the relationship between the expected phase difference between a pair of time points
and the actual phase difference for each method. As the phase difference is a circular random variable, methods
with points lying along either y = x or y = 24 – x denote perfect performance. Source data are provided as a
Source Data file.
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Supplementary Figure 19: Method results (clock genes as input) on light-dark cycle aorta macrophages.
Treating the sample collection phase in the light-dark cycle as the true cell circadian phases: a) eCDF of
the errors for each method’s cell phase point estimates b) Calibration of Tempo’s uncertainty estimates. c)
Method stability analysis. Each methods was run 5 times on the dataset. The circular standard deviation of
predictions for each cell was computed and visualized as a distribution. d) Method relative shift analysis. Each
dot represents a pair of sample collection times in the light-dark cycle (e.g. all 6 possible pairs of ZT0, ZT6,
ZT12, ZT18), and conveys the relationship between the expected phase difference between a pair of time points
and the actual phase difference for each method. As the phase difference is a circular random variable, methods
with points lying along either y = x or y = 24 – x denote perfect performance. Source data are provided as a
Source Data file.
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Supplementary Figure 20: Method results (all genes as input) on light-dark cycle aorta macrophages.
Treating the sample collection phase in the light-dark cycle as the true cell circadian phases: a) eCDF of
the errors for each method’s cell phase point estimates b) Calibration of Tempo’s uncertainty estimates. c)
Method stability analysis. Each methods was run 5 times on the dataset. The circular standard deviation of
predictions for each cell was computed and visualized as a distribution. d) Method relative shift analysis. Each
dot represents a pair of sample collection times in the light-dark cycle (e.g. all 6 possible pairs of ZT0, ZT6,
ZT12, ZT18), and conveys the relationship between the expected phase difference between a pair of time points
and the actual phase difference for each method. As the phase difference is a circular random variable, methods
with points lying along either y = x or y = 24 – x denote perfect performance. Source data are provided as a
Source Data file.
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Supplementary Figure 21: Method results (clock genes as input) on light-dark cycle liver hepatocytes.
Treating the sample collection phase in the light-dark cycle as the true cell circadian phases: a) eCDF of
the errors for each method’s cell phase point estimates b) Calibration of Tempo’s uncertainty estimates. c)
Method stability analysis. Each methods was run 5 times on the dataset. The circular standard deviation of
predictions for each cell was computed and visualized as a distribution. d) Method relative shift analysis. Each
dot represents a pair of sample collection times in the light-dark cycle (e.g. all 6 possible pairs of ZT0, ZT6,
ZT12, ZT18), and conveys the relationship between the expected phase difference between a pair of time points
and the actual phase difference for each method. As the phase difference is a circular random variable, methods
with points lying along either y = x or y = 24 – x denote perfect performance. Source data are provided as a
Source Data file.
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Supplementary Figure 22: Method results (all genes as input) on light-dark cycle liver hepatocytes. Treating
the sample collection phase in the light-dark cycle as the true cell circadian phases: a) eCDF of the errors for
each method’s cell phase point estimates b) Calibration of Tempo’s uncertainty estimates. c) Method stability
analysis. Each methods was run 5 times on the dataset. The circular standard deviation of predictions for each
cell was computed and visualized as a distribution. d) Method relative shift analysis. Each dot represents a
pair of sample collection times in the light-dark cycle (e.g. all 6 possible pairs of ZT0, ZT6, ZT12, ZT18), and
conveys the relationship between the expected phase difference between a pair of time points and the actual
phase difference for each method. As the phase difference is a circular random variable, methods with points
lying along either y = x or y = 24 – x denote perfect performance. Source data are provided as a Source Data
file.
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Supplementary Figure 23: Analysis of Tempo’s point estimate stability on the aorta endothelial cells when
run 5 times. The black line denotes the line y = x. a) The distribution of the point estimate stability for
all cells b) The distribution of the point estimate stability for cells with posterior 90 percent credible interval
widths less than 10 hours c) The distribution of the point estimate stability for cells with posterior 90 percent
credible interval widths greater than 10 hours d) Proportion of cells with non-zero expression of clock genes in
macrophages vs endothelial cells, where each dot represent a core circadian clock gene. e) The pseudobulk mean
of transformed expression (library size normalized, log10 transformed with minimum pseudocount of 1e-7) of
the clock genes in macrophages vs. endothelial cells f) The pseudobulk mean of transformed expression (library
size normalized, log10 transformed with minimum pseudocount of 1e-7) of the clock genes in macrophages vs.
endothelial cells. Source data are provided as a Source Data file.
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Supplementary Methods 1: Estimating the transcript proportion -
dispersion relationship

Tempo uses a Negative Binomial (NB) data likelihood model, as it can account for the overdispersion observed
in real count data. While many existing applications of NB to scRNA-seq data model dispersions in a gene-
specific fashion, these estimates are known to exhibit high amounts of uncertainty. Methods such as scTransform
and DESeq2 combat this by an empirical bayes approach to shrink dispersion estimates, assuming genes with
similar means share similar dispersions. We take this a step further and make the simplifying assumption that
the transcript proportion - dispersion relationship across all genes is strictly described by a polynomial function
gζ(λij) parameterized by ζ. The coefficients of this polynomial, ζ, are estimated as follows:

Step 1: Estimate gene-specific proportions and dispersions

We presume gene counts are distributed according to:

Xij ∼ NB(λ̃j ∗ Li, δ̃j) (1)

Where:
E[Xij ] = λ̃j ∗ Li (2)

V ar(Xij) = E[Xij ] + δ̃j(E[Xij ])
2 (3)

and λ̃j and δ̃j are the temporary (i.e. only used to estimate ζ) gene-specific transcript proportion and disper-
sion for gene j, respectively. Under this likelihood model, for each gene we estimate the maximum likelihood
transcript proportion λ̃j and dispersion δ̃j .

Step 2: Fit polynomial model describing the transcript proportion - dispersion
relationship across all genes

Assume g is a polynomial function whose coefficients ζ defines the transcript log proportion - log dispersion
relationship shared across all genes:

gζ(λij) = log(δj) =

||ζ||∑
k=1

ζklog
k(λij) (4)

Using OLS, we estimate the coefficients ζ under the following objective:

argmin
ζ

p∑
j=1

(log(δ̃j)− gζ(λ̃j))
2 (5)

where p is the number of genes, and λ̃j and δ̃j are the temporary gene-specific transcript proportion and
dispersion for gene j estimated in Step 1.

Note

We note that dispersion estimates may be upwardly biased as a subset of genes cycling over the circadian cycle
will be fit under a mean model that assumes flat expression over the circadian cycle. However, we assume the
fraction of cycling genes detected is small, and thus should not upwardly bias the dispersion estimates much.

Supplementary Methods 2: Tempo approximate generative model

We model P (θ, β|X) as an approximate distribution q(θ, β). In practice, we factor the joint q(θ, β) into a
conditional and a marginal:

q(θ, β) = q(θ|β)q(β) (6)
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q(β)

q(β) is the approximate marginal posterior with respect to the gene parameters. q(β) is parameterized by β̃ =

(β̃1, ..., β̃p). β̃j refers to the parameters for gene j and β̃j = (µ̃j
(loc), µ̃j

(scale), Ãj
(α)

, Ãj
(β)

,

ϕ̃j
(loc)

, ϕ̃j
(scale)

, γ̃j
(α), γ̃j

(β), C̃j). Approximate samples β∗
j = (µ∗

j , A
∗
j , ϕ

∗
j , Q

∗
j ) are drawn according to the follow-

ing generative process:
µ∗
j ∼ Normal(µ̃j

(loc), µ̃j
(scale)) (7)

A∗
j ∼ C̃j ∗Beta(Ãj

(α)
, Ãj

(β)
) ∗ (A(max) −A(min)) +A(min) (8)

ϕ∗
j ∼ PowerSpherical(ϕ̃j

(loc)
, ϕ̃j

(scale)
) (9)

γ∗
j ∼ Beta(γ̃j

(α), γ̃j
(β)) (10)

Q∗
j ∼ Bernoulli(γ∗

j ). (11)

A(min) and A(max) are the same as the values used in specifying the priors for A. C̃j is an indicator variable,
equal to 1 if a gene is current cycling gene (i.e. core clock gene or de novo cycling gene). This allows Tempo’s
approximate generative model to model non-cycling genes as having flat expression over the circadian cycle.
Of note, we use a Power Spherical1 distribution to model the approximate posterior of ϕ, as it has similar
shape to the Von Mises distribution but has a differentiable implementation in PyTorch that is amenable to
optimization of its parameters.

q(θ|β)
P (θ|X,β) can be well approximated using grid sampling. As such, Tempo models q(θ|β) as an approximation
of P (θ|X,β) using grid sampling. Dividing the domain of θ into k equidistant points on [0,2π]:

q(θi =
2π

k
ν|β) =

P (Xi|θi = 2π
k ν, β)P (θi)∑k−1

ν∗=0 P (Xi|θi = 2π
k ν∗, β)P (θi)

(12)

Of note, as k approaches ∞, q(θ|β) converges to P (θ|X,β). Moreover, in practice q(θ|β) is computed using
approximate samples of β from q(β). Given this, only genes for which C̃j = 1 contribute information to the
estimation of q(θ|β).

Supplementary Methods 3: Tempo algorithm to minimize the KL
between q(θ, β) and P (θ, β|X)

Initialization of q(θ, β)

Prior to the start of the algorithm, Tempo filters genes to reduce the computational burden of de novo cycler
detection. First, genes are filtered by their pseudobulk proportion according to a user-specified threshold (10−5

by default). Second, genes are filtered for having low variance. A priori, such genes are unlikely to be cycling
genes. A mean-variance model is fit to non-clock genes and then genes with small Pearson residuals are dis-
carded. For more detail on this filtering of candidate de novo cyclers, please see section 4.

Using the remaining genes, β̃ is initialized to minimize the KL divergence between q(β) and P (β). More-
over, cycling gene indicators are set such that C̃j = 1 for known core clock genes, and C̃j = 0 for non-core clock
genes.

Step 1: estimation of cell phase distribution using current cycling genes

Tempo minimizes the KL divergence between q(θ, β) and P (θ, β|X) through minimizing the following evidence
lower bound (ELBO) loss function (the derivation of which can be viewed in section 5 below):

ELBO(β̃) = KL(q(β)||P (β))− Eq(θ,β)[logP (X|θ, β)] (13)

where β̃ denotes the parameters describing the shape of q(β). β̃ is optimized using stochastic gradient descent.
Of note q(θ|β) is completely determined by q(β) and X for our model, as current cycling genes only contribute
to the estimate of θ in q(θ|β). Moreover, when computing the objective function that is minimized in equation
13, the expectations are computed using a Monte-Carlo approximation.
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Step 2: identification of de novo cycling genes

Optimal estimation of cell phase should make use of information from both the core clock genes and cell-type-
specific CCGs. However, CCGs are often unknown ahead of time. In Step 2, we use a heuristic procedure to
identify de novo cycling genes with expression that are well-explained by the current approximate cell phase
distribution q(θ|β). To do this, we consider the current genes j for which C̃j = 0. For this gene set, approximate

gene parameter distributions are fit by optimizing equation 13 assuming the genes are cyclers (by fixing C̃j = 1)
and conditional on the cell phase distributions computed in Step 1.

Based on the approximate posteriors for γ and A, genes with high posterior probabilities of having non-zero
amplitude and genes with sufficiently high amplitude are called de novo cyclers, and C̃j is set to 1 for such

genes. For genes not satisfying these criteria, C̃j = 0. More details on the criteria used to call de novo cycling

genes from µ̃, Ã, ϕ̃, and γ̃ can be found in section 8.

Algorithm progression

Using information from the core clock genes alone, Tempo uses Step 1 to approximate the latent cell phase
distribution. Tempo then tests whether the latent cell phase distribution explains the data better than random
and halts the algorithm progression if it does not (details of which can be viewed in sections 6 and 7). Using
the latent cell phase distribution, in Step 2, Tempo identifies de novo cycling genes. Tempo then re-estimates
the latent cell phase distribution using information from both the core clock and de novo cycling genes. At
each iteration, Tempo alternates between Step 1 and Step 2 until the evidence for the core clock expression
worsens (computation of which can be viewed in section 6) or the algorithm exceeds the maximum of iterations
specified by the user. Tempo returns β̃, and corresponding q(β) and q(θ|β), from the last iteration for which
the evidence for the core clock expression is at least as good as the evidence from the first iteration.

Supplementary Methods 4: Optional preprocessing step: restrict the
data to highly variable genes

To improve computational efficiency, Tempo offers (and recommends) the option to restrict the data to highly
variable genes with outlier variances, as a priori these genes may be the most likely to cycle over the circadian
cycle and provide the most information about cell phase. First, a transformation, Z, of the count matrix, X, is
computed as follows:

Zij = log10(
Xij + 1

Li
) (14)

Gene means and variances are then computed using the transformed matrix, Z. A univariate gaussian kernel
(bandwidth 0.1, by default) is then used to learn the relationship between the transformed means and variances.
Highly variable genes are then identified as those with a pearson residual greater than a user specified threshold,
which is set to 0.5 standard deviations, by default.

Supplementary Figure 23: Example of the mean-variance relationship on the transformed data, where genes
identified as highly variable are colored in red.
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Supplementary Methods 5: Objective function derivation

KL(q(θ, β)||P (θ, β|X)) (15)

=

∫
β

∫
θ

q(θ, β)log(
q(θ, β)

P (θ, β|X)
) (16)

=

∫
β

∫
θ

q(β)q(θ|β)log(q(θ|β)q(β)
P (θ, β|X)

) (17)

=

∫
β

∫
θ

q(β)q(θ|β)log(q(θ|β)q(β)
P (θ, β|X)

∗
∫
θ′ P (θ′, β|X)∫
θ′ P (θ′, β|X)

) (18)

=

∫
β

q(β)

∫
θ

q(θ|β)log(
q(θ|β)

∫
θ′ P (θ′, β|X)

P (θ, β|X)
) +

∫
β

q(β)

∫
θ

q(θ|β)log( q(β)∫
θ′ P (θ′, β|X)

) (19)

We note that
∫
θ′ P (θ′, β|X) is that posterior marginal of β and that P (θ,β|X)∫

θ′ P (θ′,β|X)
is the conditional posterior

distribution of θ given β.

It can be show that:
P (θ, β|X)∫
θ′ P (θ′, β|X)

=
P (X|θ, β)P (θ)∫

θ′ P (X|θ′, β)P (θ′)
(20)

Given this, the left term of equation (20) can be rewritten:

=

∫
β

q(β)

∫
θ

q(θ|β)log(
q(θ|β)

∫
θ′ P (X|θ′, β)P (θ′)

P (X|θ, β)P (θ)
) +

∫
β

q(β)

∫
θ

q(θ|β)log( q(β)∫
θ′ P (θ′, β|X)

) (21)

We note that the left term is the KL divergence between q(θ|β) and the distribution (the conditional posterior
distribution of θ given β) that it aims to approximate using grid sampling. As such, the KL divergence between
these terms will go to zero (i.e. the approximation will be exact) as the number of grid points goes to ∞. Given
that the definition of our model for q(θ|β) inherently minimizes the KL divergence of the left term, we only
need to optimize parameters of q(β) that minimize the right term.

Continuing to simplify the right term in equation (21):∫
β

q(β)

∫
θ

q(θ|β)log( q(β)∫
θ′ P (θ′, β|X)

) (22)

=

∫
β

q(β)

∫
θ

q(θ|β)log( q(β)P (X)

P (β)
∫
θ′ P (X|θ′, β)P (θ′)

) (23)

Pulling P(X) out of the log:

= log(P (X)) +

∫
β

q(β)

∫
θ

q(θ|β)log( q(β)

P (β)
∫
θ′ P (X|θ′, β)P (θ′)

) (24)

Pulling q(β) and P (β) out of the log:

= log(P (X)) +KL(q(β)||P (β))−
∫
β

q(β)

∫
θ

q(θ|β)log(
∫
θ′
P (X|θ′, β)P (θ′)) (25)

Using Jensen’s inequality:

≤ log(P (X)) +KL(q(β)||P (β))−
∫
β

q(β)

∫
θ

q(θ|β)
∫
θ′
P (θ′)log(P (X|θ′, β)) (26)

We note
∫
θ′ P (θ′)log(P (X|θ′, β)) is the expected log probability of the data where θ comes from the prior

distribution. Of note, q(θ|β) is defined as the grid approximation of the posterior of θ conditional on β,
whose density values are determined by both the prior for θ and the probability of the data. As such,∫
θ′ P (θ′)log(P (X|θ′, β)) ≤

∫
θ′ q(θ

′|β)log(P (X|θ′, β)). As such:

log(P (X)) +KL(q(β)||P (β))−
∫
β

q(β)

∫
θ

q(θ|β)
∫
θ′
P (θ′)log(P (X|θ′, β))

≥ log(P (X)) +KL(q(β)||P (β))−
∫
β

q(β)

∫
θ

q(θ|β)
∫
θ′
q(θ′|β)log(P (X|θ′, β))

(27)
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Which simplifies to:

= log(P (X)) +KL(q(β)||P (β))−
∫
β

q(β)

∫
θ

q(θ|β)log(P (X|θ, β)) (28)

= log(P (X)) +KL(q(β)||P (β))− Eq(θ,β)[log(P (X|θ, β))] (29)

P (X) does not depend on the approximate distribution parameters. Therefore, we can ignore it when computing
our ultimate objective function, ELBO(β̃):

ELBO(β̃) = KL(q(β)||P (β))− Eq(θ,β)[logP (X|θ, β)] (30)

Where β̃ are the differentiable parameters describing the shape of q(β)). Minimizing this objective function will
minimize the KL divergence between our approximate joint posterior and the true joint posterior.

Supplementary Methods 6: Core clock Bayesian evidence computa-
tion

For a given β̃ and corresponding q(θ, β), core clock Bayesian evidence is computed as:∫
P (X(cc)|β, θ)q(θ, β) (31)

Where X(cc) denotes the cell transcript count matrix for the core clock genes. In practice, the Bayesian evidence
is computed using a Monte-Carlo estimate.

Supplementary Methods 7: Assessing whether q(θ, β) explains core
clock expression better than random

After optimization of β̃ in Step 1, Tempo assesses whether the current approximate cell phase distributions ex-
plain core clock expression better than random. To do this, Tempo generates a random UMI matrix, X(random),
where gene transcript counts are independently permuted across cells. Tempo then runs Step 1 on these data to
fit β̃(random). The core clock Bayesian evidence (computation of which is described in section 6) associated with
β̃ is then compared to that of β̃(random) via a Bayes factor. If the Bayes factor does not exceed a user-defined
threshold (1.5 by default), this suggests not enough information exists (for technical or biological reasons) to
sufficiently estimate cell phase and halts the algorithm progression.

Supplementary Methods 8: De novo cycler selection criteria

Upon fitting β̃ in Step 2, Tempo identifies de novo cycling genes according to two criteria. First, Tempo selects
genes better explained by a sinusoidal mean model than a flat mean model based on MAP values for Q. By
default, genes are required to have MAP Q values of 0.9 or greater to be considered a de novo cycler. Second,
Tempo selects genes with high amplitude conditional on the mesor. For current non-cyclers j, Tempo fits a

Nadaraya-Watson kernel regression model f describing the relationship between µ
(MAP )
j and A

(MAP )
j :

f(µ
(MAP )
j ) = Âj

(MAP )
(32)

where Âj
(MAP )

is the expected MAP amplitude of a gene given its MAP mesor. Tempo then computes the
pearson residual of each gene’s MAP amplitude, tj , as follows:

tj =
A

(MAP )
j − Âj

(MAP )

σ
(33)

Where:

σ =

√√√√1

p

p∑
j=1

(A
(MAP )
j − Âj

(MAP )
)2 (34)

and p is the number of non-cyclers. By default, Tempo requires tj greater than 1 for genes to be considered a
de novo cycler.
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Supplementary Methods 9: Data preprocessing and run settings for
competing methods

Cyclops
For a given input transcript count matrix, genes with transcript pseudobulk proportions of 10−5 were kept.
Transcript counts were then transformed by adding a pseudocount of 1 transcript, library size normalized,
logged, and z-scored. The transformed count matrix was then transformed using PCA using as many principal
components needed to explain at least 97% of the data variance. Principal components were then z-scored, and
used as input to the Cyclum python package implementation of Cyclops.

Cyclum
For a given input transcript count matrix, genes with transcript pseudobulk proportions of 10−5 were kept.
Transcript counts were then transformed by adding a pseudocount of 1 transcript, library size normalized,
logged, and z-scored. The transformed count matrix was used as input to Cyclum. Cyclum was run using a
maximum of 5 linear dimensions and an encoder with 2 layers: the first containing 30 neurons, and the second
containing 20 neurons.

PCA
For a given input transcript count matrix, genes with transcript pseudobulk proportions of 10−5 were kept.
Transcript counts were then transformed by adding a pseudocount of 1 transcript, library size normalized,
logged, and z-scored. The transformed count matrix was then transformed using PCA and the top 2 principal
components were kept. Principal components were then scaled to [-1,1]. Using the scaled principal components,
cell phase estimates were computed via the arctan2 function.
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