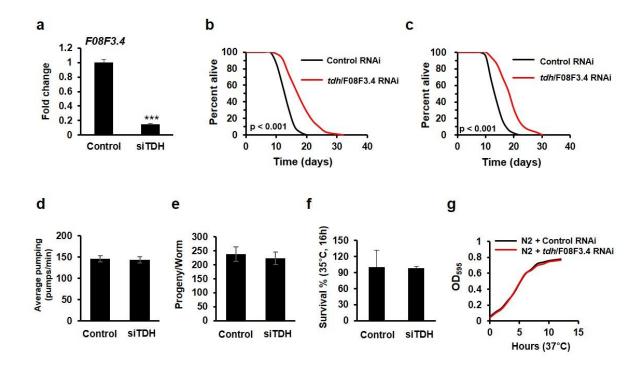
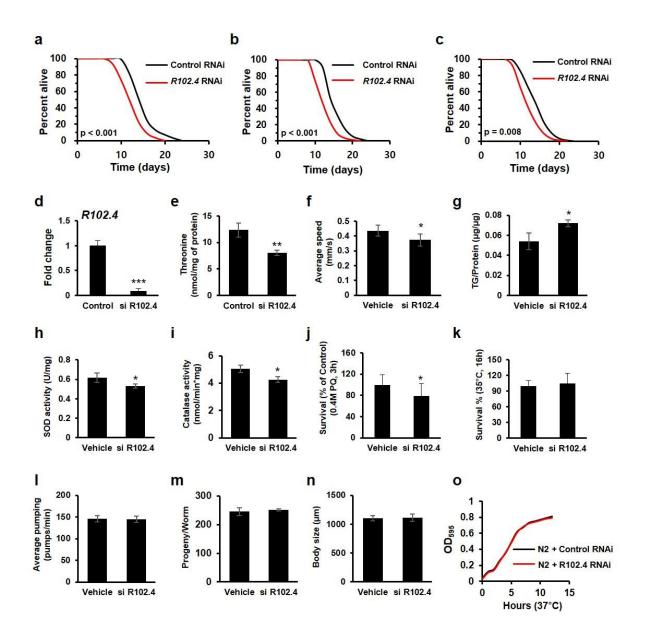
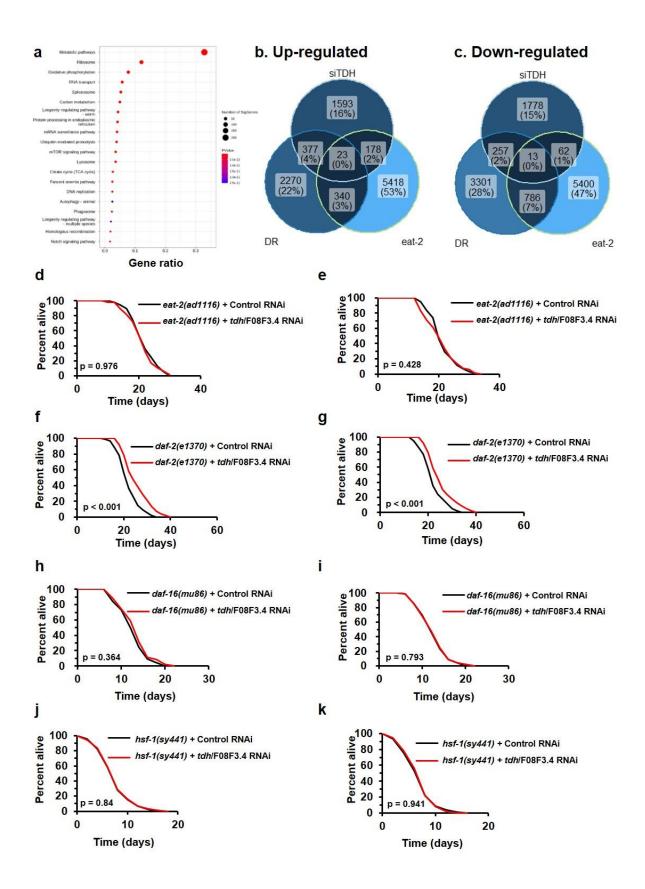

Supplementary Information

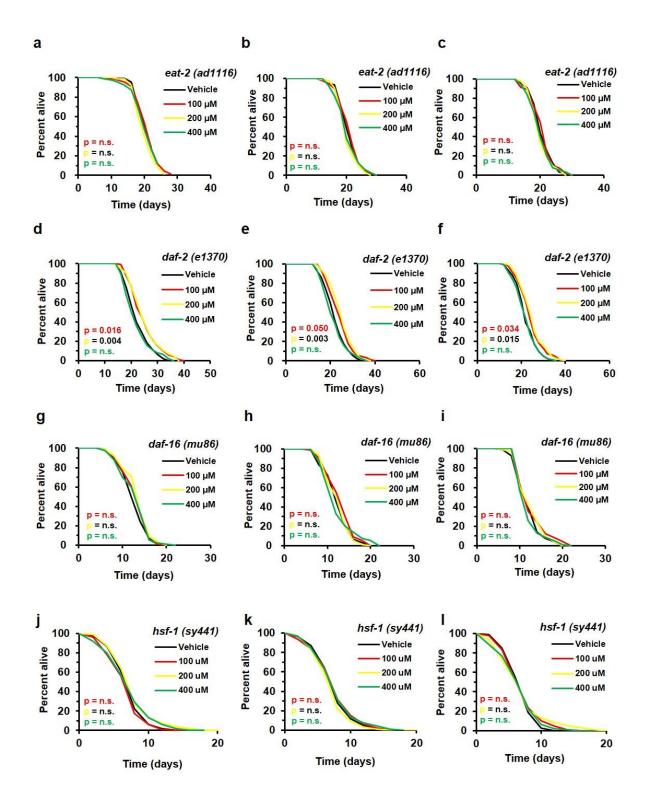
L-threonine promotes healthspan by expediting ferritin-dependent ferroptosis inhibition in *C. elegans*

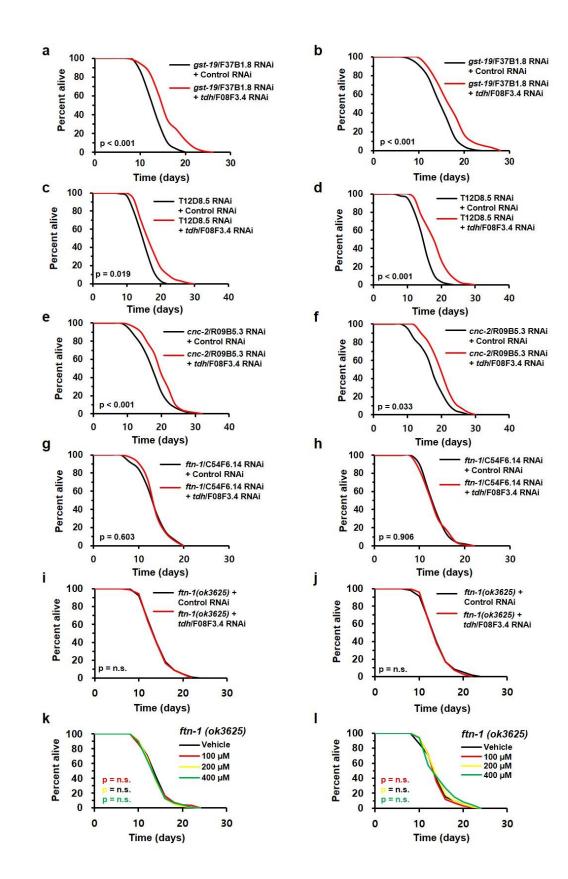

Juewon Kim^{1,*}, Yunju Jo², Donghyun Cho^{1,} Dongryeol Ryu^{2,*}

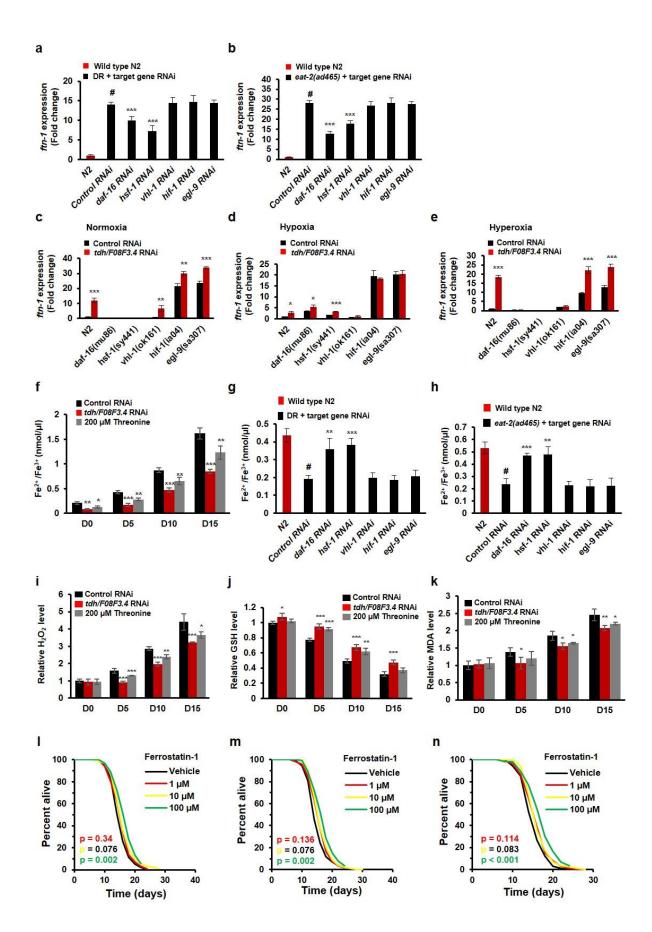
¹Basic Research & Innovation Division, Amorepacific R&D Center, Yongin, Korea
²Department of Molecular Cell Biology, Sungkyunkwan University School of Med icine, Suwon, Korea.

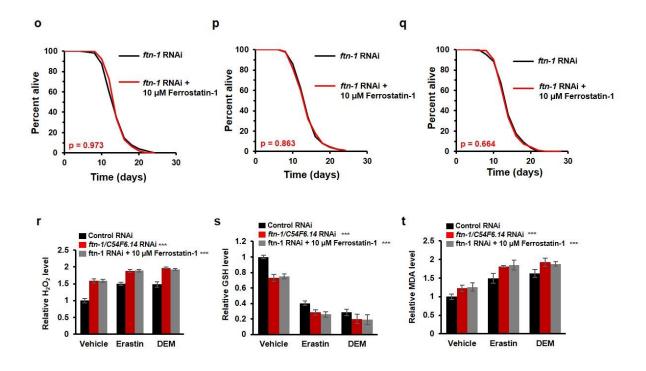

*Correspondence: Juewon Kim (<u>kimjw@amorepacific.com</u>) and Dongryeol Ryu (<u>freefall@skku.edu</u>)


Supplementary Fig.1 | Threonine prolongs lifespan without diet or fertility changes. a-b, Survival curves depicted in Fig. 1a with additional replicates (p-values listed, log-rank test). **c**, Threonine does not alter the growth rate of the OP50 *E. coli*, which is the standard food source for nematodes. **d-g**, Effects of threonine versus the vehicle in animals regarding (**d**) body size (p > 0.5, n = 6), (**e**) average pumping (p > 0.05, Student's *t*-test, n = 10 worms × 3 assays each), (**f**) progeny (p > 0.05, Student's *t*-test, three independent measurement), and (**g**) thermotolerance (P > 0.05, Student's *t*-test, n = 20 worms × 9 measurements each). **h-j**, Survival curves of high concentration threonine (10, 20, and 40 mM) with additional repeats (p-values listed, log-rank test). Data of lifespan analysis are displayed in Supplementary Table 1. **k-m**, High concentration of threonine inhibited the growth rate of the nematode food source, OP50 strain. Error bars represent the mean ± s.d.

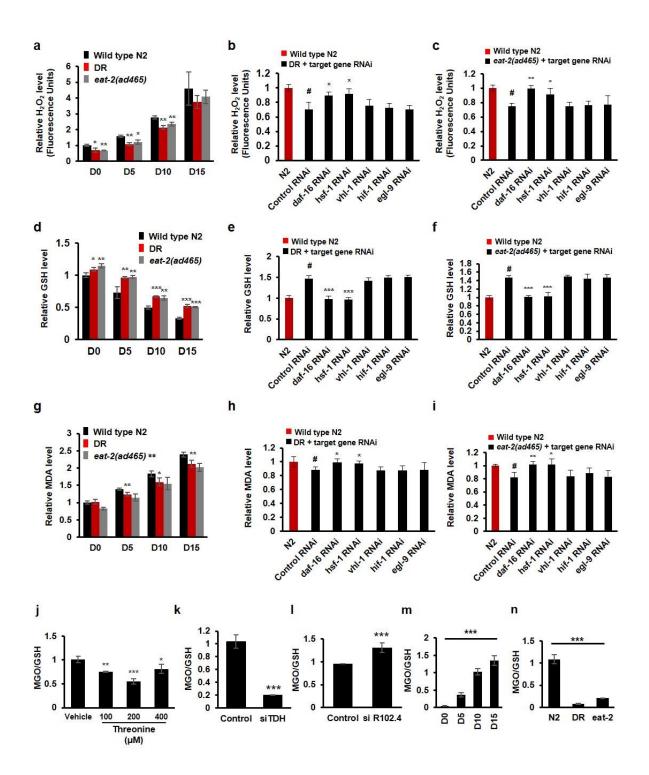

Supplementary Fig.2 | Downregulation of threonine dehydrogenase extends lifespan without diet or fertility changes. **a**, The efficiency of *tdh/F08F3.4* knockdown by RNAi was confirmed by quantitative RT-PCR (qRT-PCR) of the mRNA (71% decrease, ***p < 0.001, Student's *t*-test, three independent measurements). **bc**, Survival curves depicted in Fig. 2k with additional replicates (p < 0.001, log-rank test). Survival data represented in Supplementary Table 1. **d-g**, Effects of *tdh/F08F3.4* RNAi versus control RNAi-treated animals regarding (**d**) average pumping (p = 0.748, Student's *t*-test, n = 10 worms × 3 assays each), (**e**) progeny (p = 0.487, Student's *t*test, three independent measurement), and (**f**) thermotolerance (p = 0.92, Student's *t*test, n = 20 worms × 9 measurements each). **g**, *tdh/F08F3.4* RNAi does not change the growth rate of OP50 *E. coli*. Error bars represent the mean ± s.d.

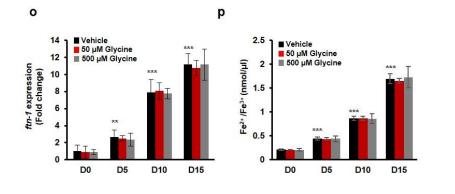

Supplementary Fig.3 | Downregulation of threonine anabolic enzyme R102.4 shortens lifespan and reduces healthspan. a-c, Survival curves of R102.4 RNAi versus control RNAi (black) with additional replicates (p < 0.001 or p = 0.008, log-rank test). Lifespan assay data are depicted in Supplementary Table 1. d, The efficiency of R102.4 knockdown by RNAi was confirmed by guantitative RT-PCR (gRT-PCR) of the mRNA (89.9% decrease, ***p < 0.001, Student's t-test, 3 independent measurement). e-o, Effects of R102.4 RNAi versus control RNAi regarding (e) threonine content (**p = 0.006, Student's *t*-test, n = 3 worm pellets), (f) average speed (*p = 0.021, Student's *t*-test, n = 10-15 worms \times 3 assays each), (g) triglyceride (TG) content (*p = 0.025, Student's *t*-test, n = 3 worm pellets), (h) superoxide dismutase (SOD) activity (*p = 0.05, Student's *t*-test, n = 3 worm pellets), (i) catalase activity (**p = 0.014, Student's *t*-test, n = 3 worm pellets), (j) oxidative stress resistance (*p = 0.049, Student's *t*-test, n = 20 worms \times 9 measurements each), (**k**) thermotolerance (p = 0.726, Student's *t*-test, n = 20 worms \times 9 measurements each), (I) average pumping (p = 0.852, Student's *t*-test, n = 10 worms \times 3 assays each), (m) progeny (p = 0.498, Student's *t*-test, three independent measurements), and (**n**) body size (p = 0.906, n = 6). (**o**) *R102.4* RNAi does not shift the growth rate of the OP50 E. coli. Error bars represent the mean ± s.d.

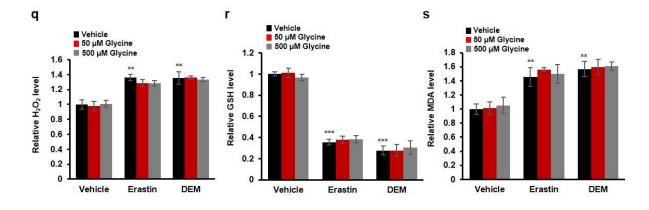

Supplementary Fig.4 | Downregulation of threonine dehydrogenase alter metabolic process by DAF-16 and HSF-1-mediated mechanism. a, Functional annotation clustering for the DEGs from the volcano and smear plot of Fig. 3b-c (p < 0.05) determined by gene enrichment analysis using the KEGG database (p < 0.05). b-c, Venn analysis of transcripts that are regulated by *tdh/F08F3.4* RNAi (siTDH), dietary restriction (DR), and *eat-2* mutant (eat-2); (b) upregulated and (c) downregulated genes. d-e, Survival curves depicted in Fig. 3d with additional replicates (p-value listed, log-rank test). f-g, Survival curves depicted in Fig. 3e with additional replicates (p-value listed, log-rank test). h-i, Survival curves depicted in Fig. 3f with additional replicates (p-value listed, log-rank test). j-k, Survival curves depicted in Fig. 3f with additional replicates (p-value listed, log-rank test). J-k, Survival curves depicted in Fig. 3g with additional replicates (p-value listed, log-rank test). J-k, Survival curves depicted in Fig. 3g with additional replicates (p-value listed, log-rank test). J-k, Survival curves depicted in Fig. 3g with additional replicates (p-value listed, log-rank test). J-k, Survival curves depicted in Fig. 3g with additional replicates (p-value listed, log-rank test). J-k, Survival curves depicted in Fig. 3g with additional replicates (p-value listed, log-rank test). J-k, Survival curves depicted in Fig. 3g with additional replicates (p-value listed, log-rank test). Survival curves depicted in Fig. 3g with additional replicates (p-value listed, log-rank test).



Supplementary Fig.5 | Threonine supplementation extends lifespan by a DAF-16 and HSF-1-mediated mechanism. a-I, Effects of L-threonine (100, 200, and 400 μ M) versus the vehicle (black) on lifespan of a-c, *eat-2(ad465)*, d-f, *daf-2(e1370)*, g-i, *daf-16(m26)*, and j-I, *hsf-1(sy441)* with additional replicates; colour coding is assigned to all subsequent panels. P-value and lifespan assay data summarized in Supplementary Table 1.


Supplementary Fig.6 | FTN-1 is necessary for threonine-mediated lifespan extension. a-b, Survival curves depicted in Fig. 4a with additional replicates. c-d, Survival curves depicted in Fig. 4b with additional replicates. e-f, Survival curves depicted in Fig. 4c with additional replicates. g-h, Survival curves depicted in Fig. 4d with additional replicates. i-j, Survival curves depicted in Fig. 4e with additional replicates. k-l, Survival curves depicted in Fig. 4f with additional replicates. P-values listed in figure panel and survival data are presented in Supplementary Table 1.





Supplementary Fig.7 | Increased threonine attenuates ferroptosis by abrogating ROS, lipid peroxidation, and GSH depletion. a-b, Expression levels of *ftn-1* at a, DR, or **b**, eat-2 mutant with target gene RNAi (#p < 0.001 compared to N2, ***p < 0.001 versus control RNAi, one-way ANOVA, n = 3 worm pellets). **c-e**, Expression of ftn-1 with tdh/F08F3.4 RNAi at the various mutants that are related to the regulation of *ftn-1* transcription. Worms were treated under **c**, normoxia (21% O₂), **d**, hypoxia (2% O_2), and **e**, hyperoxia (0.4M PQ) for 3 h (*p < 0.05, **p < 0.01, and ***p < 0.001 versus the control RNAi, one-way ANOVA, n =3 worm pellets). f, Quantification of Fe²⁺ /Fe³⁺ iron contents of nematode at intervals across lifespan (*p < 0.05, **p < 0.01, and ***p < 0.001 versus the vehicle group, one-way ANOVA, n = 3 worm pellets). g-h, Fe²⁺ /Fe³⁺ iron content levels of (g) DR or (h) eat-2 mutants with the target gene RNAi were measured (#p < 0.001 compared to N2, **p < 0.01 and ***p < 0.001 versus control RNAi, one-way ANOVA, n =3 worm pellets). i, Relative Amplex Red fluorescence in supernatant of worms (*p < 0.05, **p < 0.01, and ***p < 0.001 versus control group, one-way ANOVA, n = 3 worm pellets). j, Total glutathione (GSH) level was normalized to the GSH level in worms not exposed to *tdh/F08F3.4* RNAi or threonine (*p < 0.05, **p < 0.01, and ***p < 0.001 versus control, one-way ANOVA, n = 3 worm pellets). **k**, Levels of the lipid peroxidation end product, malondialdehyde (MDA), were measured and normalized against the mean of untreated worms for independent samples (*p < 0.05 and **p < 0.05 versus control, one-way ANOVA, n = 3 worm pellets). I-n, Survival curves of ferrostatin-1 intervention with additional replicates. **o-g**, Survival curves of ftn-1 RNAi with 10 μM ferrostatin-1 administration with additional repeats. P-values listed in figure panel and survival data are presented in Supplementary Table 1. r, Relative Amplex Red fluorescence in supernatant of worms (***p < 0.001 versus control group, one-way ANOVA, n = 3 worm pellets). s, Total GSH level was

normalized to the GSH level in worms not exposed to *ftn-1* RNAi and ferrostatin-1 (***p < 0.001 versus control, one-way ANOVA, n = 3 worm pellets). **t**, Levels of the MDA were measured and normalized against the mean of untreated worms for independent samples (***p < 0.001 versus control, one-way ANOVA, n = 3 worm pellets).

Supplementary Fig.8 | DR represented decreased ferroptosis in the manner of DAF-16 and HSF-1 and increasing threonine lowered age-associated factors. a, Relative Amplex Red fluorescence in supernatant of worm strains at intervals across lifespan (*p < 0.05 and **p < 0.01 versus the N2 group, one-way ANOVA, n = 3 worm pellets). b-c, Relative ROS level of (b) DR and (c) eat-2 mutant with target gene RNAi (#p < 0.001 compared to N2, *p < 0.05 and **p < 0.01 versus the control RNAi, oneway ANOVA, n = 3 worm pellets). d, Relative GSH levels of worm strains at intervals across lifespan (*p < 0.05, **p < 0.01, and ***p < 0.001 versus N2, one-way ANOVA, n = 3 worm pellets). e-f, Relative GSH level of (e) DR and (f) eat-2 mutant with target gene RNAi (#p < 0.001 compared to N2, ***p < 0.001 versus the control RNAi, oneway ANOVA, n = 3 worm pellets). g, Relative MDA levels of worm strains at intervals across lifespan (*p < 0.05 and **p < 0.01 versus N2, one-way ANOVA, n = 3 worm pellets). h-i, Relative MDA in (h) DR and (i) eat-2 mutant with target gene RNAi (#p < 0.001 compared to N2, *p < 0.05 and **p < 0.01 versus control the RNAi, one-way ANOVA, n = 3 worm pellets). j-n, MGO/GSH levels under (j) threonine treatment (*p < 0.05, **p < 0.01, and ***p < 0.001 versus the vehicle, one-way ANOVA, n = 3 worm pellet), (k) tdh/F08F3.4 RNAi, (I) R102.4 RNAi (***p < 0.001 versus control RNAi, Student's t-test, n =3 worm pellets), (m) interval time points (***p < 0.001 versus Day 0, one-way ANOVA, n = 3 worm pellet), and (n) N2, DR, and eat-2 mutant (***p < 0.001 versus N2, one-way ANOVA, n = 3 worm pellet). o, Expression of ftn-1 with 50 and 500 μ M of glycine treatment (**p < 0.01, and ***p < 0.001 versus the day 0 vehicle, one-way ANOVA, n =3 worm pellets). **p**, Quantification of Fe^{2+}/Fe^{3+} iron contents of nematode at intervals across lifespan with glycine treatment (***p < 0.001 versus the day 0 vehicle group, one-way ANOVA, n = 3 worm pellets). **q**, Relative Amplex Red fluorescence in supernatant of worms (**p < 0.01, versus day 0 vehicle group, oneway ANOVA, n = 3 worm pellets). **r**, Total glutathione (GSH) level was normalized to the GSH level in worms not exposed to glycine (***p < 0.001 versus vehicle, one-way ANOVA, n = 3 worm pellets). **s**, Levels of the MDA were measured and normalized against the mean of untreated worms for independent samples (***p < 0.001 versus vehicle, one-way ANOVA, n = 3 worm pellets). Error bars represent the mean ± s.d.

Strain	Treatment		i lifespan s) ± SEM	% differ ence	P-value	n (animals)	Figure
N2		Vehicl	15.7 ± 0.3			90	
		е 100	17.2 ± 0.4	9.5	0.01318723	90	
		200	18.5 ± 0.4	18	9.818E-06	87	
	Threonine	400	16.5 ± 0.3	5.4	0.02632925	89	Fig. 1c
	μM)	800	15.1 ± 0.3	-3.5	0.29197009	88	
		1000	15.5 ± 0.3	-1.3	0.47151619	90	
		2000	15.4 ± 0.3	-1.9	0.39110771	83	
N2		Vehicl e	15.7 ± 0.3			90	
		100	17.4 ± 0.4	10.8	0.025	92	
		200	18.4 ± 0.4	17.3	4.0351E-05	92	Supple
	Threonine	400	16.5 ± 0.3	5	0.03624563	89	entary
	(µM)	800	15.2 ± 0.3	-3.1	0.24118061	93	Fig. 1a
		1000	15.4 ± 0.3	-1.9	0.24921714	91	
		2000	15.6 ± 0.3	-0.8	0.29940049	91	
N2	12	Vehicl e	15.8 ± 0.3			89	
		100	17.1 ± 0.4	8.7	0.01828145	91	
		200	18.2 ± 0.4	15.7	2.8716E-05	96	Supple
	Threonine (µM)	400	16.9 ± 0.3	7.4	0.02617666	96	entary Fig. 1I
		800	15.9 ± 0.3	0.9	0.60101601	95	rig. ii
		1000	15.5 ± 0.3	-1.8	0.695817	93	
		2000	15.3 ± 0.3	-2.7	0.56453947	93	
N2		Vehicle	15.3 ± 0.2			92	. .
	Threonine	10	7.1 ± 0.2	8.8	0.03367001	93	Supple entary
	(mM)	20	8.1 ± 0.3	16.5	0.00012714	108	Fig.1h
		40	7.6 ± 0.2	-11.6	0.02688507	93	
N2		Vehicle	15.4 ± 0.3			106	Cumple
	Threonine	10	7.5 ± 0.3	8.3	0.09166065	98	Supple entary
	(mM)	20	7.5 ± 0.3	18.4	1.5278E-05	110	Fig.1i
		40	8.0 ± 0.4	-9.6	0.01066835	93	
N2		Vehicle	15.9 ± 0.2	7.0	0.40077004	98	Supple
	Threonine	10 20	7.4 ± 0.2	7.2	0.18277221	105	entary
	(mM)	20 40	7.4 ± 0.2	13.5 -11.3	0.00141251	115 107	Fig.1j
N/5	Control	40	7.0 ± 0.2	-11.3	0.03745759		
N2	RNAi		14.6 ± 0.3			92	2k
	TDH RNAi		19.5 ± 0.4	33.4	4.1701E-14	96	_

Supplementary Table 1 | Summary of lifespan data

N2	Control RNAi		15.8 ± 0.3			88	Supplem entary
	TDH RNAi		21.5 ± 0.5	36.1	1.5979E-09	90	Fig. 2b
N2	Control RNAi		15.2 ± 0.3			91	Supplem
	TDH RNAi		20.3 ± 0.4	33.6	3.5476E-11	94	entary Fig. 2c
N2	Control RNAi		15.6 ± 0.3			96	Supplem
	R102.4 RNAi		13.0 ± 0.2	-16.8	0.00015631	94	entary Fig. 3a
N2	Control RNAi		15.7 ± 0.3			90	Supplem
	R102.4 RNAi		13.1 ± 0.2	-16.5	3.6303E-06	95	entary Fig. 3b
N2	Control RNAi		14.7 ± 0.3			90	Supplem entary
	R102.4 RNAi		12.7 ± 0.3	-13.6	0.00875291	95	Fig. 3c
eat-2(ad1116)	Control RNAi		21.7 ± 0.4			102	3d
	TDH RNAi		21.6 ± 0.4	-0.4	0.785831	97	
eat-2(ad1116)	Control RNAi		21.8 ± 0.4			94	Supplem entary
	TDH RNAi		21.2 ± 0.5	-2.6	0.97644574	94	Fig. 4d
eat-2(ad1116)	Control RNAi		21.4 ± 0.5			93	Supplem entary
	TDH RNAi		20.9 ± 0.5	-2.3	0.42830439	96	Fig. 4e
eat-2(ad1116)		Vehicl e	21.3 ± 0.4			91	Supplan
	Threesine	100	21.1 ± 0.4	-0.7	0.82883163	91	Supplem entary
	Threonine (µM)	200	20.4 ± 0.3	-3.8	0.19526359	88	Fig. 5a
	(1)	400	20.7 ± 0.4	-2.9	0.91731597	88	
eat-2(ad1116)		Vehicl e	21.0 ± 0.3			98	Quantan
	Thus such a	100	21.2 ± 0.4	0.8	0.47588931	91	Supplem entary
	Threonine (µM)	200	20.4 ± 0.3	-2.8	0.3479877	94	Fig. 5b
	(1)	400	20.5 ± 0.4	-2.3	0.69626906	97	
eat-2(ad1116)		Vehicl e	21.0 ± 0.4			96	Curalan
	Thus such a	100	21.0 ± 0.4	0.3	0.61436981	90	Supplem entary
	Threonine (µM)	200	20.4 ± 0.3	-2.7	0.31910299	94	Fig. 5c
		400	21.0 ± 0.7	-2.6	0.78454987	93	
daf-2(e1370)	Control RNAi		22.5 ± 0.5			93	3e
	TDH RNAi		25.9 ± 0.6	15.1	0.00024409	97	
daf-2(e1370)	Control RNAi		22.2 ± 0.5			96	Supplem entary
	TDH RNAi		25.8 ± 0.6	16.2	0.00021323	96	Fig. 4f
daf-2(e1370)	Control RNAi		22.3 ± 0.5			95	

	TDH RNAi		25.5 ± 0.6	14.6	0.00222086	102	Supplem entary Fig. 4g
daf-2(e1370)			22.6 ± 0.5			92	
		100	25.1 ± 0.5	10.9	0.01662628	97	Supplem
	Threonine (µM)	200	25.3 ± 0.6	11.7	0.00382294	100	entary Fig. 5d
	(μινι)	400	22.2 ± 0.5	-1.8	0.87212671	96	Ū
daf-2(e1370)			22.3 ± 0.5			92	
		100	24.5 ± 0.5	9.5	0.05007683	94	Supplem
	Threonine (µM)	200	25.2 ± 0.5	12.6	0.00273856	97	entary Fig. 5e
	(μ)	400	21.9 ± 0.5	-2.1	0.70293411	94	-
daf-2(e1370)			22.7 ± 0.5			89	
		100	24.5 ± 0.6	8	0.03400012	86	Supplem
	Threonine (µM)	200	25.0 ± 0.5	10.4	0.01544843	92	entary Fig. 5f
	(μ)	400	21.9 ± 0.5	-3.2	0.83582142	88	Ū
daf-16(mu86)	Control RNAi		13.0 ± 0.3			102	3f
	TDH RNAi		13.5 ± 0.3	0.9	0.62725723	99	
daf-16(mu86)	Control RNAi		12.9 ± 0.3			97	Supplem entary
	TDH RNAi		13.5 ± 0.3	4.5	0.36382365	95	Fig. 4h
daf-16(mu86)	Control RNAi		12.8 ± 0.3			93	Supplem entary
	TDH RNAi		12.8 ± 0.3	0.6	0.79278221	92	Fig. 4i
daf-16(mu86)			12.9 ± 0.3			87	Supplem
	Threonine	100	13.3 ± 0.3	2.9	0.48525786	89	Supplem entary
	(µM)	200	13.7 ± 0.3	6.4	0.16755809	87	Fig. 5g
		400	13.2 ± 0.3	1.8	0.34965062	90	
daf-16(mu86)			12.7 ± 0.3			92	Supplem
	Threonine	100	13.2 ± 0.3	4.6	0.50873332	97	Supplem entary
	(µM)	200	12.7 ± 0.3	0.5	0.50153425	93	Fig. 5h
		400	12.5 ± 0.4		0.85684873	94	
daf-16(mu86)			12.3 ± 0.3			93	Supplare
	Threonine	100	13.0 ± 0.3	5	0.32790939	95	Supplem entary
	(µM)	200	12.7 ± 0.3	3.2	0.4104227	95	Fig. 5i
	Control	400	12.2 ± 0.3	-1	0.65040023	92	
hsf-1 (sy441)	Control RNAi		8.0 ± 0.3			80	3g
	TDH RNAi		8.2 ± 0.3	2.7	0.49201391	83	69
hsf-1 (sy441)	Control RNAi		7.8 ± 0.3			86	Supplem entary
	TDH RNAi		7.8 ± 0.2	1	0.83963669	90	Fig. 4j
hsf-1 (sy441)	Control RNAi		7.2 ± 0.2			91	

	TDH RNAi		7.2 ± 0.3	1	0.94061687	89	Supplem entary Fig. 4k
hsf-1 (sy441)			7.5 ± 0.2			98	
hsf-1 (sy441)		100	7.1 ± 0.2	-5.7	0.54254055	98	Supplem
hsf-1 (sy441)	Threonine (µM)	200	8.1 ± 0.3	7.6	0.28327525	98	entary Fig. 5j
hsf-1 (sy441)	(µm)	400	7.6 ± 0.2	0.9	0.28874204	99	0,
hsf-1 (sy441)			7.9 ± 0.3			86	
hsf-1 (sy441)		100	7.5 ± 0.3	0.9	0.58359758	95	Supplem
hsf-1 (sy441)	Threonine (µM)	200	7.5 ± 0.3	-5.1	0.54965683	89	entary Fig. 5k
hsf-1 (sy441)	(μ)	400	8.0 ± 0.4	2	0.70293555	96	0
hsf-1 (sy441)			7.2 ± 0.2			81	
hsf-1 (sy441)		100	7.4 ± 0.2	3.3	0.4769379	90	Supplem
hsf-1 (sy441)	Threonine (µM)	200	7.4 ± 0.2	2.9	0.38189565	93	entary Fig. 5l
hsf-1 (sy441)	(μ)	400	7.0 ± 0.2	-3.1	0.42616027	99	Ū
N2	Control RNAi		14.8 ± 0.3			88	4a
	gst-19 RNAi		16.3 ± 0.4	18.1	0.00011133	87	4a
N2	Control RNAi		15.3 ± 0.3			87	Supplem entary
	gst-19 RNAi		18.5 ± 0.5	21.1	1.5979E-09	90	Fig. 6a
N2	Control RNAi		15.6 ± 0.3			90	Supplem entary
	gst-19 RNAi		17.7 ± 0.4	13.8	0.01044407	89	Fig. 6b
N2	Control RNAi		15.7 ± 0.3			91	4b
	T12D8.5 RNAi		20.5 ± 0.5	13.2	0.01854408	95	40
N2	Control RNAi		15.5 ± 0.2			91	Supplem entary
	T12D8.5 RNAi		19.8 ± 0.5	21.2	6.7349E-09	92	Fig. 6c
N2	Control RNAi		15.3 ± 0.3			85	Supplem entary
	T12D8.5 RNAi		20.6 ± 0.4	15.6	0.00980001	88	Fig. 6d
N2	Control RNAi		18.4 ± 0.4			85	4c
	cnc-2 RNAi		20.5 ± 0.5	11.1	0.02717264	87	
N2	Control RNAi		18.2 ± 0.4			89	Supplem entary
	cnc-2 RNAi		20.4 ± 0.4	12.1	0.00148891	91	Fig. 6e
N2	Control RNAi		18.0 ± 0.4			85	Supplem entary
	cnc-2 RNAi		20.6 ± 0.4	14.4	0.03255776	88	Fig. 6f
N2	Control RNAi		14.0 ± 0.2			92	4d
	ftn-1 RNAi		14.0 ± 0.3	-0.2	0.75088368	89	

N2	Control RNAi		14.0 ± 0.3			90	Supplem
	ftn-1 RNAi		14.3 ± 0.3	2.4	0.60254214	90	entary Fig. 6g
N2	Control RNAi		14.0 ± 0.2			95	Supplem
	ftn-1 RNAi		13.8 ± 0.2	-1.4	0.90572168	94	entary Fig. 6h
ftn-1 (ok3625)	Control RNAi		14.5 ± 0.3			100	4.
	TDH RNAi		14.5 ± 0.3	0.3	0.82261213	102	4e
ftn-1 (ok3625)	Control RNAi		14.6 ± 0.3			93	Supplem
	TDH RNAi		14.5 ± 0.3	-0.6	0.9317674	92	entary Fig. 6i
ftn-1 (ok3625)	Control RNAi		14.6 ± 0.3			96	Supplem
	TDH RNAi		14.5 ± 0.3	-0.1	0.68241871	95	entary Fig. 6j
ftn-1 (ok3625)			14.5 ± 0.3			89	
		100	14.5 ± 0.3	-0.38	0.83269299	91	
	Threonine	200	14.4 ± 0.3	-1.66	0.8348663	95	4f
	(µM)	400	14.6 ± 0.4	0.5	0.89492254	92	
ftn-1 (ok3625)			14.6 ± 0.3			93	
		100	14.5 ± 0.3	-0.6	0.86549436	92	Supplem
	Threonine (µM)	200	14.3 ± 0.3	-1.6	0.50980404	92	entary Fig. 6k
		400	14.4 ± 0.3	-1.4	0.68673723	92	
ftn-1 (ok3625)			14.5 ± 0.3			92	
, , ,	Threonine	100	14.5 ± 0.3	-0.4	0.38539193	95	Supplem entary Fig. 6l
		200	14.9 ± 0.3	2.4	0.92239689	92	
	(µM)	400	14.9 ± 0.4	2.9	0.74442601	93	1 19. 01
		Vehicle	15.5 ± 0.3			97	
	Ferrostatin- 1 (µM)	1	15.9 ± 0.3	5.9	0.34030527 7	102	Supplem
N2		10	8.1 ± 0.3	6.5	0.07583697 3	89	entary Fig.7l
		100	7.6 ± 0.2	11	0.00174332 5	126	
		Vehicle	15.4 ± 0.3			103	
	Ferrostatin-	1	16.2 ± 0.3	5.3	0.13566699 9	120	Supplem
N2	1 (µM)	10	7.5 ± 0.3	8	0.07605720 4	103	entary Fig.7m
		100	8.0 ± 0.4	13	0.00186026 2	118	
		Vehicle	15.5 ± 0.3			108	
N2	Ferrostatin- 1 (µM)	1	16.3 ± 0.3	4.8	0.11429497 8	104	Supplem entary Fig.7n
		10	7.4 ± 0.2	7	0.08270303 4	85	
		100	7.0 ± 0.2	13	7.95786E- 05	116	
N2	ftn-1 RNAi	Vehicle	14.2 ± 0.2			103	Supplem

		10 μM ferrost atin	14.4 ± 0.3	1.9	0.97251440 1	91	entary Fig.7o
		Vehicle	14.2 ± 0.1			88	Supplem
N2	ftn-1 RNAi	10 μM ferrost atin	14.1 ± 0.2	-0.9	0.86328262 7	enta	entary Fig.7p
		Vehicle	14.3 ± 0.2			86	Supplem
N2	ftn-1 RNAi	10 μM ferrost atin	14.3 ± 0.3	-0.6	0.66367546 7	93	entary Fig.7q

Primer	Sequence_Fwd	Sequence_Rev
tdh	TCGCGTTAACGCTAGCATGGATCTC	GTAACATCAGAGATTTTGAGACAC
R102.4	GGCGAGGAGATAATCGTCGG	GTGACAATCGGGTATACTCGTCA
gst-19	TCGCGTTAACGCTAGCATGGATCTC	GTAACATCAGAGATTTTGAGACAC
T12D8.5	TCGCGTTAACGCTAGCATGGATCTC	GTAACATCAGAGATTTTGAGACAC
cnc-2	TCGCGTTAACGCTAGCATGGATCTC	GTAACATCAGAGATTTTGAGACAC
ftn-1	TCGCGTTAACGCTAGCATGGATCTC	GTAACATCAGAGATTTTGAGACAC
daf-16	GCGAATCGGTTCCAGCAATTCCAA	ATCCACGGACACTGTTCAACTCGT
hsf-1	GGAAAGTGGTCCACATCGAG	TTCACTCTCCCGCAGGATGG
hif-1	CAGTGATTCTTCAATTCTTTACGTC	GGATTAACACAGACAGATTTAACAG
egl-9	GCCGACTTTCAATCCACTTC	AATGATCGGAGATCGACTGG
actin	GAGAGGGAAATCGTGCGTGAC	CATCTGCTGGAAGGTGGACA
cdc-42	CTGCTGGACAGGAAGATTACG	CTCGGACATTCTCGAATGAAG
Y45F10D.4	GTCGCTTCAAATCAGTTCAG	GTTCTTGTCAAGTGATCCGACA

Supplementary Table 2 | Sequences of qPCR primers