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STAR Methods 

KEY RESOURCES TABLES 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies   

BCL-2 (clone EPR17509) Fluidigm Cat# 3146019D; RRID: 

AB_2811012 

BCL-6 (clone K112-91) Fluidigm Cat# 3147020D; RRID: 

AB_2811013 

CD134 (polyclonal) Fluidigm Cat# 3151024D; RRID: 

AB_2811014 

CD183 (clone G025H7) Biolegend Cat# 353733; RRID: 

AB_2563724 

CD194 (clone 205410) Fluidigm Cat# 3149003A; RRID: 

AB_2811015 

CD20 (clone H1) Fluidigm Cat# 3161029D; RRID: 

AB_2811016 

CD206 (clone 5C11) Fluidigm Cat# 3999999-2 

CD3 (Polyclonal) Fluidigm Cat# 3170019D; RRID: 

AB_2811048 

CD31 (clone C31.3) Abcam Cat# ab212709; RRID: 

AB_2811049 

CD34 (clone QBEnd/10) Abcam Cat# ab213054; RRID: 

AB_2811050 

CD4 (clone EPR6855) Fluidigm Cat# 3156033D; RRID: 

AB_2811051 

CD45RA (clone HI100) Fluidigm Cat# 3155011B; RRID: 

AB_2810246 
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CD45RO (clone UCHL1) Fluidigm Cat# 3173016D; RRID: 

AB_2811052 

CD68 (clone KP1) Fluidigm Cat# 3159035D; RRID: 

AB_2810859 

CD8α Fluidigm Cat# 3162034D; RRID: 

AB_2811053 

c-Myc p67 (clone 9E10) Fluidigm Cat# 3164025D; RRID: 

AB_2811054 

Ephrin B2 Abcam Cat# ab233246; RRID: 

AB_2811055 

FoxP3 (clone 236A/E7) Thermo Fischer Cat# 14-4777-82; RRID: 

AB_467556 

Granzyme B (clone 

EPR20129-217) 

Fluidigm Cat# 3167021D; RRID: 

AB_2811057 

Histone 3 (clone D1H2) Fluidigm Cat# 3176023D; RRID: 

AB_2811058 

HLA-DR (clone YE2/36 HLK) Fluidigm Cat# 3174023D; RRID: 

AB_2811059 

ICOS (clone D1K2T) Fluidigm Cat# 3148021D; RRID: 

AB_2811060 

Ki67 (clone B56) Fluidigm Cat# 3168022D; RRID: 

AB_2811061 

LAG-3 (D2G40) Fluidigm Cat# 3153028D; RRID: 

AB_2811062 

PD-1 (clone NAT105) Biolegend Cat# 367402; RRID: 

AB_2565782 

PD-L1 (clone 28-8) Abcam Cat# ab209889; RRID: 
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AB_2811063 

PD-L2 (clone 176611) Fluidigm Cat# 3172028D; RRID: 

AB_2811066 

pStat3 [Y705] (clone 4/P-

Stat3) 

Fluidigm Cat# 3158005A; RRID: 

AB_2661827 

Tbet (clone D6N8B) Fluidigm Cat# 3145015D; RRID: 

AB_2811067 

TIM-3 (clone D5D5R) Fluidigm Cat# 3154024D; RRID: 

AB_2811068 

Vimentin (clone RV202) Fluidigm Cat# 3143029D; RRID: 

AB_2811069 

Vista (clone D1L2G) Fluidigm Cat# 3160025D; RRID: 

AB_2811070 

Metal Isotopes   

142Nd Fluidigm Cat# 201142A 

143Nd Fluidigm Cat# 201143A 

144Nd Fluidigm Cat# 201144A 

145Nd Fluidigm Cat# 201145A 

146Nd Fluidigm Cat# 201146A 

147Sm Fluidigm Cat# 201147A 

148Nd Fluidigm Cat# 201148A 

149Sm Fluidigm Cat# 201149A 

150Nd Fluidigm Cat# 201150A 

151Eu Fluidigm Cat# 201151A 

152Sm Fluidigm Cat# 201152A 



   
 

 4 

153Eu Fluidigm Cat# 201153A 

154Sm Fluidigm Cat# 201154A 

155Gd Fluidigm Cat# 201155A 

156Gd Fluidigm Cat# 201156A 

158Gd Fluidigm Cat# 201158A 

159Tb Fluidigm Cat# 201159A 

160Gd Fluidigm Cat# 201160A 

161Gd Fluidigm Cat# 201161A 

162Dy Fluidigm Cat# 201162A 

163Dy Fluidigm Cat# 201163A 

164Dy Fluidigm Cat# 201164A 

166Er Fluidigm Cat# 201166A 

167Er Fluidigm Cat# 201167A 

168Er Fluidigm Cat# 201168A 

169Tm Fluidigm Cat# 201169A 

170Er Fluidigm Cat# 201170A 

172Yb Fluidigm Cat# 201172A 

172Yb Fluidigm Cat# 201142A 

173Yb Fluidigm Cat# 201173A 

174Yb Fluidigm Cat# 201174A 

175Lu Fluidigm Cat# 201175A 

176Yb Fluidigm Cat# 201176A 

Biological Samples   
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SignalSlide® PD-L1 control Cell Signaling Technology Cat# 13747 

Chemicals, Peptides and 
Recombinant proteins 

  

m-Xylene anhydrous, >99% Sigma Aldrich Cat# 296325-2L 

Ethanol Sigma Aldrich Cat# 459836-2L 

PBS (Calcium & Magnesium 

free, pH7.4) 

Genesee Scientific Cat# 25-507 

Trizma base Sigma Aldrich Cat# T1503-250G 

EDTA Sigma Aldrich Cat# E1644-250G 

Tween 20 Fischer Scientific Cat# BP337-100 

BSA (DNase and Protease-

free Powder) 

Fischer Scientific Cat# BP9706100 

Triton X-100 Sigma Aldrich Cat# T8787-100ML 

Cell ID Intercalator (Iridium) Fluidigm Cat# 201192A 

Software and Algorithms   

CellProfiler (version 2.1.0)  

 

https://cellprofiler.org/previou

s_releases; 

RRID:SCR_007358 

Ilastik (version 1.3.0)  

 

https://www.ilastik.org/downlo

ad.html; RRID:SCR_015246 

Rstudio (version 3.6.1)  

 

http://www.rstudio.com; 

RRID:SCR_000432 

 

 

 

LEAD CONTACT AND MATERIALS AVAILABILITY 

https://cellprofiler.org/previous_releases/
https://cellprofiler.org/previous_releases/
https://cellprofiler.org/previous_releases/
https://www.ilastik.org/download.html
https://www.ilastik.org/download.html
https://www.ilastik.org/download.html
http://www.rstudio.com/
http://www.rstudio.com/
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Further information and requests for raw data, codes, and other resources should be directed to 

the Lead Contact, Akil Merchant (akil.merchant@cshs.org). 

 

SUBJECT DETAILS 

This retrospective study included a subset of 33 patients from a previously studied 

cohort of 85 patients diagnosed with de novo DLBCL at Los Angeles County and University of 

Southern California (USC) Medical Centers between 2002 and 2012 1. The sub cohort was 

representative of the primary cohort and was not selected other than looking for samples with 

adequate remaining tissues for further analyses (Figure S1). This study was approved by the 

USC Health Sciences Institutional Review Board. 

 

METHODS DETAILS 

 
Tissue Microarray and Immunohistochemistry 

Three of the six tissue microarray (TMA) blocks from the parent cohort with sufficient 

remaining tissues representative of viable tumor were obtained from the Pathology archive of 

Los Angeles County and USC Medical Centers. Immunohistochemistry (IHC) staining was 

performed on 4-μm tissue sections using DAKO ready-to-use antibodies with the EnVision 

FLEX and FLEX+ visualization systems (DAKO, Glostrup, Denmark) on an automated 

immunostainer (Autostainer Link 48, DAKO). Detailed IHC staining protocol and scoring 

methods have previously been published 1.   TMA cores were 2mm in diameter. 

 

Imaging Mass Cytometry staining 
Three of the six TMAs with optimal quality of remaining tumor tissues from the larger 

cohort study were selected for this study. The TMAs contained 42 cores of FFPE DLBCL 

tissues from 33 patients and 2 cores from liver tissues. FFPE sections of 4-µm were baked at 

60°C for 90 minutes on a hot plate, de-waxed for 20 minutes in xylene and rehydrated in a 

graded series of alcohol (100%, 95%, 80% and 70%) for 5 minutes each. Heat-induced antigen 

retrieval was conducted on a hot plate at 95°C in Tris-EDTA buffer at pH 9 for 30 minutes. After 

blocking with 3% BSA in PBS for 45 minutes, the sections were incubated overnight at 4°C with 

a cocktail of 32 antibodies tagged with rare lanthanide isotopes obtained from Fluidigm (Table 

S1). Titration for PD-1 antibody was performed on tonsil tissue (follicular T helper cells in the 

mailto:akil.merchant@cshs.org
mailto:akil.merchant@cshs.org
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germinal center). PD-L1 titration was done on a commercial slide containing formalin-fixed 

paraffin-embedded cell pallets of HDLM-2 (PD-L1+) and PC-3 (PD-L1-) cell lines from Cell 

Signaling Technology (Key resources table). Validation and titration of all other markers were 

done on control tonsil tissue (Figure S3). HLA-DR, pSTAT3, PD-L2 and Ephrin-B2 antibodies 

showed unspecific staining patterns in the control tonsil tissue, however in our DLBCL tissues, 

Ephrin-B2 and pSTAT3 showed distinct cellular staining and was included in subsequent 

analyses.  HLA-DR and PD-L2 omitted from functional association hypothesis testing. 

 

Tissue imaging and ablation 
All cores were evaluated by two pathologists (I.S. and M.H.) to identify region of interest 

(ROI) on H&E. Slides were analyzed using the Fluidigm Hyperion Tissue Imager system that 

couples laser ablation with mass spectrometry 2.   Laser beam of 1-µm2 spot size was used to 

ablate tissue area of 1000-µm2 per core at a frequency of 200 Hz. The metal isotopes were 

simultaneously measured and indexed against the location of each spot to generate intensities 

and digital spatial maps of the ablated tissues. Detailed descriptions of the ablation techniques 

have been previously described 3,4. 

 

Image Analysis Pipeline 
The ion counts for each metal-labeled antibody and slide location were compensated for 

the cross talk between channels then converted to OME-TIFF images 5,6 . Images for each 

antibody were scaled using the 95 percentiles of the cumulative signal to remove hot spot pixels 

and normalized across acquisitions 7. 

 

Image Segmentation 
Channels representing distinct morphological features for cell nuclei (i.e. Ir193-DNA 

Intercalator, Histone H3, foxP3, Ki67) and membrane staining (i.e. CD8, CD68, CD45RA) were 

used for the Ilastik pixel classification training to predict nuclei, membrane/cytoplasm and 

background pixel class using cropped 2x scaled images 8,9. The probability maps were 

segmented using CellProfiler by subtracting the membrane probability map from the nuclei and 

then expanding the nuclei by 4 pixels 7. 

 

QUANTIFICATION AND STATISTICAL ANALYSES 
 
Data transformation and normalization 
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The presented data used normalization such as the hyperbolic-arc-sine transformation, 

and Min/Max normalization at the 99th percentile 10,11 .   The authors for Phenograph and t-SNE 

recommended using the 99th percentile to clip the data to [0,1] scale and remove outliers, which 

we followed.  For the cluster expression estimates, and spatial expression heterogeneity 

modeling, we used the mixed-effects linear model with the single-cell marker expression 

intensities scaled to a standard normal distribution across each ROI. Thus, for linear modeling 

we ensure that for all tissues, each marker expression was on the standardized Gaussian 

distribution, and the marker expression was compared to the grand average using a generalized 

linear hypothesis test.  For Cox proportional hazards estimates, the relative proportions of each 

cluster/sub-phenotype were used as features, with survival times (N=30, events=7), and for the 

pSTAT3/Ki67 the corresponding phenotype expression values per patient multiplied the 

corresponding patient phenotype proportion. 

 

Analysis workflow 

The exploratory analysis used histoCAT , and downstream tSNE clustering using ‘Rtsne 

(v.0.15)’,‘lme4 (v.1.1.21)’ R (v.3.6.3) packages for clustering and mixed-effects linear models 12. 

The neighborhood analysis used Bodemiller repository 

(https://github.com/BodenmillerGroup/neighbouRhood). 

Codes for the analysis of this project are available here: 

https://github.com/arcolombo/singleCell_DLBCL 

 

Clustering and metaclustering 

Phenotypic clustering 
The images along with the masks were imported into histoCAT software for initial 

evaluation.  Cell features were extracted and imported into R statistical software environment 12.  

We hierarchically performed meta-clustering to identify cell “phenotypes”.  The first step under-

clustered the data using lineage related markers (BCL2, BCL6, CD20, CD206, CD3, CD30, 

CD31, CD4, CD45RA/RO, CD68, CD8, EphrinB2, FOXP3 and HLADR) clustering each ROI 

(nearest neighbor, k1=45) and then clustering on the centroids (nearest neighbor, k2=15) 10.  

The major cell classification per case identified 14 meta-clusters, and each ROI had on average 

1,145.174 cells per meta-cluster.  Quality control analysis performed Phenograph (k=50) on 

each major cell component separately to ensure that the major cell expression was 

homogeneous on the corresponding marker. [Sup Figure S5, S6] Re-assignments of CD4 

comprised of 1.54%, the initial tumor component reassigned 6.21% to CD8, CD4, MAC, and 

https://github.com/BodenmillerGroup/neighbouRhood
https://github.com/arcolombo/singleCell_DLBCL
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endothelial classes [ Sup Figure S5-S6]. Following the re-assignments, we identified minor 

clusters for each major cell component by re-performing meta-clustering (k1=45, k2=15) on each 

TME component separately, with the inclusion of  inducible state markers (cMYC, CCR4, 

CXCR3, Granzyme, ICOS, Ki67, LAG-3, PD-1, PD-L1, PD-L2, TBET, TIM-3, Vimentin, VISTA, 

and pSTAT3) and morphological features (Area, eccentricity, solidity, perimeter, percent 

touching, number of neighbors).    

 

Assignment of phenotype sub-clusters to putative functional groups 
Each phenotypic cluster expression profile corresponding to a Z-scaled marker intensity 

profile was modeled using a linear mixed-effects (‘lme4 v. 1.1-27.1’) model and the model 

estimates were contrasted against the overall cluster expression average using generalized 

hypothesis testing (‘multcomp v. 1.4-17’ across the 41 clusters), and the resultant differences 

from the grand average was used to group clusters into functional groups. 

We grouped sub-clusters identified by phenograph with similar marker expression into functional 

groups and assigned labels based on expert review as follows:  Tumor sub-clusters (6,8,10) that 

expressed high levels of chemokine receptors such as CXCR3 (p=1.9e-10, 2.2e-04, 0.039 

respectively), CCR4 (p=7.7e-05, 8.6e-03, 0.089) and expression of PD-L1 (p=8.6e-14, 6.6e-06, 

1.7e-07)  were labeled as “inflammatory” while the remaining tumor sub-clusters (1-5,7,9) were 

“non-inflammatory.”   

CD4 T cells were grouped as baseline (4) b on below average expressed PD1 

(p=0.018), and CXCR3 (p=1.2e-10), whereas CD4 cells (2, 3, 7) were labeled as activated/early 

exhaustion due to moderately expressed markers PD-1, and TIM-3.  Late 

exhausted/inflammatory CD4 sub-types (1,5) were identified through highly expressed PD-1 

(p=1.0e-05, 1.0e-06), TIM-3 (p=2.5e-06, 1.0e-06), LAG-3 (p=5.3e-08, <1.0e-05) and increased 

CXCR3 (p=0.80, 1.3e-07).  Activated/proliferative CD4 cells (6) were identified through over-

expression of Ki67 (p<1e-03).  Additionally, activated/proliferative CD8 cells (1,4) were identified 

through highly expressed Ki67 (p<1e-03), whereas CD8 cells (2,6) with highly expressed 

CXCR3 (p=6.4e-03, 0.06), and PD-1 (p=1.7e-10, 1.0e-07) were subsequently labeled 

exhausted/inflammatory CD8 T cells.  CD8 cells (3,5) with low CXCR3 expression, but highly 

expressed PD-1 (p=9.1e-03, 1.2-e04), LAG-3 (p=1.3e-15, 2.0e-15), and TIM-3 (p=0.11, 9.2e-

06) were grouped as terminally exhausted. 

TREG subtype (5) had uniquely high Ki67 (p<1e-03) were denoted as 

activated/proliferative.  TREG cells (1,2,6) with above average/moderate co-expression of 
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CCR4(0.9, 1.3e-05, 0.42), PD-1(0.96, 5.6e-5, 0.4), TIM-3 (1), and LAG-3 (p=0.96, 1.8e-09, 0.9) 

were annotated as highly suppressive13,14.   TREG cluster 1 estimates contrasted against the 

population average for TIM-3(estimate=0.07 (-0.08, 0.23); p=1), TREG cluster 2 differences 

from the population means TIM-3(estimate=0.31 (0.11, 0.0.49); p=0.069), and TREG cluster 6 

estimated differences for TIM-3(estimate=0.61 (0.29, 0.92); p=5.5e-03).  Whereas TREG cluster 

3 and 4 estimates for TIM-3 were consistently below average albeit not significantly (-0.21 (-

0.41,-0.01); p=0.82) and (-0.26 (-0.46, -0.05); p=0.44) respectively.  Similarly, TREG cluster 1, 

cluster 2 and cluster 6 estimates for PD-1 was 0.08 (-0.007, 0.17; p=0.96), 0.26 (0.16, 0.37; 

p=5.6e-05) and 0.22 (0.05,0.40; p=0.38) respectively.  The PD-1 cluster expression for TREG 

clusters 3 and 4 were 0.055 (-0.06, 0.17; p=1), and 0.14 (0.02, 0.25; p=0.58) respectively.  

Although the PD-1 profile was similar, important differences in LAG-3 were observed.  TREG 

clusters 1, 2, and 6 had estimated mean differences 0.12 (-0.01, 0.25; p=0.97), 0.52 (0.37, 0.68; 

p=1.8e-09) and -0.0019 (-0.26, 0.25; p=1) which were generally average, or above the average 

LAG-3 expressions; importantly 3 and 4 were below the average -0.13 (-0.29, 0.03; p=0.99) and 

-0.06(-0.22, 0.11; p=1).  CCR4 expression profile was another important contrast separating the 

‘highly suppressive’ TREG family from ‘baseline‘ family such that TREG clusters 1 (0.06(-0.09, 

0.21); p=1), 2(0.48(0.29, 0.66); p=1.29e-05) and 6(0.38(0.08, 0.69); p=0.42) all with generally 

moderate/above average estimated differences from the grand population mean, whereas 

clusters 3(-0.21(-0.41, -0.02); p=0.77) & 4(-0.1(-0.29, 0.097); p=1) were below it albeit non-

significantly.  Clusters 1, 2 and 6 had moderate/above average expression of TIM-3, CCR4, and 

LAG-3 were more similar compared to clusters 3 and 4.  TREG cluster 1, had moderate CCR4, 

whereas clusters 3 & 4 were generally below average, additionally TREG 1 had approximately 

average LAG-3 expression whereas 3&4 were below the average; TREG 1 cluster had 

moderate average expression of TIM-3 (p=1), however the clusters 3 & 4 were clearly below the 

average.  The significance (p-values) was not the sole determining factor for rarer sub-

populations because the Bayesian model will penalize imprecise populations due to their 

smaller sample sizes, and place more weight onto the larger, robust, clusters.  The functional 

annotation was reviewed for their estimated trends, and their similarity amongst the TREG 

family.     Regulatory T cells (p=0.78, 0.9), TIM-3 (p= 0.8, 0.4), and LAG-3 (p=0.99, p=1) were 

grouped as baseline (3,4).   

Macrophage cells with high CD206 (p= 1.0e-07, 3.01e-03, 4.9e-03) were classified as 

M2-MAC (1,5,6), and significant co-expression with PD-L1 (p<1.0e-04) were labeled PD-

L1+M2-MAC (2), otherwise M1 labeling was used. Conversely, endothelial cells (4) with low 

TIM-3 (estimate= -0.24(-0.46,-0.02); p=0.78) expression and above average PD-L1 expression 
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(0.18 (0.03, 0.32); p=0.53) were denoted as PD-L1+ endothelial cells.  Endothelial is a smaller 

sub-group, and had clear differences in its TIM-3/PD-L1 profile to justify its own annotation. 

Conversely, endothelial cells (4) with low TIM-3 expression and above average PD-L1 

expression (p=0.53) were denoted as PD-L1+ endothelial cells.  Lastly, significantly over-

expressed endothelial cells (1) with high EphrinB2 (p=3.8e-04) were denoted as EphrinB2+, 

otherwise baseline (5) cells were used.    

Estimation of driver proteins on sub-cluster  
We avoided calling a sub-cluster immune subset “positive” or “negative” by arbitrary 

thresholding but used a linear mixed-effects model to derive effect estimates of markers across 

all sub-clusters. We constructed the linear model using the ROI standardized single-cell 

expression by mapping all cells per ROI to a standard normal distribution.  Hence all ROIs had 

standardized marker intensity, and for generalizability all estimates excluded non-treated 

subjects or subjects lost-to-follow-up.  We provided point estimates using complete data only. 

The point estimates and 95% confidence intervals on key markers were derived using (‘lme4 

(v.1.1.21)’, and ‘multcomp (v.1.4.12)’ R packages).  The point estimates for “driver”, or protein 

enrichments, on sub-clusters were performed using mixed-effects linear model which treated 

the case as a random effect, and the sub-cluster mean expression per ROI as the features.   

We created custom contrasts for all sub-cluster average expression and tested for enrichment 

by comparing to the global mean for that protein in a single model.  The significance of a 

particular sub-cluster is interpreted as significantly higher/lower to the grand average of that 

protein (p<0.05), which determined “+/-” for that cluster.  The confidence intervals were 

generated using general linear hypothesis test (‘glht’) function from the R package ‘multcomp 

(v.1.4.12)’ and derived from ROI standardized values which we hope increases reproducibility in 

this field.  The R package ‘lme4’ (version 1.1.23) was used for mixed-effects model. 

 

 

TMA and replicate divergence analysis 
The cohort comprised of 3 TMAs, and principal component analysis (PCA) was used to 

determine the presence of batch effects across TMAs.  After annotating the 14 meta-clusters 

into major cell components, we performed PCA on the relative proportions per ROI and the PCA 

showed well-mixed visual representation of the variability of the data that did not have any TMA 

specific grouping.  Case 17, 18, 21, 26, 27 and 31 had replicate ROIs taken and case 30 had 

triplicate ROIs.  Using the R package ‘entropy (v.1.2.1)’, we computed the Kullback-Leibler (KL) 

divergence using a given replicate ROI relative frequencies per major cell component and 
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compared a given replicate to the case relative average of the major components.  The KL 

divergence scores per ROI were all below 0.10, however Case 26 had increased ROI 

heterogeneity (KL divergence of 0.26).  The PCA analysis of the replicates showed minimal 

distance separations with the exception of Case 26.  The replicates were mostly similar, with the 

exception of Case 26, and for the analysis of patient clinical variables we used the case 

averages across the ROIs. 

 

Association between genetic mutations, cell of origin and proportions of tumor-immune 
sub-phenotypes 

The cluster analysis followed the guidelines from the authors, which used the 99th 

percentile normalization to remove outliers by scaling to relative 99th percentile of each marker.  

The heatmap visualization standardized each ROI to a standard normal distribution.  The 

heatmap depicts the mean normalized intensities, which ensures that the tissues were 

standardized.  The clustering of all the phenotypes present used bootstrapping (100) using 

‘pvclust (v.2.2.0)‘ and hierarchically clustered using sub-cluster means (Euclidean distance, 

Ward’s method) ’dendsort (v.0.3.3)’ R package15,16. 

 

Clinical association of sub-clusters to COO and mutation  
In order to test for associations with clinical parameters, we used ‘diffcyt’ v.1.14.0 with a 

design matrix corresponding to Chapuy signatures, IPI, REF, COO, gender, double expressor, 

and patient replicates17.  Chapuy signature contrasts used a “one-vs-all" linear contrast, which 

test a given Chapuy signature contrasted against all other signatures.  Differential abundances 

and states used the edgeR/ limma-voom procedures with Benjamini-Hochberg multiple test 

corrections (q<0.05).   

The international prognostic index scores [0-5] were measured, and a median cutoff (>3) 

was used to identify patients with high IPI scores.   

BCL2 and MYC protein were measured by immune-histochemistry.  BCL2 

overexpression was measured using a 40% cutoff judged by IHC, and MYC over expression 

was determined as 70% threshold.  Patients classified as double expressors were identified as 

BCL2 above the 40% and MYC above the 70% threshold.   

 

Phenotype association with mutation signatures 
 We obtained the molecular variant/mutations of a limited gene panel (Cancer genetics 

Inc.) in 22 subjects in this cohort and focused the mutation model on influential genes previously 
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reported in lymphoma.18  We used the ordered list of somatic copy number alterations (SCNA) 

reported by Chapuy et.al which identified the five coordinate DLBCL genetic signature clusters 

C1 (BCL6, BCL10, TNFAIP3, UBE2A, CD70, B2M, NOTCH2, TMEM30A, FAS, TP63, ZEB2, 

HLAB, SPEN, PDL1) of which our targeted panel overlapped with 8 top ranked mutations in the 

C1 signature.  Similarly, C2 (TP53), C3 (BCL2, CREBBP, EZH2, KMT2D, TNFRSF14, HVCN1, 

IRF8, GNA13, MEF2B, PTEN), of which the targeted panel overlapped with 9 of the 10 C3 

signatures.  C2 contained only 1 SCNA of which our panel contained.  Our panel overlapped 

with C4 (SGK1, HIST1H1E, NFKBIE, BRAF, CD83, NFKBIA, CD58, HIST1H2BC, STAT3, 

HIST1H1C, ZFP36L1, KLHL6, HIST1H1D, HIST1H1B, ETS1, TOX, HIST1H2AM, HIST1H2BK, 

RHOA, ACTB, LTB, SF3B1, CARD11, HIST1H2AC), 15 of the top ranked C4 genetic signature.  

The C5 (CD79B, MYD88, ETV6, PIM1, TBLXR1, GRHPR, ZC3H12A, HLAA, PRDM1, BTG1) 

genetic signature contained 6 top ranking genetic mutations.   

For each participant, we counted the total number of SCNA identified within a molecular 

signature class.  If a participant had at least one mutation within a mutation signature list 

(Chapuy), then the molecular signature indicator variable was set to 1, otherwise that participant 

was set to 0 for that class.  For hypothesis testing of differential abundances/states, the effects 

of a molecular signature was modeled as an independent explanatory variable but the 

hypothesis test used a linear contrast against the other classes defined as 

βCı  � = β𝐶𝐶𝑖𝑖 −�
β𝐶𝐶𝑗𝑗
4

5

𝑖𝑖≠𝑗𝑗

, 𝑖𝑖 = 1,2,3,4,5 

The contrast identified molecular signature enrichment defined as the effect difference of a 

given molecular signature from the average effect of the other signature effects.  Figure 2 

reported the molecular signature enrichments (BH q<0.05) for C1-C5. 

 

 

Molecular assignment analysis 
Each participant was assigned to a Chapuy molecular signature group based on the 

overlapping gene mutation between our targeted sequencing panel, and the Chapuy mutational 

list.  Since not all participants had targeted sequencing performed they remained unassigned.  

In order to examine the concordance between this assignment and the original Chapuy 

signature paper, we performed a multiple Cox proportional hazards model of each signature 

(C1-C5) as an explanatory (indicator) variable, adjusted for high IPI (>3) as an additional 

indicator variable.  The data in our cohort suggest that signatures comparing those in signatures 

C3 and C5 to those not in signature C3 or C5 or otherwise unassigned, the log-hazards rate for 
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the event of death increased 1.14 and 1.02 times respectively (see below table).  Comparing 

those in C1 and C4 to those not in C1 or C4 or otherwise unassigned, there was a protective 

trend such that the log-hazards rate marginally decreased 0.37 and 0.13 respectively.   

Participants in C2 had approximately a log-hazards rate very close to the null value estimated at 

–0.068, suggesting that the hazards rate for the event of death was proportional between those 

in C2 and those not assigned to C2.  C2 was not concordant to the manuscript, which is likely 

due to using only SCNA for cluster assignment, which is not sufficient for this cluster. 

 
 

Signature  Hazards (log)  95% Confidence  p-value  
C1  -0.37  (-2.49,1.76)  0.73  
C2  -0.068  (-2.60,2.47)  0.96  
C3  1.14  (-1.51,3.78)  0.39  
C4  -0.13  (-2.75,2.48)  0.92  
C5  1.02  (-1.31,3.34)  0.39  
High IPI (>3)  2.16  (0.13,4.18)  0.04  
 

 

In order to best replicate the work by Chapuy et. Al, we fit a Cox hazards model using 

C1 and C4 signature as the reference, and we pooled C3 and C5 into a new grouping titled 

‘C3/C5’ that indicates if a participant is either C3 or in C5, with 0 otherwise.  Comparing C3/C5 

to those in C1/C4 (reference category) the log-hazards rate was 1.85 (-0.43,4.12; p=0.11) times 

increased suggesting a concordant trend with the Chapuy reported model.  Comparing those in 

C2 to those in C1/C4 (reference) there was a marginally decreased trend of –0.20 (-2.271,2.29; 

p=0.87) which was not concordant to the original model.  The discordant hazard estimates in 

our model is likely due to the nature of C2 defined as 1 SNP on TP53, whereas C2 also includes 

numerous structural variants, of which our model is limited to a single TP53 variant call.   This 

suggests that this cohort does recapitulate the survival trends for C1, C3, C4 and C5, but C2 is 

dis-concordant.  Below we include the log-hazards estimates in our cohort based on this patient 

assignment,  and the original hazards estimate reported by Chapuy, respectively. 
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Key figure from Chapuy et.al manuscript. 19 

 

 
 

The logistic model of the molecular subtype assignment suggested that C5 had 

significantly increased log-odds for NGCB, which was aligned with the C5 definition, and C3, C4 

had increased log-odds with GCB sub-types.  C1 and C2 showed mixed odds with roughly 

equal likelihood for NGCB/GCB which was concordant with these subtype definitions.  Below we 

show the log-odds for NGCB in our cohort, and show the COO distribution across molecular 

subtypes in the original manuscript. 
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Key figure from Chapuy et.al manuscript. 19 

 
 

Multivariate clinical associations between sub-clusters, topological clusters using 
multivariate logistic regression 

From Figure 2a, we applied a linear model using ‘diffcyt’.17  The abundance associations 

with the clinical parameters used an ‘edgeR’ model, and the differential states were tested using 

an empirical Bayesian linear model (‘limma’ version 3.44.3).  We applied the linear model and 

used Benjamini-Hochberg adjustment method (q threshold of 0.05). 

For the Chapuy signature enrichment effects (BH q<0.05) we report all the differences 

identified from the model after examining the boxplots of their abundances to visually inspect 

that the proportions of a given cluster were not driven by outliers. 

In order to model ‘single cell data vs cohort/clinical (mutational and clinical)’ data we 

employed a linear model to detect differential cell population abundances shown in Figure 2a.  

In order to identify differences in proportions, we logit transformed the proportions and used 
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them as a dependent variable in a linear model.  The binomial distribution is an appropriate 

choice which accounts for the uncertainty of proportion estimates, and hence the logistic 

regression was used which inputs the cell counts as a relative proportion to the total sample 

count as input into the model.    

 We detected differential cell population abundances using the `diffcyt` package which 

tests for proportion differences of cell types across experimental conditions. 17  Given the cell 

counts for each sample relative to the total sample, the generalized linear model (GLM) can 

model differential abundance.  Ideally, the generalized linear mixed model (GLMM) could be 

used to account for the overdispersion, by using a random intercept for each participant ID, 

however due to our limited sample size, we obtained convergence warning messages from the 

software, and we chose the fixed effect repeated measures model as the next best option.    

The model relating cell type abundance to experimental conditions we assumed that for a given 

cell population, the cell counts Y_ij was modeled as a binomial distribution defined as  

Yij ∼ Bin(mij, πij)Yij ∼ Binmij, 𝜋𝜋ij 

where m_ij is the total number of cells in a given sample corresponding to participant i and 

condition j.   Given an experimental design matrix, the x_ij is defined from the design matrix 

corresponding to sample i and condition j.  

 

 

 

The linear model was defined by expert review of the clinical parameters including 

treatment response/refractory (REF/CR), molecular signatures (C1-C5), high IPI (>3), gender 

(M/F), double expressor (c-MYC pathological categorization (3-4) and high BCL2), and repeated 

measures corresponding to replicate samples per patient accounted as fixed effects.    

The significance testing and multiple testing corrections for each phenotype cluster was 

performed via ‘edgeR’.  This package contains functions utilizing the normalization of total cell 

counts per sample (library sizes) and total number of cells for a given phenotype sub-population 

scaled using the trimmed mean of M-values' (TMM) method which minimizes sample specific 

false positives.   Sub-population differential testing required a minimum of 50 cells for a given 

cluster, required to be present in at least 7 samples.    
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The significant testing correction utilized was Benjamini-Hochberg (BH) corrections with an 

alpha level of 0.05.  In summary, differential testing of phenotype sub-population abundances 

can model the association of single cell population relative counts with the clinically relative 

parameters relating to DLBCL, after accounting for IPI, sex, double expressor participant status, 

repeated measures, and multiple test correction procedures.      

Using ‘diffcyt’, the differential analysis of markers expression utilized the linear model, 

where the marker expression (arcsinh-transformed, cofactor 5) was assumed to follow a 

Gaussian distribution.  We used the same model formula previously described, to summarize 

the median protein marker cellular intensity in each phenotype population per sample.17  The 

median intensity was assumed to follow a Gaussian distribution, and used in a linear model.  

The multiple test corrections and fitted model results was performed using ‘limma/voom’ over 

the previous design matrix.  Threshold of 50 cells per a given phenotype population in at least 7 

samples were required in order to identified stable intensity medians per cluster (BH q-value 

<0.05).  

In summary, modeling differential abundance/states at the cellular level can be 

associated with an experimental design for hypothesis testing.   

After fitting the model at the cluster level and identifying significant associations with the 

molecular subtypes, we examined the boxplots of the abundances to ensure that the differential 

clusters were not driven by influential samples/points; in our results Tumor 9 was significantly 

negatively associated with C4, but was driven by a single sample influencing the association, 

hence this result was ignored, the other cluster results had overall reasonable distributions.   

Cellular manifold approximation and projection (UMAP). 
The Barnes-Hut t-stochastic neighborhood embedding (tSNE) was constructed using 

(‘Rtsne (v.0.15)’ Package), and UMAP (umap v0.2.2.1) were used. After performing the UMAP 

using all single-cells, manual annotations of the sub-clusters were performed by visual 

inspection.  The tSNE parameters were initial dimensions: 50, perplexity: 30, theta: 15.  

  

 

 

 

 

 

Spatial classification and topology of DLBCL  
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The algorithm was motivated by Yuan et. Al study of infiltrating lymphocytes in breast 

cancer using H&E whole tumor slides 20. Yuan defined infiltrating lymphocytes by using the 

centroid (the average of 5 nearest neighbors (NN) Euclidean distance to cancer cell) which 

identified a lymphocyte that resided inside a convex hull (domain) of 5 neighboring tumor cells. 

The 5-NN centroid provided additional information compared to the first nearest neighbor 

because if a T-cell had shorter distance to the centroid, compared to the 1-NN, this implied 

infiltration because the lymphocyte was in closer inside the tumor domain.  We then sought to 

develop an algorithm which would classify the tumors by their proximity (5-NN centroids) to 

nearest immune cells and create a linear ordering by distance.  Importantly, the tumor ordering 

in the context to TME proximity represented a contour immunographic map, where furthest 

distance to the nearest immune cell was analogous to low immune infiltration potential (“steep 

valley”), whereas tumors that were immediately co-localized to immune cells would have 

increased immune potential (“top-of-hill").   

In order to develop the algorithm, we generated 4 synthetic point patterns using ‘spatstat 

(v.1.59.0)’ R package (Figure S9-S10).  The synthetic image 1 and 2, had three pattern types, 

which simulated a germinal center (pattern 1), and the T-cell zone (pattern 2), we included a 

‘null’ type (pattern 0) which was included in the distance algorithm, but a shape was left 

unassigned.  The synthetic image 3 had four pattern types.  Whereas synthetic image 4 had 

only two pattern types which demonstrated how the algorithm would order a pattern in terms of 

distance to the interface (pattern B). We further tested the distance classification algorithm on 6 

reactive lymph nodes (Figure S10). From the raw ablation images (Figure S10C) we observed 

that the CD20 follicle, which captured light/dark zones, was subset (Figure S10A) into sub-types 

corresponding with nearest distance to PD-1+TFHs and other T-cells in the paracortex region.   

The algorithm simply computed the average distance to the 5-NN (centroids) from each 

B-cell toward the other immune phenotype, and then used Phenograph to meta-cluster (k1=45, 

k2=15), the distances into classes which were then ordered21.   The distance centroids for each 

tumor cell were used with Phenograph algorithm to classify the tumor cells into clusters 

dependent on their centroid distance to the immune cells, which provided an immune contour.  

We observed that the centroid distances were linear to 1-NN neighbors.   

The spatial analysis (Figure 4) of the topological clusters (tumor a, b,c, … ,I) included all 

cases but excluded case 20 because this case had approximately 97% immune cells and less 

than 3% tumor cells relative proportions.  

 This case 20 was excluded because it did not contain enough tumor cells to cluster and 

model appropriately. 
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Spatial organization of tumor topology in DLBCL comparing COO and reactive lymph 
node 

The Clark-Evans aggregation index is used to measure spatial organization of a point 

pattern and was performed using the ‘spatstat (v.1.59.0)’ R package. We compared the Clark-

Evans standardized indices at the ROI level in DLBCL and 6 lymph nodes and compared them 

using a Student’s t-test (Tukey test for multiple comparisons). We did not include tumor_h nor 

tumor_e into the spatial organization model, because their abundances were highly associated 

with GCB (p=0.057) and NGBC (p=0.026).  Tumor classes that were 10% prevalent were 

selected, and rare topography classes (tumor_a (0.93%), tumor_b (6.9%)) were excluded. By 

visual inspection, classes: “c” (15.2%), “d” (15.4%), “f” (21.1%), “g” (11%), and “i” (14.9%) were 

co-localized, however statistical significance was achieved after dropping tumor_d from the 

spatial organization model, however the trends were still observed. 

 

 
Multivariate logistic regression of topology class abundances in DLBCL 

The multivariate logistic regression was performed on the topological relative case tumor 

proportions (%) that included the IPI scores.  For the log-odds estimates in association with 

COO, NGCB/GCB was the response variable set to 1/0, and all the tumor topologies were fit 

into the multivariate model including IPI.  For Chapuy log-odds estimation, for each C1-C5, the 

multivariate model included the case proportions of each tumor topology cluster, and IPI.  In this 

multivariate model, without any subsetting/nested modeling, we reported any tumor topology in 

this multivariate model that had p<0.05. 

 

 

Neighborhood analysis 
The tumor-centric neighborhood analysis depicted in Figure 4e/4f, Figure 5d, Figure 

S11a, S11b, S15d we used the algorithm deposited by Bodenmiller group 

[(https://github.com/BodenmillerGroup’neighbouRhood)], and significance was determined using 

1,000 permutations and interaction distance of 15µm.  Significant interactions used p<0.01 to 

determine a significant signed interaction.  For Figure 2A, the neighborhood pairwise 

interactions were performed for all pairs, and the significant signed interactions were depicted 

as a heatmap along with the corresponding mean normalized intensity, association with clinical 

features, and mutations.  Alternatively, Figure 4e-4f, summarized all the significant interactions 
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from the tumor regions as the first label, and the major TME components as the second label. 

The cohort average signed interactions were computed in 4f (with 95% confidence interval).  

Figure 4g computed the significant interactions with between the first label as tumor_d and 

second label as the CD4 sub-types, and average the significant interactions (p<0.01) with the 

first label as CD4 phenotypes and second label as tumor_d.  We average the total signed 

interactions (p<0.01) for both directions of spatial attractions.   

Figure 5d used tertile gating separately for CCR4/PD1 on TREG in each cohort 

separately.  The spatial interactions (with the previously described parameters) were computed 

in each cohort using the first label as the CCR4+PD1+ TREG and the second label as the 

PD1+/mid/-  T cells.  The total signed attractions/repulsions (p<0.01) were summed for each 

cohort, and divided by the total samples in each cohort separately.  The interaction summary 

values ranged from [-2, +2] and the ANOVA was compared (BH q<0.05) to test for the 

frequency differences between the cohorts.  Note that the gating and spatial attraction signed 

interactions were computed in a stratified manner. 

For the neighborhood enrichment comparisons in DLBCL, we performed neighborhood 

analysis on the full cohort and identified significant interactions using 1,000 permutations which 

generated the null distribution and a significance threshold of 0.01.  The comparison of 

neighborhoods between phenotypes used an ANOVA by summation of the total signed 

interactions which approximately ranged from [-5, +5].  The ANOVA was fit, residuals were 

examined and Benjamini-Hochberg corrections were used.   

The topological association test for immune active vs. immune suppressive phenotypes 

present used the Fisher’s Exact Test created a 2x2 contingency table for the total signed 

interactions relating to significant (p<0.01) suppressive/activated phenotypes in the mantle 

zone, and not in the mantle zone.  Similar 2x2 table was created for the dispersed regions.    

Using 1,000 permutations with an alpha-level of 0.01, the suppressive phenotypes that was 

significantly attracted (using tumor-centric reference) included late exhausted/inflammatory CD4 

(1,5), exhausted/inflam. CD8(2,6), terminally exhausted CD8(3,5), M2-MAC(1,5,6), PD-L1+M2-

MAC(2), highly suppressive T-reg, EphrinB2+ endothelial(1), and PD-L1+ endothelial(4).  

Activated phenotypes included in this test were act./early exhausted CD4 (2,3,7), 

activated/proliferative CD4(6), activated/proliferative CD8(1,4), M1-MAC(3,4), 

activated/proliferative T-reg (5), proliferative endothelial(2), and activated endothelial(3,6). 
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Spatial communities and TME quantification of penetration 

The neighborhood analysis identified all pairwise interactions (p<0.01) and note that not 

all spatial interactions are symmetric.  In order to describe the tumor topology neighborhoods, 

we summarized the TMEs from the topology classes, and toward the immune phenotypes.  The 

total sum of the signed interactions in the outer/dispersed (topologies: b, e, g, and h), the tumor 

periphery (topologies: c, I, f) and tumor core (topology: d) were computed.  We defined semi-

penetrating as TMEs significantly attracted to the periphery zones and penetrating as TMEs 

significantly attracted to the tumor core.  The 95% confidence intervals were computed using 

the signed interactions, and the Student t-distribution (d.f.=7). 

 

Cross-cohort analysis of DLBCL and Hodgkin lymphoma (HL) 

To compare the TME in both diseases, we subset both experiments to include only CD4, 

CD8, Macrophages, and TREGs, and omitted all other phenotypes present in either experiment. 

The TME expression of integrated data including both DLBCL and HL identified primary 

phenotypes in the TME in both diseases.  The HL data was obtained from our recent publication   

in Hodgkin’s lymphoma that included 5 lymph nodes, 22 cases of HL (1 lymphocyte rich, 9 

mixed cellularity, and 12 nodular sclerosis subtypes).22   This experiment was performed with a 

36-panel list, of which 21 overlapped with the DLBCL experiment (CCR4, CD206, CD20, CD30, 

CD3, CD45RA, CD45RO, CD4, CD68, CD8, CXCR3, EphrinB2, FOXP3, HLADR, ICOS, Ki67, 

LAG3, PD-1, PD-L1, TIM-3, and TBET). The meta-clustering (k1=45, k2=15) process identified 

17 HL meta-clusters using Min/Max normalization as recommended by original authors. 

To compare the TME expression in the 75 ROIs from both diseases, we subset both 

experiments to include only CD4, CD8, macrophages, and TREGs.  Prior data integration, we 

first selected markers that had minimal differences per ROI across by visual inspection of the 

ROI interquartile ranges across both diseases.  Markers such as CD4, CD8, CD68, FOXP3, 

CD206, DNA, PD-L1, PD-1, TIM-3, CCR4, CXCR3, ICOS, Ki67, and cell area were selected 

because they indicated similar inter-quartile ranges and most constant means across 

experiments. To integrate the single-cell data, we first standardized the expression to-standard 

normal, and then used ‘limma (v.3.40.2)’ to fit an empirical Bayes linear model and regress out 

the batch effects related to the 2 experiments at the single-cell level (‘sva’ (v.3.32.1) 

package).23,24  To evaluate the batch effects, we used DNA, and the area of the cell objects as a 

positive control because we should expect that DNA content, and immune cell areas should be 

very similar across experiments.  After data integration, we observed consistent area sizes 
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across experiments and DNA expression.  In contrast, LAG-3 failed to integrate and had 

dissimilar dynamic range. and was excluded.  PCA, at both the case level and single cell level, 

along with uniform manifold mapping (uMAP) at the single cell level were performed to visually 

inspect the presence of batch across diseases.  

After selecting markers and performing integration, we used the k-nearest neighbor 

batch-effect correction test (‘kBET’ R package (v.0.99.6)) to quantitatively measure the batch 

effect.  This test is a metric to measure the quality of the batch correction and performs a 

Pearson’s χ2 test comparing a randomly sampled subset to measure the association to the 

levels of batch covariates25 .  The Pearson’s χ2 assumes that the data are inter-mixed, and the 

kBET returns a metric of the average rejection rate of the null hypothesis across the iterations 

(number of iterations= 100) of sampling.  Hence a low kBET score, corresponds with a low 

rejection of the null hypothesis in the χ2 test which assumes that the data are well inter-mixed.  

Therefore, low kBET scores corresponds with low batch effects. The kBET scores across all 

phenotypes yielded 0.2422 score, and CD4 had the lowest kBET score (kBET=0.1484, p-

value=0.31), whereas TREGs had the highest batch effect score (kBET=0.37, p=0.08).  Note 

that we tested for batch on each TME component separately and did not adjust the p-values for 

multiple test corrections.   The input for the kBET metric where the 75 unique ROIs across both 

experiments (rows) and the columns were the Z-transformed selected protein measures 

previously described.   

We examined the explained variance of the selected integrated expression markers by 

the phenotype levels (CD4, CD8, MAC, TREG), or the disease type (HL or DLBCL).  For a well-

integrated experiment, the integrated expression should have a low explained variance 

associated with disease type.  We performed a Two-Way ANOVA regressing the protein 

expression onto categorical features such as phenotypes (4 levels) or disease type (2 levels).  

For PD-1, we observed that the phenotype categorical variable was a significant explanatory 

variable (F-statistic=15.38, p-value=0.025), whereas the experimental factor was not (F-

statistic=1.32, p-value= 0.33). Similarly, PD-L1 the phenotype categorical variable was a 

marginal explanatory variable (F-statistic=4.56, p-value=0.12), whereas the experiment feature 

was not (F-statistic=0.02, p-value=0.88). For TIM-3, the phenotype feature explained more of 

the variability of TIM-3 (F-statistic=2.73, p-value=0.22) compared to the experimental factor (F-

statistic=0.06, p-value=0.82).  The ANOVA indicated that the average expression had more 

association with the variability across phenotypes levels as opposed to experimental /disease 

type.  
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In order to compare proportions of the TME across disease types, the case relative 

proportions (%) were tested using beta regression, using an alpha threshold of 0.05 as the type-

1 error rate.  

The joint TME unsupervised clusters were annotated (Figure S13c) using threshold calls 

determined by a mixed-effects linear model (‘lme4’ version 1.1.23) which for each phenotype a 

contrast was developed which compared for significant differences of a given sub-cluster to the 

primary parent phenotype average and determined significant above average (+), average 

expression (mid), or significant below average (-) expression.   

In order to further investigated the joint TME comparisons between DLBCL/HL/RLN we 

used unbiased tertile cutting of each normalized expression intensity relative to the same 

experiment and compared the relative case proportions to the reactive lymph node using beta 

regression modeling of the phenotype proportions (Figure S15).   

The Figure S15d, and Figure 5d compared the neighborhood interactions with the 

reference as the TREG phenotypes (identified by unbiased tertile gating) and compared the 

relative frequencies of the total significant interactions (p<0.01) which ranged approximately 

from [-5, +5] relative to the total ROIs in the corresponding cohort (DLBCL/HL/RLN), and then 

compared the relative frequencies using an ANOVA (BH q<0.05).  We checked the distribution 

of the frequencies which was approximately normal, and examined the residuals of the linear fit 

ensure adequacy. 
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