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Supplemental methods 

Patients and samples 

Samples from patients were either described previously1-5 or newly collected. IEI syndromes 

and lymphomas were diagnosed by local clinicians, as summarized in Table S1 and Table S2. 

DNA was extracted from frozen or formalin-fixed paraffin-embedded (FFPE) tumor biopsies 

and paired peripheral blood or normal lymph node samples using a DNeasy Blood & Tissue 

Mini Kit (Qiagen, Venlo, Netherlands). The Swedish national ethical review board approved 

the study. 

 

Next-generation sequencing 

Whole-genome sequencing (WGS) and whole-exome sequencing (WES) were performed using 

either the Illumina HiSeq or NovaSeq (Illumina, San Diego, CA) or the BGISEQ-500 (BGI, 

Shenzhen, China) platform. Sequencing reads containing adaptor sequences, low-quality reads 

(Ns>10%) and low-quality bases (>50% bases with quality <5) were removed. High-quality 

paired-end reads were then gap-aligned to the UCSC human reference genome (hg19) using 

BWA.6 The depths and coverages of WES/WGS data are summarized in Table S3. For WES, 

the median depth was approximately 100X. The coverage at 10X for most samples was greater 

than 90%. The only exception was PL17, with depth and 10X coverage of 15X and 63%, 

respectively. For WGS, the median depth for control samples was greater than 30X, with the 

exception of PL20 (17X). The depth for the tumor samples was relatively low, as expected, 

ranging from 15-26X. Considering the rarity of the disease (with both IEI and lymphoma) and 

difficulties in obtaining such tumor samples, we kept data from all samples for further analysis. 
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Germline single-nucleotide mutations, referred to as single-nucleotide polymorphisms (SNPs), 

were identified using the UnifiedGenotyper subtool in GATK7 and SOAPsnp8 and then merged. 

Germline insertions and deletions (indels) were identified with GATK7. For the paired samples, 

single-nucleotide somatic mutations, referred to as single nucleotide variants (SNVs), were 

identified using VarScan,9 in which those SNVs without any other adjacent SNVs in the same 

sample were defined as single-base substitutions (SBSs). Somatic indels were identified using 

the UnifiedGenotyper subtool in GATK7 and Platypus10 and then merged. Structural variations 

(SVs) of WGS data from paired samples were identified by Manta algorithms11. For tumor-

only samples, SNVs and somatic indels were identified by filtering potential germline SNPs 

and indels: 1) SNPs and indels not located in exonic and splicing regions or annotated as 

synonymous were removed; 2) SNPs and indels with population frequencies ≥1% in any public 

database, including 1000 Genomes Project (KG)12, Exome Variant Server (ESP), and Exome 

Aggregation Consortium (ExAC)13, were removed; 3) only SNPs and indels with variant allele 

frequencies (VAFs) between 10% and 90% were reserved. Annotation of SNVs and somatic 

indels was performed using ANNOVAR14. 

 

For targeted sequencing of one patient, PL16, a panel containing the entire coding regions of 

715 cancer-related genes was used to capture target regions (Table S6). Sequencing was 

performed using the Illumina HiSeq platform (Illumina). Unqualified sequencing reads were 

removed following the same criteria as for the WGS/WES analysis. Alignment with the hg19 

reference genome was carried out using BWA, and SNPs/indels were identified using VarScan. 

Variations were then annotated with ANNOVAR. SNPs and indels were filtered to remove 

potential germline variations as described above for tumor-only samples. 
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All reported nonsilent variants in the coding genome were manually checked using Integrative 

Genomics Viewer (IGV)15. The copy number variations (CNVs) were identified using 

CNVkit35 (Table S5). The GISTIC algorithm was used to infer recurrently amplified or deleted 

genomic regions36. 

 

Identification of potential disease-causing or associated genes 

To identify potential disease-causing or associated genes, we filtered all germline variants 

(SNPs and indels) according to a previously published strategy16. First, variants not located in 

exonic and splicing regions or annotated as synonymous were removed. Second, variants with 

population frequencies ≥ 3% in any of the public databases, including KG12, ESP, and ExAC13, 

were removed. It should be noted that 1% was typically used as the cutoff value; however, 1% 

may not be suitable for all IEIs, especially for recessive diseases with relatively high 

incidences17. Third, variants of genes included in the classification of IEI from the International 

Union of Immunological Societies (IUIS)18,19 or known cancer susceptibility genes (Table S7) 

were reserved. Fourth, variants with inconsistencies between zygosity and the inheritance 

model of disease were removed. Fifth, variants identified as 'benign' or “likely benign” in the 

ClinVar database20 were removed. Finally, variants not identified as 'pathogenic' in the ClinVar 

database and scored lower than the mutation significance cutoff (MSC)21 in Combined 

Annotation-Dependent Depletion (CADD)22, Polymorphism Phenotyping v2 (PolyPhen-2)23, 

and Sorting Tolerant From Intolerant (SIFT)24 were removed. For each sample, all reserved 

variants were identified as IEI- or cancer-causing mutation candidates. If a mutation was 

'pathogenic' in ClinVar, the gene containing this mutation was classified as a disease-causing 

or disease-associated gene (Table S8). 
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Identification of somatic mutation targets in lymphoma 

Potential lymphoma-associated genes were identified among somatically mutated genes 

identified in the lymphoma genome of IEI patients, as described below. First, genes were 

selected if they were significantly mutated in previous lymphoma or pancancer studies25-28 or 

involved in DNA repair processes (Table S9). Second, genes with 'HIGH' gene damage index 

(GDI) scores29 and not identified as cancer-associated genes in any previous studies in 

Integrative OncoGenomics (IntOGen)30 were removed. The remaining genes were considered 

to be potential lymphoma-associated genes in this study (Table S12). The driver genes were 

also predicted in silico using OncoDriveFML48, with criteria of p value less than 0.005, q-value 

less than 0.25, and  mutated in at least three patients. 

 

Mutational signature analysis 

Mutational signature analysis was performed using the nonnegative matrix factorization 

(NMF)-based method SigProfiler31. Mutational signatures were extracted from WGS/WES 

somatic SBSs as described previously32. NMF was performed iteratively 20 times for different 

values of the number of signatures extracted (N) (1-10), and the reproducibility and average 

reconstruction error were evaluated for each N. Ultimately, N was determined to be 5 for this 

cohort of samples, as it resulted in relatively fewer errors and high reproducibility (>95%). 

Reference signatures are cited from the COSMIC database 

(http://cancer.sanger.ac.uk/cosmic/signatures). Cosine similarity, cos(θ), was applied to 

estimate the similarity between signatures. Additionally, somatic indels were classified into 83 

possible types, as previously described33. Hierarchical clustering of tumors was performed 

based on the proportions of different signatures for each sample. 

 

http://cancer.sanger.ac.uk/cosmic/signatures
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Identification of replication timing for SV breakpoints 

The replication timing of all genomic loci was calculated by averaging wavelet-smoothed 

Repli-seq signals across six B lymphocyte or leukemia cell lines, including GM06990, 

GM12801, GM12812, GM12813, GM12878, and K562 (https://genome.ucsc.edu/cgi-

bin/hgTrackUi?db=hg19&g=wgEncodeUwRepliSeq). High and low values represent early and 

late replication in the synthesis (S) phase of the cell cycle, respectively34-36. 

 

Statistical approach 

Statistical analysis was performed using Fisher's exact test or the Mann–Whitney U test. A p 

value <0.05 was considered statistically significant. 
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Supplemental Figures 

 

Supplemental Figure 1 

Pipeline of NGS-based identification of disease-causing or associated candidate genes in 

IEI patients. NGS: next-generation sequencing. KG: 1000 Genomes Project. ESP: Exome 

Variant Server. ExAC: Exome Aggregation Consortium. MSC: mutation significance cutoffs.
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Supplemental Figure 2 

Determination of the optimal mutational signature number in the IEI lymphoma cohort. 

The reproducibility and average reconstruction error were evaluated for each number (N) of 

signatures. N was determined to be five because it results in relatively fewer errors and high 

reproducibility (greater than 95%).
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Supplemental Figure 3 

Somatic indel catalogs. Somatic indels from patients with at least 20 somatic indels are 

summarized and classified into 83 catalogs. Twenty percent of all somatic indels per sample 

are marked with a red dashed line. 

 


