S3 Appendix: Proofs

The following are proofs to the theoretical results presented in the main manuscript.
Proof of Proposition 3:
We can rewrite S}’ as
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Obviously, if ¢ ¢ T'}, then Zf; = ) and so Y; = 0. We desire to use Theorem 1 of [?] to
establish the CLT. To achieve this, we need to verify the physical dependence measure
for Y;, i € Z, over the whole domain. We can then calculate that
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As a result, if condition (i) holds, then we have AY < co and the CLT holds for
Z(z‘,j)eU;g X;X;/|UZ| by Theorem 1 of [?] as long as conditions (ii) and (iii) are also
satisfied.

Proof of Theorem 5:

To ease notation, denote E[X?] = 02, and define
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To complete the proof, it suffices to show that \/C(k,n)ry , are asymptotically i.i.d.
standard normal random variables.

We begin by evaluating the moments of y(n) and z(k,n). By using the law of total
expectation, it is immediately clear that E[y(n)] = no?. Moreover, we also have
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where the second equality follows from the definition of A\. As a result, the variance of
y(n) is given by

Var(y(n)) = Ely(n)*] - Ely(n)]* = n(A - 1)o*.

Therefore, as n — oo we have Var (@) — 0, and hence
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Next, we likewise evaluate the moments of z(k,n). By the assumption of
independence, and the fact the variables are centered, we have
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and similarly
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where the second inequality follows from the fact that if (i, j) # (m,1), then the
independence and zero-mean assumptions imply E[X' X7 X}, X'] = 0. As a result, it
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follows that as n — oo we have
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On the other hand, for k # [, we have

Cov(x(k,n),z(l,n)) =E | Y XX} > XpXp| =0
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since it is impossible for (i, j) = (m, h) if (¢,j) € U} and (m, h) € U", and hence we
have E[X[' X7 X}, X}'] = 0 for all summands. An application of Slutsky’s theorem then
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as n — oo. Hence ry , and 7, are asymptotically uncorrelated for k # {. Further, if

Ti,n and ., are, after rescaling, asymptotically normal, then they will be
asymptotically independent. We also have
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as n — oo. All that remains is to establish that \/C(k,n)ry,, are indeed asymptotically
normal using an applicable version of the CLT. Specifically, we need to show
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are asymptotically normal for £ =1,2,..., K. Note that we have
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and so we need only verify that

ey X0X7
WIETE 170 4, N(0,0"). (1)
VIUE]
To do this, we will apply Proposition 1, taking g(-) as the identity function, i.e.,

X; = g(€;) = €. This can be done since the random variables X1, X»,..., X,, are
assumed to be i.i.d. Then clearly we have
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using similar arguments as that after Corollary 1. Additionally, we have
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It then immediately follows from Proposition 1 that
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completing the proof.



