
S3 Appendix: Proofs

The following are proofs to the theoretical results presented in the main manuscript.
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establish the CLT. To achieve this, we need to verify the physical dependence measure
for Yi, i ∈ Z, over the whole domain. We can then calculate that

δi,p/2(Y ) = ∥
∑

j∈Ξi,k

XiXj −
∑

j∈Ξi,k

X∗
i X

∗
j ∥p/2

≤ ∥
∑

j∈Ξi,k

XiXj −
∑

j∈Ξi,k

XiX
∗
j ∥p/2 + ∥

∑
j∈Ξi,k

XiX
∗
j −

∑
j∈Ξi,k

X∗
i X

∗
j ∥p/2

≤ ∥Xi∥p
∑

j∈Ξi,k

∥Xj −X∗
j ∥p +

∑
j∈Ξi,k

∥Xi −X∗
i ∥p∥X∗

j ∥p

≤
∑

j∈Ξi,k

∥X0∥p(δj,p + δi,p).

Hence,

∆Y
p/2 =

∑
i∈Z

δi,p/2(Y ) ≤
∑
i∈Γk

∑
j∈Ξi,k

∥X0∥p(δj,p + δi,p) = ∥X0∥p
∑

(i,j)∈Uk

(δi,p + δj,p).
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Proof of Theorem 5:
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To complete the proof, it suffices to show that
√
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standard normal random variables.
We begin by evaluating the moments of y(n) and x(k, n). By using the law of total

expectation, it is immediately clear that E[y(n)] = nσ2. Moreover, we also have
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where the second equality follows from the definition of λ. As a result, the variance of
y(n) is given by
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Next, we likewise evaluate the moments of x(k, n). By the assumption of
independence, and the fact the variables are centered, we have

E[x(k, n)] =
∑

(i,j)∈Un
k

E[Xn
i X

n
j ] =

∑
(i,j)∈Un

k

E[Xn
i ]E[Xn

j ] = 0,

and similarly

E[x(k, n)2] =
∑

(i,j)∈Un
k

∑
(m,l)∈Un

k

E[Xn
i X

n
j X

n
mXn

l ] =
∑

(i,j)∈Un
k

E[(Xn
i )

2(Xn
j )

2] = |Un
k |σ4

where the second inequality follows from the fact that if (i, j) ̸= (m, l), then the
independence and zero-mean assumptions imply E[Xn
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follows that as n → ∞ we have
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as n → ∞. Hence rk,n and rl,n are asymptotically uncorrelated for k ̸= l. Further, if
rk,n and rl,n are, after rescaling, asymptotically normal, then they will be
asymptotically independent. We also have
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are asymptotically normal for k = 1, 2, . . . ,K. Note that we have√
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To do this, we will apply Proposition 1, taking g(·) as the identity function, i.e.,
Xi = g(ϵi) = ϵi. This can be done since the random variables X1, X2, . . . , Xn are
assumed to be i.i.d. Then clearly we have
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completing the proof.


