

Supplementary Figure 1. MDK expression correlated with Gleason score and

an inferior prognosis in external cohort.

(A) Comparison of MDK mRNA expression in Gleason score 6, 7 (3+4), 7 (4+3) and

8-10. (B) The Kaplan-Meier curve for BCR-free survival comparing tumor with high

vs. low MDK mRNA expression in external cohort (n=325).

Supplementary Figure 2. Intratumoral MDK expression was associated with

poor prognosis in PCa with Gleason score <7 or \geq 7 subgroups.

Kaplan-Meier curves for BCR-free survival comparing tumor with high vs. low intratumoral MDK expression in Gleason score <7 subgroups in training cohort (A) and validation cohort (B) or in Gleason score ≥7 subgroups in training cohort (C) and validation cohort (D). Log-rank P values were shown.

Supplementary Figure 3. Intratumoral MDK expression was associated with poor prognosis in PCa with low- and intermediate-risk or high-risk subgroups. Kaplan-Meier curves for BCR-free survival comparing tumor with high vs. low intratumoral MDK expression in low- and intermediate-risk subgroups in training cohort (A) and validation cohort (B) or in high-risk subgroups in training cohort (C) and validation cohort (D). Log-rank P values were shown.

(A) Representative images showing the high/low infiltration of CD8⁺ T cells in PCa.
(B) Evaluation of CD8⁺ T cells in tumor with high vs. low MDK expression based on IHC. (C) Evaluation of CD8⁺ T cells among CD45⁺ cells in tumor with high vs. low MDK expression through flow cytometry. Data were analyzed with Mann-Whitney U test.

Supplementary Figure 5. Gating strategy and representative flow cytometry images for tumor-infiltrating CD8⁺ T cell in PCa.

(A) Gating strategy for selecting tumor-infiltrating CD8⁺ T cell (CD45⁺ CD3⁺ CD8⁺ cell) in PCa. (B) Representative flow cytometry plots for cytotoxicity, effector, proliferative and immune checkpoint molecules on CD8⁺ T cells in high and low MDK expression groups.

Supplementary Figure 6. MDK showed direct but faint immunosuppressive

effect on CD8⁺ T cells.

(A) Evaluation of LRP1 and LRP6 expression on CD8⁺ T cells isolated from PBMCs from patients with tumor (n=5). (B) Evaluation of cytotoxicity expression (GZMB, PRF1 and CD107A) of PBMC-isolated CD8⁺ T cells treated with MDKr and anti-LRP1. (C) Evaluation of effector expression (IFNG and TNF- α) and proliferative marker (Ki-67) of PBMC-isolated CD8⁺ T cells treated with MDKr and anti-LRP1. (D) Evaluation of immune checkpoint (PD-1, Tim-3 and CTLA4) of PBMC-isolated CD8⁺ T cells treated with MDKr and anti-LRP1. Tells treated with MDKr and anti-LRP1. (D) Evaluation of immune checkpoint (PD-1, Tim-3 and CTLA4) of PBMC-isolated CD8⁺ T cells treated with MDKr and anti-LRP1. (D) Evaluation of immune checkpoint (PD-1, Tim-3 and CTLA4) of PBMC-isolated CD8⁺ T cells treated with MDKr and anti-LRP1. (D) Evaluation of immune checkpoint (PD-1, Tim-3 and CTLA4) of PBMC-isolated CD8⁺ T cells treated with MDKr and anti-LRP1. (D) Evaluation of immune checkpoint (PD-1, Tim-3 and CTLA4) of PBMC-isolated CD8⁺ T cells treated with MDKr and anti-LRP1. (D) Evaluation of immune checkpoint (PD-1, Tim-3 and CTLA4) of PBMC-isolated CD8⁺ T cells treated with MDKr and anti-LRP1. Data were analyzed with one-way ANOVA test with Bonferroni correction.

Supplementary Figure 7. High expression of PD-L1 was observed in tumor with

high intratumoral MDK expression.

(A) Representative images of PD-L1 through IHC staining. (B) Evaluation of PD-L1 expression in tumor with high/low intratumoral MDK expression. (C) Representative images of HLA Class I through IHC staining. (D) Evaluation of HLA Class I expression in tumor with high/low intratumoral MDK expression. Data was analyzed by Chi-square test.

Supplementary Figure 8. Tumor with high MDK expression featured with immunosuppressive immune contexture.

(A) The representative image of CD4⁺ T cells through IHC staining. (B-C) Evaluation of CD4⁺ T cell infiltration (B) and CD4/CD8 ratio (C) between tumor with high vs. low MDK expression. (D) The representative image of M1 macrophages (CD68⁺CD206⁻ cells) and M2 macrophages (CD68⁺CD206⁺ cells) through immunofluorescence staining. (E-G) Evaluation of M1 macrophages (E) and M2 macrophages (F) infiltration and M1/M2 ratio (G) between tumor with high vs. low MDK expression. (H) The representative image of mast cells (Tryptase⁺ cells) through IHC staining. (I) Evaluation of mast cells infiltration between tumor with high vs. low MDK expression. Data was analyzed by Mann-Whitney U test.

Supplementary Figure 9. Heatmap of signatures associated with therapeutic

response.

Heatmap illustrating the MDK expression with AR output score (A), AR activity signature (B), postoperative radiation therapy outcome score (C) in external cohort

(n=325).

Supplementary Figure 10. Graphical abstract.

Supplementary	/ Table 1.	Flow c	ytometry	antibodies.
---------------	------------	--------	----------	-------------

No.	Marker	Dye	Antibody name	Clonality Species	Company	Product No.
1	CD45	APC-Cy7	APC-Cy7 Mouse Anti-	Mouse Anti-human	BD	557833
			Human CD45		Biosciences	
2	CD8	BB515	BB515 Mouse Anti-	Mouse Anti-human	BD	564526
			Human CD8		Biosciences	
3	CD3	BB515	BB515 Mouse Anti-	Mouse Anti-human	BD	552852
			Human CD56		Biosciences	
4	TNF	PE	PE Mouse Anti-Human	Mouse Anti-human	BD	559321
			TNF		Biosciences	
5	CD107A	AF647	AF647 Mouse Anti-	Mouse Anti-human	BD	641581
			Human CD107A		Biosciences	
6	IFN-γ	PE-Cy7	PE-Cy7 Mouse Anti-	Mouse Anti-human	BD	557643
			Human IFN-γ		Biosciences	
7	GZMB	AF647	AF647 Mouse anti-Human	Mouse Anti-human	BD	560212
			Granzyme B		Biosciences	
8	PRF-1	PE	PE Mouse Anti-Human	Mouse Anti-human	BD	556437
			Perforin		Biosciences	
9	Ki-67	BV421	BV421 Mouse Anti-	Mouse Anti-human	BD	562899
			Human Ki-67		Biosciences	
10	PD-1	PE-Cy7	PE-Cy7 Mouse Anti-	Mouse Anti-human	BD	561272
			Human PD-1		Biosciences	
11	Tim-3	PE	PE Mouse Anti-Human	Mouse Anti-human	BD	563422
			TIM-3 (CD366)		Biosciences	
12	PSMA	APC	APC Mouse Anti-Human	Mouse Anti-human	Biolegend	342508
			PSMA Antibody			
13	LRP1	PE	PE Mouse Anti-Human	Mouse Anti-human	BD	550497
			CD91 (LRP1) Antibody		Biosciences	
14	LRP6	AF647	AF647 Mouse Anti-	Mouse Anti-human	R&D	FAB1505R
			Human LRP6 Antibody		Systems	

Supplementar	7 Table 2. Gene signature applied in this s	tudv
ouppionioniu		caay

Signature*	Source	Genes			
		ARAP2, ASAP1, CD28, CD9, CRTAM, CXCL10, EEF1A1, EEF1B2,			
		EEFIG, EHD3, EMB, EVL, FOSB, RPL35, GPR183, HIFTA, HSPET,			
		ICOS, ID3, IFIT3, IL/R, ITGB1, JUN, KCNN4, LIMD2, LTB, MIF,			
		MS4A4A, MI-ATP6, MI-CO1, MI-CO2, MI-CO3, MI-CYB, MI-ND1,			
		MT-ND2, MT-ND3, MT-ND4, MT-ND5, NACA, NEK7, NRP1, POU2F2,			
Progenitor exhausted	DOI:	PTPN6, RILPL2, RNF213, RPL10A, RPL11, RPL13, RPL15, RPL22,			
CD8 ⁺ T cells signature	10.1038/s4159	RPL22L1, RPL23, RPL24, RPL26, RPL27A, RPL28, RPL29, RPL3,			
	0-019-0312-6	RPL30, RPL32, RPL34, RPL35, RPL35A, RPL36, RPL36A, RPL37,			
		RPL4, RPL6, RPL7A, RPL8, RPLP0, RPLP1, RPLP2, RPS11, RPS14,			
		RPS15, RPS15A, RPS16, RPS17, RPS18, RPS19, RPS2, RPS21,			
		RPS27A, RPS28, RPS3A, RPS4X, RPS5, RPS6, RPS7, RPS8, RPS9,			
		SLAMF6, SOCS3, TCF7, TNFSF8, TRAF1, USP18, WDR89, XCL2,			
		ZFP36L1			
	DOI: 10.1038/s4159 0-019-0312-6	KIAA1671, ABI3, AKNA, APOBEC3H, ARHGAP9, ARL6IP1, ARMC7,			
		BCL2A1, CBX4, CCL18, CCL4, CD160, CD164, CD27, CD3E, CD3G,			
		CD7, CD82, CD8A, CST7, CXCR6, DAPK2, DTX1, DUSP2, EFHD2,			
		EIF4A2, FAM189B, FASLG, FOXN3, FYN, GIMAP1, GIMAP6,			
To make allow and a material		GIMAP7, GLRX, GNG2, GRAMD1A, GZMA, GZMH, GZMK, HCST,			
CD8 ⁺ T colls signaturo		HSPA5, ID2, IFIT3, IL21R, ISG15, ITK, ITPKB, LAG3, LAX1, LRRK1,			
CD0 I Cells Signature		MBNL1, MXD4, NR4A2, PDCD1, PFDN5, PLAC8, PRDX5, PRKCH,			
		PSMB10, PSMB8, PSME1, PTGER4, PTPN18, PTPN22, RGS1,			
		RGS2, RGS3, RTP4, RUNX3, SERPINA3, SERPINB6, SH2D2A,			
		SHISA5, SIPA1, SLC3A2, STAT1, STK17B, TAPBP, TAPBPL,			
		TNFRSF1B, TOX, UCP2, VMP1, ZBP1			
	DOI:	KLK3, TMPRSS2, NKX3-1, KLK2, GNMT, PMEPA1, MPHOSPH9,			
AR output score	10.1016/j.cell.	ZBTB10, EAF2, CENPN, C1orf116, ACSL3, PTGER4, ABCC4, NNMT,			
	2015.10.025	ADAM7, FKBP5, ELL2, MED28, HERC3			
AR activity signature	DOI:				
	10.1158/1078-	NENS, NENZ, FROFS, STEAFT, STEAFZ, FFAFZA, RADSD, AUSES,			
	0432.CCR-19-	NKX3-1			
Radiation Therapy Outcomes Score					
	10.1016/S147	DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN,			
	0-	RPS27A, IRF4, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7,			
	2045(16)3049	NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, BIN2			
	1-0				

	Training Cohort		Validation Cohort	
Characteristics	HR (95% CI)	Р	HR (95% CI)	Р
Age, per 1-y increase	0.999 (0.995-1.002)	0.502	0.999 (0.964-1.035)	0.945
Gleason score 7 vs. <7	2.709 (1.042-7.041)	0.041	2.372 (1.059-5.316)	0.036
Gleason score 8-10 vs. <7	4.778 (1.879-12.149)	0.001	4.672 (2.072-10.531)	<0.001
Preoperative PSA 10-20 vs <10	1.058 (0.573-1.955)	0.856	1.960 (1.015-3.785)	0.045
Preoperative PSA >20 vs <10	2.038 (1.166-3.560)	0.012	3.138 (1.675-5.881)	<0.001
Lymph node involvement	3.265 (1.659-6.427)	0.001	0.609 (0.085-4.380)	0.622
Positive surgical margin	1.498 (0.820-2.739)	0.189	0.403 (0.056-2.904)	0.367
Extracapsular extension	2.058 (0.983-4.305)	0.055	1.045 (0.565-1.931)	0.889
Seminal vesicle invasion	1.910 (1.128-3.235)	0.016	0.599 (0.147-2.438)	0.474
Peritumor MDK expression	1.276 (0.800-2.035)	0.306	1.185 (0.763-1.842)	0.450
Intratumor MDK expression	3.088 (1.837-5.194)	<0.001	2.789 (1.707-4.557)	<0.001

Supplementary Table 3. Univariate cox regression analyses of clinicopathological features associated with BCR-free survival.

Abbreviations: CI, confidence interval; HR, hazard ratio; PSA, prostate specific antigen.

P value <0.05 marked in bold font shows statistical significance.

	5			
	Training Cohort (n=369)		Validation Cohort (n=390)	
CAPRA-S score	n	%	n	%
0	14	3.8	12	3.1
1	29	7.9	31	7.9
2	65	17.6	56	14.4
3	62	16.8	80	20.5
4	47	12.7	63	16.2
5	43	11.7	58	14.9
6	45	12.2	53	13.6
7	21	5.7	18	4.6
8	23	6.2	15	3.8
9	11	3.0	1	0.3
≥10	9	2.5	3	0.8

Supplementary Table 4. CAPRA-S score of training and validation cohorts