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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

In this paper, the authors introduced a deep ultraviolet (DUV) in-sensor reservoir computing (RC) 

system to perform in-situ latent fingerprint recognition. The proposed system features compactness 

and high-power efficiency achieved via implementing amorphous Gallium-oxide sensors with 

enhanced persistent photoconductivity effect to emulate the photo-synapse reservoir layer, 

whereas the output layer is implemented using HfOx/TaOx based memristive array. During 

verification, the proposed system is trained and tested with fingerprint images. With that, 90% 

recognition accuracy is achieved even in the presence of 15% noise. 

 

Suggestions: 

• Since there are multiple variants of reservoir networks, it would be useful to include the 

mathematical model of the reservoir network topology. 

• The reservoir networks are known to have lateral connections [feedback] to enable the 

representation of temporal context. Did the authors use lateral connections? if the answer is no, this 

cannot be a reservoir network. 

• Using the term in-situ implies that the fingerprint recognition, including preprocessing, scaling, etc, 

is performed on-site, but this is not the case here. All the test images are preprocessed off-site. The 

same is applied to RC system training. 

• In Fig.4-f, is there any explanation for equal classification accuracies of the software and hardware 

models when the noise level is below 3%? Why is it not the case for higher noise levels? 

• I would recommend verifying the proposed RC system with unseen fingerprint images rather than 

using noisy training images as a test set. 

• In the hardware model, the input features are re-represented to expand in the temporal domain. 

Thus, it is unclear how did the authors employ the conventional backpropagation to train the 

network. 

• The authors mentioned that the proposed system is power efficient as compared to ex-situ latent 

fingerprint recognition system. Are there any quantitative results to support this claim? 

• Given the fact that memristor conductance may change over time, how often do we need to re-

train the memristive array of the readout layer to maintain consistent performance? 

• In Line 390, it is mentioned “current values of the reservoirs are transmitted to trans-impedance 

amplifier to convert them into voltage values.” Trans-impedance amplifier converts voltage to 

current! Thus, the amplifier name should be replaced by trans-resistance amplifier. 

 



• There are a few grammatical mistakes need to be fixed. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors proposed an in-sensor reservoir computing system for in-situ latent fingerprint 

recognition. In such a system, GaOX photodetector acts as the deep ultraviolet photo-synapses for 

information input and the memristor array is utilized as the training and readout layer. Systematic 

experiments have been performed, including the engineering of GaOX component to improve the 

photo-synapse behavior, mapping of complex input vectors into dimensionality-reduced output 

vectors, and configuring and simulating of the whole in-sensor reservoir computing system. The 

authors demonstrate the nonlinear mapping characterization of input and output based on the 

GaOX photoelectric reservoir and proposed dual-feature strategy for feature sharping. Especially, 

this hardware system maintains high accuracy above 90% for fingerprint recognition even under 15% 

background noise level. This prototype system for image recognition combing photo-synapses and 

memristors will provide more insight into emerging in-sensor reservoir computing. Overall, the topic 

of this work is truly interesting. The manuscript is well organized. I would recommend the 

acceptance if the authors can address below questions. 

 

1. The authors modulate the PPC effect with a longer decay process by decreasing the O contents 

unilaterally. The authors are suggested to clarify the factors that determine the PPC effect. In 

addition, please make it clear in the main text, what are the detailed requirements in synapse 

behavior for in-sensor reservoir computing? 

2. The authors mentioned that “the deliberately enlarged PPC effect by Ga-rich design turns the 

sample S1 into an ideal photo-synapse”. But there must be something wrong in Fig. 2, where the 

main information about S1, S2, and S3 are missing. Even the main text and caption introduce the 

figures in details, Fig. 2 and Supplementary Fig. 2 have been mistakenly labelled. 

3. The trends during input mapping in Supplementary Fig. 6 and Fig. 7 are similar. How much will the 

difference in peak value influence the recognition accuracy? 

4. The dual-feature strategy sharps the feature of various inputs and improves the recognition 

accuracy. But it also increases the burden of the readout layer. Can the authors comment this effect 

on the overall performance? 

5. In Supplementary Fig. 11, pulse stimulations for increment and decrement of memristor 

conductance are missing. Also, the description of the training method of the memristor array is 

unclear in method section. The authors should make it more clear. 

 



6. “differentcomplicance” in Supplementary Fig. 9 should be “different compliance’. Please check the 

English throughout the manuscript. 
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Manuscript ID: NCOMMS-22-15956  1 

Response to Reviewer’s Comments 2 

This Response Letter is regarding a former manuscript submitted to Nature 3 

Communications, entitled “In-sensor reservoir computing system for latent 4 

fingerprint recognition with deep ultraviolet photo-synapses and memristor array” 5 

by Zhongfang Zhang et al. (NCOMMS-22-15956). We would like to express our 6 

special thanks to the reviewers, for their useful comments have guided us to improve 7 

the manuscript quality effectively. We revised both the main text and the supplementary 8 

information (SI) accordingly, and the detailed responses to the questions and comments 9 

are summarized. In the following point-to-point response, the original comments are in 10 

black fonts, and our responses are in blue fonts. Changes in the revised main text and 11 

SI are highlighted in yellow. 12 

 13 

I.  Comments from Reviewer 1  14 

Overall Comment: 15 

In this paper, the authors introduced a deep ultraviolet (DUV) in-sensor reservoir 16 

computing (RC) system to perform in-situ latent fingerprint recognition. The proposed 17 

system features compactness and high-power efficiency achieved via implementing 18 

amorphous Gallium-oxide sensors with enhanced persistent photoconductivity effect to 19 

emulate the photo-synapse reservoir layer, whereas the output layer is implemented 20 

using HfOx/TaOx based memristive array. During verification, the proposed system is 21 

trained and tested with fingerprint images. With that, 90% recognition accuracy is 22 

achieved even in the presence of 15% noise. 23 

Reply to Overall Comment: We thank the referee for the precious time and 24 

constructive comments on our manuscript. Our responses to the comments one by one 25 

are shown as follows. 26 

 27 

Comment 1: Since there are multiple variants of reservoir networks, it would be useful 28 

to include the mathematical model of the reservoir network topology. 29 

Reply to Comment 1: We thank the reviewer for this suggestive comment.  30 

The echo state network (ESN) is a fitted model for understanding a general RC 31 

architecture, as shown in Fig. R1a. The I/O relationships can be represented by the 32 
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formulas: 33 

𝑥(𝑡 + 1) = 𝑓 (𝑊𝑟𝑒𝑠 ∙ 𝑥(𝑡) + 𝑊𝑖𝑛 ∙ 𝑢(𝑡)) 34 

𝑦(𝑡) = 𝑊𝑜𝑢𝑡 ∙ 𝑥(𝑡) 35 

Among ESN models, the delayed-feedback system is mostly suitable for temporal 36 

information classification. The excitations of the physical node in response to the 37 

delayed signals can effectively act as a chain of virtual nodes, as shown in Fig. R1b. 38 

The temporal transformation of the reservoir state can be represented by the formula: 39 

𝑑𝑥(𝑡)/𝑑𝑡 = 𝐹(𝑡, 𝑥(𝑡), 𝑥(𝑡 - 𝜏)) 40 

θ= 𝜏/N 41 

where F is the system function determined by intrinsic material properties, τ is the 42 

duration time, N is the number of nodes, and θ is the time-step. According to the above 43 

characteristics, we can conclude that the performance of the device used for RC requires 44 

two features: the nonlinear response to continuous input and the short-term decay 45 

characteristic, which are also theoretically explained in other worksR1, 2.  46 

 47 

Fig. R1 Schematic diagram of the mathematical model of the typical RC topology. 48 

a General echo state network model. b Delayed-feedback RC model. 49 
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 50 

In order to further confirm that the device meets the above two characteristics, 51 

according to the suggestions of the reviewer, we further analyzed the nonlinear response 52 

curves of the device, as shown in Fig. R2. The response formula under continuous light 53 

input and the decay formula after light input of the device have been analyzed:  54 

i) The response function can be represented by: 55 

                                                  R = R0 + A [1- exp (-(t-t0)/τ)] 56 

                                                                 A = f (R0) 57 

                                                                 τ = g (R0) 58 

where R0 is the initial current of the response process, A is the difference between R (∞) 59 

and R0, and t0 is the starting time of the response process. The fitting parameters A and 60 

τ are related to the initial current state R0, and the functions f and g are both determined 61 

by the intrinsic characteristics of the device and the input light power. 62 

Thus, the fitting result of the example in Fig. R2 is extracted to be: 63 

                                                  R = 4 + 39 [1- exp (-(t-t0)/108)] 64 

where R is in nA and t-t0 is in ms. 65 

ii) The decay functions can be represented by: 66 

                                                  D = D0 - A’ [1- exp (-(t-t0)/τ’)] 67 

                                                                 A’ = r (D0) 68 

                                                                 τ’ = s (D0) 69 

where D0 is the initial current of the decay process, A’ is the difference between D0 and 70 

D (∞), and t0 is the starting time of the decay process. The fitting parameters A’ and τ’ 71 

are related to the initial current state D0, and the functions r and s are both determined 72 

by the intrinsic characteristics of the device. 73 

Thus, the fitting result of the example in Fig. R2 is extracted to be: 74 

                                                  D = 26 - 10 [1- exp (-(t-t0)/47)] 75 

where D is in nA and t-t0 is in ms. 76 

From these two processes, we can deduce that the characteristics of the device can meet 77 

the requirements for RC. 78 
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 79 

Fig. R2 Nonlinear functions (current versus time) extracted from the 80 

photoresponse curves of the device. The response function under continuous light 81 

input is represented by R and the decay function is represented by D. 82 

 83 

In this work, referring to the time-delayed reservoir model, we built a parallel 84 

architecture of the time-delayed reservoir. As shown in Fig. R3, the dots in yellow 85 

actually represent the virtual nodes, which are set at the pulse ending edge with a fixed 86 

interval θ. For the designed readout, only the last 1 or 2 nodes are utilized to construct 87 

the output vector. Multiple reservoirs in parallel are utilized to accomplish one 88 

comprehensive output from a binary image. As for the RC network training, only the 89 

readout matrix (Wout) needs to be trained, and all the other connections are fixedR3, 4. 90 
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 91 

Fig. R3 Schematic diagram of the parallel time-delayed reservoir network as a 92 

demonstration of our work. The image is divided suitably then inputted into the 93 

reservoirs in parallel. The virtual nodes of each reservoir are coupled with a time 94 

interval θ. For the designed readout network, only the last 1 or 2 nodes of each reservoir 95 

are utilized to construct the output vector.  96 

 97 

According to this comment, we have supplemented the relevant figures and 98 

demonstrated the mathematical model: 99 

(main text, Fingerprint recognition with fully-hardware DUV in-sensor RC system, 100 

Paragraph 1) 101 

“To verify the feasibility of DUV in-sensor RC for fingerprint recognition, we 102 

constructed a hardware system, composed of a photo-synapse reservoir layer and a 103 

memristor readout layer, as shown in Fig. 4a. The relationship between the 104 

mathematical model and the physical hardware of this system has been illustrated (see 105 

Supplementary Fig. 8). In such a system for DUV fingerprint recognition, the images 106 

are first converted into DUV light pulses.” 107 

(SI, Supplementary Fig. 8) 108 
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“ 109 

         110 

Supplementary Fig. 8 Schematic diagram of the parallel time-delayed reservoir 111 

network as a demonstration of our work. The image is divided suitably then input 112 

into the reservoirs in parallel. The virtual nodes of each reservoir are coupled with a 113 

time interval θ. For the designed readout network, only the last 1 or 2 nodes of each 114 

reservoir are utilized to construct the output vector.” 115 

 116 

Comment 2: The reservoir networks are known to have lateral connections [feedback] 117 

to enable the representation of temporal context. Did the authors use lateral connections? 118 

if the answer is no, this cannot be a reservoir network. 119 

Reply to Comment 2: We thank the reviewer for this suggestive comment.  120 

The schematic of the lateral connections can be reflected in our reservoir model (Fig. 121 

R3), since the state change of the reservoir is not only related to external input, but also 122 

related to the real-time state of the reservoir (conductivity of the device). Despite the 123 

independence of multiple reservoirs, the lateral connections do exist between the virtual 124 

nodes of one reservoir, which can be reflected by the time-dependent pulse responses 125 

of I-t curves. As an example, although the last pulse is the same “1”, the sampling 126 
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currents (SMP1) of “1101”, “0011” and “0001” are different, as shown in Fig. R4. If 127 

there is no lateral connection (feedback), the current obtained will only be related to the 128 

last input (namely “1”) in the 4-bit sequences.  129 

 130 

Fig. R4 A typical example of lateral connection by different 4-bit pulse inputs, 131 

including “1101”, “0011”, and “0001”. Although the last pulse is “1”, the 132 

characteristic currents (SMP1) of “1101”, “0011” and “0001” are different. The state 133 

change of the reservoir is not only related to external input, but also related to the real-134 

time state of the reservoir.  135 

 136 

According to this comment, we have supplemented correlated sentences in the main 137 

text (Nonlinear mapping of 4-bit inputs of the a-GaOx DUV reservoir, Paragraph 138 

2): “To illustrate the feature sampling, the I-t curves of three representative inputs of 139 

“0001” (in blue), “0011” (in red), and “1101” (in purple) of the a-GaOx reservoir are 140 

exhibited in Fig. 3b. Although the last pulses are all “1”, their decay processes after the 141 

input sequences are different. Therefore, the final state of the reservoir not only relates 142 

to the last input, but also depends on its real-time state, indicating the lateral 143 

connections in such an a-GaOx reservoir21, 22. Based on the conspicuous difference, each 144 

pixel sequence can be featured by current sampling to realize feature extraction”. 145 

 146 

Comment 3: Using the term in-situ implies that the fingerprint recognition, including 147 
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preprocessing, scaling, etc, is performed on-site, but this is not the case here. All the 148 

test images are preprocessed off-site. The same is applied to RC system training.  149 

Reply to Comment 3: We thank the reviewer for this helpful comment. It is reasonable 150 

to say that the image preprocessing is obviously not in situ. The reason for our 151 

preprocessing is that the off-site is limited by the size of the memristor array. Therefore, 152 

we reasonably believe that this work verifies the prototype of a fingerprint recognition 153 

system and provides potential inspirations for the realization of in-situ fingerprint 154 

recognition system.   155 

According to the reviewer’s comment, we have corrected the descriptions about “in-156 

situ” in the main text and SI, especially the title of this work.  157 

The revised title is “In-sensor reservoir computing system for latent fingerprint 158 

recognition with deep ultraviolet photo-synapses and memristor array”.  159 

Other revisions about “in-situ” in the revised main text and SI are all highlighted in 160 

yellow. 161 

 162 

Comment 4: In Fig.4-f, is there any explanation for equal classification accuracies of 163 

the software and hardware models when the noise level is below 3%? Why is it not the 164 

case for higher noise levels? 165 

Reply to Comment 4: We thank the reviewer for this helpful comment.  166 

The fingerprint images with increasing noise levels are exhibited with different 167 

resolutions, as shown in Fig. R5, in which the binary images are the most crucial. While 168 

the noise level is below 3%, the noise is negligible and the difference between the 169 

training set and the test set is not obvious. This as-trained weight matrix can be 170 

competent for the recognition task through both the simulation and the hardware, 171 

leading to the relatively close classification accuracies. 172 

Most pixels in the binary image have changed at above 3% noise level, visible to the 173 

naked eye. The weight matrix of software simulation is based on double-floating 174 

number, while the precision of hardware (memristor) is limited by the quantity of the 175 

controllable conductance states. In addition, there are various device non-idealities of 176 

memristor hardware (e.g., device-to-device and cycle-to-cycle variations, discreteness 177 
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of operations, etc.), which will lead to the attenuation of accuracies with the 178 

introduction of noises. According to the above factors, the gap of accuracy between the 179 

software and hardware model becomes increasingly obvious with the increase of noise 180 

level.  181 

In summary, the main factors resulting in the differences in classification accuracies 182 

could be as follows: i) the images exhibit apparent changes when the noise level is 183 

above 3%. ii) the limited conductance states of the memristor hardware affect the 184 

calculation precision of the readout layer. Similarly, in the reports of Midya. R. et. al.R5, 185 

the recognition accuracy of hardware verification also faces attenuation while 186 

increasing the noise. 187 

 188 

Fig. R5 Representative fingerprint images with increasing noise levels displayed 189 

in different pixel sizes. While the noise level is below 3%, the changes of the binary 190 

image only take place in a few pixels; however, when the noise level is above 3%, the 191 

features of most pixels in the image have changed obviously, even visible to the naked 192 

eye. 193 

 194 

According to this comment, we have supplemented the correlated sentences in the main 195 

text (Fingerprint recognition with fully-hardware DUV in-sensor RC system, 196 

Paragraph 3):  197 

“Three situations, full-precision (double-precision floating-point) simulation, limited-198 
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precision (32-bit fixed-point quantization) simulation, and hardware experiment, are 199 

considered for comparison. As shown in Fig. 4f, recognition accuracies in all situations 200 

remain comparable under ≤3% noise level and deteriorate asynchronously with its 201 

increment. The limited resistive states of the memristor device and the amplification of 202 

non-ideal factors (e.g., device-to-device and cycle-to-cycle variations, discreteness of 203 

operations, etc.) under high-level noise dominate the relatively quick deterioration in 204 

the hardware situation. Therefore, the improvement of resistive states and uniformity 205 

of the memristor devices could further improve the system robustness51. It is 206 

noteworthy that the recognition accuracy of the hardware experiment still maintains 207 

above 90% under 15% noise level. In summary, the fully-hardware DUV in-sensor RC 208 

system based on a-GaOx photo-synapse has promising potential to be competent for 209 

high-precision in-situ DUV fingerprint recognition tasks.” 210 

 211 

Comment 5: I would recommend verifying the proposed RC system with unseen 212 

fingerprint images rather than using noisy training images as a test set. 213 

Reply to Comment 5:  We thank the reviewer for this helpful comment. The noises for 214 

practical recognition scenes inspired us to perform such a comparison in the original 215 

manuscript. According to the reviewer’s comment, we also supplemented the 216 

simulation experiment with the proposed method.  217 

Unlike the large MNIST handwriting database, this fingerprint database (Fingerprint 218 

Verification Competition 2002 database) has relatively small sample size. There are 219 

only 8 fingerprint images for each person in the original data set, which is limited for 220 

the division of the training and test sets. Thus, we conducted a simple extension of the 221 

data set by introducing one random noise pixel in the binary image for 10 times, thus, 222 

there are 80 available images for each person, with a total of 400 images. Then, we 223 

divide the extended fingerprint images into the 80% training set and the 20% test set 224 

(namely the unseen images), as shown in Fig. R6a. By utilizing the dual-feature strategy 225 

of the reservoir, the simulated recognition accuracy for trained fingerprint images is 226 

beyond 96% after 1000 training epochs, as shown in Fig. R6b. As for the test set, the 227 

confusion matrix is shown in Fig. R6c, indicating an excellent recognition accuracy of 228 

92.5% for the recognition of the unseen images.  229 

 



11 

 

 230 

Fig. R6 Recognition simulation of the unseen fingerprint images. a Expansion of 231 

the data set of the fingerprints from 40 to 400 images by introducing one random noise 232 

pixel in each binary image for 10 times (taking the C-1 image in Supplementary Fig. 233 

10 as an example), owing to the finite scale of the FVC 2002 database. 80% of the 234 

fingerprint images were set as the training set and the other 20% as the test set (namely 235 

the unseen images). b Accuracy convergency during the training process within 1000 236 

epochs. Considerable recognition accuracy can be achieved upon certain training 237 

epochs. c Confusion matrix of the fingerprint recognition with the unseen images as the 238 

test set. The test accuracy is extracted to be 92.5%. 239 

 240 

According to this comment, we have supplemented the recognition simulation of 241 

untrained fingerprint images and added correlated contents in both main text and 242 

Supplementary Information:  243 

(main text, Fingerprint recognition with fully-hardware DUV in-sensor RC system, 244 

Paragraph 1) 245 

“Thus, a dual-feature strategy is employed, and only a dimensionality-reduced 40×5 246 

weight matrix needs to be trained for each fingerprint image. As an example, a 247 

recognition accuracy for unseen fingerprint images has been simulated to be around 92% 248 

based on this dual-feature strategy, where the expanded sample amounts of the 249 
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fingerprint images ensure the high recognition accuracy (see Supplementary Fig. 11).”  250 

(SI, Supplementary Fig. 11) 251 

“252 

 253 

Supplementary Fig. 11 Recognition simulation of the unseen fingerprint images. a 254 

Expansion of the data set of the fingerprints from 40 to 400 images by introducing one 255 

random noise pixel in each original image for 10 times (taking the C-1 image in 256 

Supplementary Fig. 10 as an example), owing to the finite scale of the FVC 2002 257 

database. 80% of the fingerprint images were set as the training set and the other 20% 258 

as the test set (namely the unseen images). b Accuracy convergency of the training 259 

process within 1000 epochs. Considerable recognition accuracy can be achieved upon 260 

certain training epochs. c Confusion matrix of the fingerprint recognition with the 261 

unseen images as the test set. The test accuracy is extracted to be 92.5%.” 262 

 263 

Comment 6: In the hardware model, the input features are re-represented to expand in 264 

the temporal domain. Thus, it is unclear how did the authors employ the conventional 265 

backpropagation to train the network. 266 

Reply to Comment 6: We thank the reviewer for this comment. The backpropagation 267 

is usually applied in multilayer neural networks, updating the weights from the output 268 
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layer to the input layer. In our work, we only train the single-layer readout network and 269 

select the Softmax as the output function, then the readout weights are updated by 270 

logistic regression to minimize the loss. Unlike the traditional method in multilayer 271 

neural networks, the backpropagation algorithm is not used in the training process, 272 

since the weights in the reservoir are always fixed.  273 

According to this comment, we have corrected the descriptions of the readout network 274 

training methods (Methods, Network training):  275 

 “The fully-connected network was trained by the MATLAB Deep-learning Toolbox, 276 

utilizing the Softmax output function and the logistic regression to supervise the 277 

learning. The stochastic noise was made by the product of the MATLAB randn matrix 278 

and the grayscale value throughout the whole image.” 279 

 280 

Comment 7: The authors mentioned that the proposed system is power efficient as 281 

compared to ex-situ latent fingerprint recognition system. Are there any quantitative 282 

results to support this claim? 283 

Reply to Comment 7: We thank the reviewer for this helpful comment.  284 

The energy consumption of our system includes optoelectronic reservoirs and 285 

memristor array. From the perspective of quantitative calculation, the power 286 

consumption of the optoelectronic reservoir can be extracted by the formula E=IVt. In 287 

our work, by setting 20 nA as the average current of the reservoir state (see Fig. 3d in 288 

the main text), the energy consumption per pulse operation of the reservoir is calculated 289 

to be E=20 nA×1 V×25 ms=0.5 nJ. Using the same calculation method, the similar 290 

optoelectronic synapse in previous report costs approximately 85 nJ per operation of 291 

optical information processingR6, indicating that the optoelectronic reservoir in our 292 

work is much more energy-efficient than the former report. In addition, this pulse 293 

operation of the reservoir contains both the sensing and processing of the optical 294 

temporal information. The traditional systems require sensors and photoelectric signal 295 

converters, while the increased energy consumption of these additional parts is usually 296 

not mentioned in the reports to conduct quantitative calculationR3, 7. 297 

As for the training consumption, taking the SET operation of one memristor device as 298 

an example (see Supplementary Fig. 12), the power consumption can be approximately 299 

extracted by E’=gV2t=300 µS× (2.5 V)2×500 µs=0.938 µJ. Actually, we have 300 
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introduced the dimensionality-reduced conception in our work, which means the 301 

introduction of the reservoir architecture will reduce the scale of memristor array for 302 

the readout training. Taking the 10×8 image in our work as an example, if there is no 303 

in-sensor reservoir, the readout network requires 800 (80×5×2) memristor devices. By 304 

utilizing the dual-feature strategy of 20 reservoirs, the amounts of memristor will 305 

decline by half. Since the energy consumption of a memristor is approximately 1000 306 

times larger than that of a reservoir, we can deduce that the reduction of dimensionality 307 

is valuable for the overall energy-efficiency. Therefore, from the quantitative 308 

calculation, the reservoir architecture in our work possesses potential energy-efficient 309 

characteristic. 310 

 311 

According to this comment, we have updated the demonstrations of the energy 312 

consumption of the reservoir (Nonlinear mapping of 4-bit inputs of the a-GaOx DUV 313 

reservoir, Paragraph 3): 314 

“Consequently, the feature space based on nonlinear photoresponse configures the 315 

classification process of the reservoir, reducing the dimensionality of raw data from 4-316 

bit digital inputs to 2 analog outputs that serve as the inputs of the linear readout layer49, 317 

50. The energy consumption per pulse operation of the optoelectronic reservoir can be 318 

estimated to be E=20 nA×1 V×25 ms=0.5 nJ, indicating that the reservoir architecture 319 

possesses potential energy-efficient characteristic.” 320 

 321 

Comment 8: Given the fact that memristor conductance may change over time, how 322 

often do we need to re-train the memristive array of the readout layer to maintain 323 

consistent performance? 324 

Reply to Comment 8:  We thank the reviewer for this comment. Considering the 325 

resistance decay of the memristor, the retention characteristic measurement of our 326 

memristor is conducted by 150 minutes, as shown in Supplementary Fig. 13. Therefore, 327 

within the retention time, re-train is not necessary. Namely, the re-train time is greater 328 

than 150 minutes, which is comparable to the previous reportsR8, and sufficient for an 329 

identification system. 330 

 331 
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Comment 9: In Line 390, it is mentioned “current values of the reservoirs are 332 

transmitted to trans-impedance amplifier to convert them into voltage values.” Trans-333 

impedance amplifier converts voltage to current! Thus, the amplifier name should be 334 

replaced by trans-resistance amplifier. 335 

Reply to Comment 9:  We thank the reviewer for this comment. Maybe there are some 336 

misunderstandings in the English expression of the circuit element, since the nouns 337 

“impedance” and “resistance” represent the similar physical quantity in ohm (Ω). A 338 

trans-impedance amplifier is usually utilized to convert the current signals to voltage 339 

signalsR5, 9, as shown in Fig. R7. When the resistance R is fixed, Vout could be a simple 340 

multiplication of the analog current of reservoir Ii and the constant R, implementing the 341 

function of converting the current value into a voltage value.  342 

 343 

Fig. R7 Schematic diagram of a trans-impedance amplifier (TIA) model in our 344 

work. In this work, the TIA elements convert the current outputs of the reservoirs into 345 

voltage values, namely Vout =IiR.  346 

 347 

Comment 10: There are a few grammatical mistakes need to be fixed. 348 

Reply to Comment 10:  We thank the reviewer for this helpful comment. According 349 

to the reviewer’s comments. The English expression of the full text has been checked 350 

and polished. All the revisions about typos and grammar in the revised main text and 351 

SI are highlighted in yellow. 352 

 353 

II. Comments from Reviewer 2 354 
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Overall Comment: 355 

The authors proposed an in-sensor reservoir computing system for in-situ latent 356 

fingerprint recognition. In such a system, GaOX photodetector acts as the deep 357 

ultraviolet photo-synapses for information input and the memristor array is utilized as 358 

the training and readout layer. Systematic experiments have been performed, including 359 

the engineering of GaOX component to improve the photo-synapse behavior, mapping 360 

of complex input vectors into dimensionality-reduced output vectors, and configuring 361 

and simulating of the whole in-sensor reservoir computing system. The authors 362 

demonstrate the nonlinear mapping characterization of input and output based on the 363 

GaOX photoelectric reservoir and proposed dual-feature strategy for feature sharping. 364 

Especially, this hardware system maintains high accuracy above 90% for fingerprint 365 

recognition even under 15% background noise level. This prototype system for image 366 

recognition combing photo-synapses and memristors will provide more insight into 367 

emerging in-sensor reservoir computing. Overall, the topic of this work is truly 368 

interesting. The manuscript is well organized. I would recommend the acceptance if the 369 

authors can address below questions. 370 

Reply to Overall Comment: We thank the referee for the positive comments on the 371 

significance of our work. Our responses to the comments one by one are shown as 372 

follows. 373 

 374 

Comment 1: The authors modulate the PPC effect with a longer decay process by 375 

decreasing the O contents unilaterally. The authors are suggested to clarify the factors 376 

that determine the PPC effect. In addition, please make it clear in the main text, what 377 

are the detailed requirements in synapse behavior for in-sensor reservoir computing? 378 

Reply to Comment 1:  We thank the reviewer for this helpful comment.  379 

There are several factors to introduce PPC effects in semiconductor materials, such as 380 

ionization of oxygen vacancy sitesR10, macroscopic potential barriersR11, and metastable 381 

peroxidesR12. In the previous report of photoelectronic device based on amorphous 382 

Ga2O3
R13, the oxygen vacancy is a relatively crucial factor to cause the PPC effect. 383 

Researchers have reported many methods to modulate the PPC effect, including oxygen 384 

ambient modulationR14, post annealingR15, and Ar-plasma pretreatmentR16. By utilizing 385 

these methods in the process of material growth, the PPC effect can be well controlled, 386 
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whether it is enhanced or vanished. In this work, we fabricated comparative samples of 387 

various O contents by ambient modulation, and validated the influence of oxygen 388 

vacancy on the PPC effect. 389 

In addition, we have summed up some requirements for photo-synapse to be used in 390 

reservoir computingR2, 7: 391 

a) Nonlinearity 392 

The nonlinearity in the RC is mainly shown in the nonlinearity of the neurons. This 393 

setup enables the RC to cope with the nonlinear functions in real world. There have 394 

also been reports using a nonlinear dynamical system in the state updating of the RC, 395 

reaching good result in time-series processing. As for the photo-synapse, amorphous-396 

Ga2O3-based device have inherent nonlinear photoresponse (see Supplementary Fig. 2), 397 

thus are candidates for an implementing physical RC. 398 

b) Short-term memory 399 

The short-term memory is a component of the echo state property, the condition for the 400 

reservoir to reach an asymptotic stability that the states of the reservoir network is 401 

determined by the input and the real-time reservoir state, thus the reservoir can show 402 

good performance in tracking and synchronizing with a time series. In the situation of 403 

the photo-synapses, we would require the devices to show decay in the photogenerated 404 

conductance after illumination. Interestingly, the PPC effect which represents the decay 405 

process of the photogenerated current, could be regarded as the STM characteristic of 406 

a synaptic device.  407 

c) High dimensions/More reservoir states 408 

The function of RC largely relies on the ability of dimension upgrading. In the 409 

dimension upgrading process, the input is mapped into a space of higher dimension, 410 

and linear separation is done to give prediction of the time series data points. As for 411 

optoelectronic reservoir, it usually requires that the photo-synapse can generate more 412 

states when given with any type of input optical data. 413 
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 414 

Fig. R8 Gradual state change by conducting consecutive pulse stimulations. With 415 

the increasing of pulse numbers, the conductance of the reservoir rises nonlinearly, 416 

indicating abundant reservoir states. 417 

 418 

d) Stability 419 

The stability (endurance) is an important property in implementing the RCs. It requires 420 

that the reservoir could maintain its original properties like the decay constant, upper 421 

and lower limits of the conductance, and so on. It is hoped that the hardware platform 422 

can be effective and also endurable, since the RC system must be trained before they 423 

are introduced in real-world applications.  424 

 425 

Fig. R9 Repeatability of one typical device (Device #7 in Supplementary Fig. 7) as 426 

a demonstration of endurance performance. Each box includes 100 operations of the 427 

same pulse inputs. 428 

 429 

According to the reviewer’s comments, we have claimed the detailed features in 430 

synapse behavior for in-sensor reservoir computing in the revised main text 431 
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(Introduction, Paragraph 2): 432 

“Fortunately, a promising strategy of in-sensor RC based on optoelectronic devices has 433 

been proposed for temporal sensory information processing and verified with the 434 

assistance of system simulation21, 22. In order to fulfill the in-sensor applications, the 435 

optoelectronic devices should be marked by the properties of nonlinearity response, 436 

short-term memory (STM), multiple states and stability. Nevertheless, the waveband 437 

utilized in above works is not suitable for DUV detection.” 438 

 439 

Comment 2: The authors mentioned that “the deliberately enlarged PPC effect by Ga-440 

rich design turns the sample S1 into an ideal photo-synapse”. But there must be 441 

something wrong in Fig. 2, where the main information about S1, S2, and S3 are 442 

missing. Even the main text and caption introduce the figures in details, Fig. 2 and 443 

Supplementary Fig. 2 have been mistakenly labelled. 444 

Reply to Comment 2:  We thank the reviewer for this helpful comment. Really sorry 445 

about the faults for Fig. 2, and Supplementary Fig. 2. We have modified the relevant 446 

figures and captions in the revised manuscript as:  447 

(main text, Fig. 2) 448 

“  449 
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 450 

Fig. 2 PPC effect and synaptic behavior of the a-GaOx DUV sensor.” 451 

(SI, Supplementary Fig. 2) 452 

“ 453 

 454 

Supplementary Fig. 2 a-GaOx device and its nonlinear photoresponse. a Schematic 455 

diagram of the cross-section structure of the a-GaOx device. b Nonlinear dependence 456 

of ΔI on DUV light pulse width (25 ms) under various power densities.” 457 

 458 

Comment 3: The trends during input mapping in Supplementary Fig. 6 and Fig. 7 are 459 

similar. How much will the difference in peak value influence the recognition accuracy? 460 

0 min 18 min 27 min9 min 36 min 485
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Reply to Comment 3:  We thank the reviewer for this helpful comment. It is found 461 

that the average value of each state shows a very similar trend, although the increment 462 

of SD and ST causes the decline of average SMP1 (Supplementary Fig. 6). According 463 

to the suggestions of the reviewer, to clarify the influence of peak value of SMP1 on 464 

the recognition accuracy, additional training simulations of four sampling conditions 465 

have been conducted by the same dual-feature strategy, as shown in Fig. R10. The 466 

convergency trends of recognition accuracy are similar, which indicates that the 467 

sampling conditions have a negligible influence on the recognition simulation results. 468 

The possible reason is that the short-term memory of the device is a gradual process, 469 

and the sampled analog values increase or decrease synchronously. Besides, the readout 470 

network contains only one matrix to multiple with the reservoir analog values and 471 

utilizes the Softmax function to generate final outputs, diluting the differences in the 472 

SMP1 absolute values. These comparison results demonstrate that the photo-synapse 473 

reservoir could benefit from an elastic read time (sampling condition) of the analog 474 

current.  475 

   476 

Fig. R10 Accuracy convergency curves of the training process with different SD 477 
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and ST sampling conditions. a SD=10 ms, ST=10 ms; b SD=20 ms, ST=20 ms; c 478 

ST=0 ms, ST=20 ms; d SD=0 ms, ST=30 ms. Even a large SMP1 range indicates a high 479 

recognition capability, the trends of accuracy convergency under different sampling 480 

conditions are similar. The possible reason is that the Softmax function dilutes the 481 

differences in the SMP1 absolute values.  482 

 483 

Comment 4: The dual-feature strategy sharps the feature of various inputs and 484 

improves the recognition accuracy. But it also increases the burden of the readout layer. 485 

Can the authors comment this effect on the overall performance? 486 

Reply to Comment 4:  We thank the reviewer for his/her approval that the dual-feature 487 

strategy sharps the feature of various inputs and improves the recognition accuracy with 488 

respect to the single-feature strategy. About the increment of the burden of the readout 489 

layer, it is a typical dilemma between the system recognition accuracy and the hardware 490 

consumption. Obviously, the dual-feature strategy system increases the hardware 491 

burden of the RC system. This topic of the dilemma between system recognition rate 492 

and hardware burden deserves further study. 493 

From the perspective of high recognition accuracy, increment in hardware burden to a 494 

certain extent is acceptable. The typical two-terminal structure of memristor is highly 495 

CMOS compatible and ensures its unparalleled advantage in high density integration. 496 

Memristor chips in the scales beyond Mb have already been broadly reportedR17, 18. 497 

Therefore, even only a 32×32 memristor array is utilized in this work, large array will 498 

support the dual-feature strategy to facilitate a high recognition accuracy. At the same 499 

time, with the development of energy-efficient memristor array, the whole system 500 

would perform a lower power consumption. 501 

In addition, optimization of the reservoir in the single-feature strategy could be another 502 

scheme to alleviate the dilemma. The low training speed in the single-feature strategy 503 

is mainly caused by the overlaps between the feature value distributions. Therefore, 504 

optimization of the reservoir architecture to sharpen the feature value distribution will 505 

also improve the final training result, making it comparable to the dual-feature strategy.  506 

 507 

Comment 5: In Supplementary Fig. 11, pulse stimulations for increment and decrement 508 
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of memristor conductance are missing. Also, the description of the training method of 509 

the memristor array is unclear in method section. The authors should make it more clear. 510 

Reply to Comment 5: We thank the reviewer for this helpful comment.  511 

We have modified the relevant figures and captions about the memristor array 512 

operations and characteristics in the revised manuscript:  513 

(main text, Fig. 4a)   514 

“515 

516 

” 517 

(SI, Revised Supplementary Fig. 12) 518 

“ 519 
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Supplementary Fig. 12 Basic operations and resistance/conductance 521 

characteristics of the memristor in the array. a Operation parameters (left) and the 522 

I-V characteristics (right) under DC double sweep mode of one typical memristor. 523 

When the source line (SL) is grounded and the bit line (BL) is fixed at a certain voltage, 524 

the DC voltage on the word line (WL) conducts double-sweep from 0 to 2.5 V to SET 525 

and 0 to -2.5 V to RESET. The resistance state can be well modulated by different 526 

compliance currents determined by the bias of BL. b Operation parameters of the pulse 527 

SET (left) and pulse RESET (middle) and the gradual conductance modulation for 5 528 

cycles under successive stimulations (right) of one typical memristor. In the 529 

conductivity rising stage, only the pulse SET operations are implemented, in which the 530 

bit line voltage increases from 1 to 2 V with a step of 0.01 V. While in the conductivity 531 

decline stage, each conductance state is modulated by a couple of pulse RESET and 532 

pulse SET: first, a RESET operation is conducted to erase the conductance; then, a pulse 533 

SET is applied, in which the bit line voltage decreases from 2 to 1 V with a step of -534 

0.01 V. The conductance value could be repeatatively regulated within approximately 535 

0-300 µS.” 536 

 537 

For the training of the memristor array, we utilized offline training method to update 538 

the weights (conductance) matrix of the array. Once the software simulation was 539 

completed, the weights of the whole array (400 memristor devices) were updated 540 

referring to the simulation results, column by column. The operation parameters are 541 

illustrated in the revised Supplementary Fig. 12. 542 

 543 

According to the reviewer’s comments, we have added the more detailed memristor 544 

modulation and training methods into the revised main text (Methods, Network 545 

training): 546 

“Each differential pair in the memristor array represents a single weight of the neural 547 

network. Transistors are used for device addressing and crosstalk current suppression. 548 

As for the training of the memristor array, we utilized an offline training method to 549 

update the weight (conductance) matrix of the array. Once the software simulation is 550 

completed, the weights of the whole array (400 memristor devices) are updated by 551 

referring to the simulation results, column by column. To SET a selected column, all 552 
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source lines (in blue, in Fig. 4a) were floated, except the selected one, which was 553 

grounded. All word lines (in red) were biased at the same SET voltages.” 554 

 555 

Comment 6: “differentcomplicance” in Supplementary Fig. 9 should be “different 556 

compliance’. Please check the English throughout the manuscript. 557 

Reply to Comment 6: We thank the reviewer for this helpful comment. This typo has 558 

been corrected. According to the reviewer’s comments, the English expression of the 559 

full text has been checked and polished. All the revisions about typos and grammar in 560 

the revised main text and SI are highlighted in yellow. 561 

 562 
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Former Version Revised Version 

(Title) 

In-sensor reservoir computing system for in-

situ latent fingerprint recognition with deep 

ultraviolet photo-synapses and memristor 

array 

(Title) 

In-sensor reservoir computing system for latent 

fingerprint recognition with deep ultraviolet photo-

synapses and memristor array 

 

 

 

(main text, Introduction, Paragraph 2) 

Fortunately, a promising strategy of in-sensor 

RC computing based on optoelectronic devices 

has been proposed for temporal sensory 

information processing and verified with the 

assistance of system simulation21, 22. 

Nevertheless, the waveband utilized in these 

works is not suitable for DUV detection.  

(main text, Introduction, Paragraph 2) 

Fortunately, a promising strategy of in-sensor RC 

based on optoelectronic devices has been proposed 

for temporal sensory information processing and 

verified with the assistance of system simulation21, 

22. In order to fulfill the in-sensor applications, the 

optoelectronic devices should be marked by the 

properties of nonlinearity response, short-term 

memory (STM), multiple states and stability. 

Nevertheless, the waveband utilized in above 

works is not suitable for DUV detection. 

(main text, Fig. 2) 

 

Fig. 2 PPC effect and synaptic behavior of 

the a-GaOx DUV sensor.  

(main text, Fig. 2) 

 

Fig. 2 PPC effect and synaptic behavior of the a-

GaOx DUV sensor. 

(main text, Nonlinear mapping of 4-bit 

inputs of the a-GaOx DUV reservoir, 

Paragraph 2) 

(main text, Nonlinear mapping of 4-bit inputs of 

the a-GaOx DUV reservoir, Paragraph 2) 
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For illustrating the feature sampling, the I-t 

curves of three representative inputs of “0001” 

(in blue), “0011” (in red), and “1101” (in 

purple) of the a-GaOx reservoir are exhibited 

in Fig. 3b. Based on the conspicuous 

difference, each pixel sequence can be 

distinguished by current sampling to realize 

feature extraction. 

To illustrate the feature sampling, the I-t curves of 

three representative inputs of “0001” (in blue), 

“0011” (in red), and “1101” (in purple) of the a-

GaOx reservoir are exhibited in Fig. 3b. Although 

the last pulses are all “1”, their decay processes after 

the input sequences are different. Therefore, the 

final state of the reservoir not only relates to the last 

input, but also depends on its real-time state, 

indicating the lateral connections in such an a-GaOx 

reservoir21, 22.  Based on the conspicuous difference, 

each pixel sequence can be featured by current 

sampling to realize feature extraction. 

(main text, Nonlinear mapping of 4-bit 

inputs of the a-GaOx DUV reservoir, 

Paragraph 3) 

Consequently, the feature space based on 

nonlinear photoresponse configures the 

classification process of the reservoir, reducing 

the dimensionality of raw data from 4-bit 

digital inputs to 2 analog outputs that serve as 

the inputs of the linear readout layer49, 50. 

 

(main text, Nonlinear mapping of 4-bit inputs of 

the a-GaOx DUV reservoir, Paragraph 3) 

Consequently, the feature space based on nonlinear 

photoresponse configures the classification process 

of the reservoir, reducing the dimensionality of raw 

data from 4-bit digital inputs to 2 analog outputs that 

serve as the inputs of the linear readout layer49, 50. 

The energy consumption per pulse operation of the 

optoelectronic reservoir can be estimated to be 

E=20 nA×1 V×25 ms=0.5 nJ, indicating that the 

reservoir architecture possesses potential energy-

efficient characteristic. 

(main text, Fingerprint recognition with 

fully-hardware DUV in-sensor RC system, 

Paragraph 1) 

Thus, a dual-feature strategy is employed, and 

only a dimensionality-reduced 40×5 weight 

matrix needs to be trained for each fingerprint 

image. 

 

(main text, Fingerprint recognition with fully-

hardware DUV in-sensor RC system, Paragraph 

1) 

Thus, a dual-feature strategy is employed, and only 

a dimensionality-reduced 40×5 weight matrix needs 

to be trained for each fingerprint image. As an 

example, a recognition accuracy for unseen 

fingerprint images has been simulated to be around 

92% based on this dual-feature strategy, where the 

expanded sample amounts of the fingerprint images 

ensure the high recognition accuracy (see 

Supplementary Fig. 11). 
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(main text, Fingerprint recognition with 

fully-hardware DUV in-sensor RC system, 

Paragraph 3) 

Three situations, full-precision (double-

precision floating-point) simulation, limited-

precision (32-bit fixed-point quantization) 

simulation, and hardware experiment, are 

considered for comparison. As shown in Fig. 

4f, even recognition accuracies in all situations 

deteriorate with the increment of noise level, 

the recognition accuracy of hardware 

experiment still maintains above 90% under 

15% noise level. Therefore, the fully-hardware 

DUV in-sensor RC system based on a-GaOx 

photo-synapse has promising potential to be 

competent for high-precision in-situ DUV 

fingerprint recognition tasks. It should be noted 

that the increase of resistive states of the 

memristor device could significantly improve 

the system robustness51. 

(main text, Fingerprint recognition with fully-

hardware DUV in-sensor RC system, Paragraph 

3) 

Three situations, full-precision (double-precision 

floating-point) simulation, limited-precision (32-bit 

fixed-point quantization) simulation, and hardware 

experiment, are considered for comparison. As 

shown in Fig. 4f, recognition accuracies in all 

situations remain comparable under ≤3% noise 

level and deteriorate asynchronously with its 

increment. The limited resistive states of the 

memristor device and the amplification of non-ideal 

factors (e.g., device-to-device and cycle-to-cycle 

variations, discreteness of operations, etc.) under 

high-level noise dominate the relatively quick 

deterioration in the hardware situation.  Therefore, 

the improvement of resistive states and uniformity 

of the memristor devices could further improve the 

system robustness51. It is noteworthy that the 

recognition accuracy of the hardware experiment 

still maintains above 90% under 15% noise level.  

(main text, Methods, Basic memristor array 

operations) 

Transistors are used for device addressing and 

crosstalk current suppression. For weight 

programming, the memristor array was 

programmed column by column. To SET a 

selected column, all source lines (in blue, in 

Fig. 4a) were floated, except the selected one, 

which was grounded. 

 

(main text, Methods, Basic memristor array 

operations) 

Transistors are used for device addressing and 

crosstalk current suppression. As for the training of 

the memristor array, we utilized an offline training 

method to update the weight (conductance) matrix 

of the array. Once the software simulation is 

completed, the weights of the whole array (400 

memristor devices) are updated by referring to the 

simulation results, column by column. To SET a 

selected column, all source lines (in blue, in Fig. 4a) 

were floated, except the selected one, which was 

grounded. 

 

(main text, Methods, Network training) (main text, Methods, Network training) 
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The fully-connected network was trained by 

MATLAB Deep-learning Toolbox, with 

softmax activation function and back-

propagation algorithm. 

The fully-connected network was trained by the 

MATLAB Deep-learning Toolbox, utilizing the 

Softmax output function and the logistic regression 

to supervise the learning.  

 

(SI, Supplementary Fig. 2) 

 

Supplementary Fig. 2 a-GaOx device and its 

nonlinear photoresponse. a Schematic 

diagram of the cross-section structure of the a-

GaOx device. b Nonlinear dependence of ΔI on 

DUV light pulse width (25 ms) under various 

power densities.  

 

(SI, Supplementary Fig. 2) 

 

Supplementary Fig. 2 a-GaOx device and its 

nonlinear photoresponse. a Schematic diagram of 

the cross-section structure of the a-GaOx device. b 

Nonlinear dependence of ΔI on DUV light pulse 

width (25 ms) under various power densities.  

 

(SI, Supplementary Fig. 7) 

 

Supplementary Fig. 7 Statistic data of SMP1 

of the 16 inputs from stochastically selected 

20 a-GaOx photo-synapse devices. The 

(SI, Supplementary Fig. 7) 

 

Supplementary Fig. 7 Statistic data of SMP1 of 

the 16 inputs from stochastically selected 20 a-

GaOx photo-synapse devices. The sampling 

parameters are fixed at SD=0 ms and ST=10 ms. A 

similar distribution trend indicates that all devices 
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sampling parameters are fixed at SD=0 ms and 

ST=10 ms. A similar distribution trend 

indicates that all devices exhibit decent 

classification performances. 

 

exhibit decent classification performances. 

 

 

None (SI, Supplementary Fig. 8) 

 

Supplementary Fig. 8 Schematic diagram of the 

parallel time-delayed reservoir network as a 

demonstration of our work. The image is divided 

suitably then input into the reservoirs in parallel. 

The virtual nodes of each reservoir are coupled with 

a time interval θ. For the designed readout network, 

only the last 1 or 2 nodes of each reservoir are 

utilized to construct the output vector. 

 

None (SI, Supplementary Fig. 11) 

 

Supplementary Fig. 11 Recognition simulation of 

the unseen fingerprint images. a Expansion of the 

data set of the fingerprints from 40 to 400 images 

by introducing one random noise pixel in each 
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original image for 10 times (taking the C-1 image in 

Supplementary Fig. 10 as an example), owing to the 

finite scale of the FVC 2002 database. 80% of the 

fingerprint images were set as the training set and 

the other 20% as the test set (namely the unseen 

images). b Accuracy convergency of the training 

process within 1000 epochs. Considerable 

recognition accuracy can be achieved upon certain 

training epochs. c Confusion matrix of the 

fingerprint recognition with the unseen images as 

the test set. The test accuracy is extracted to be 

92.5%. 

 

(SI, Supplementary Fig. 10 and 11) 

 

Supplementary Fig. 10 I-V characteristics of 

SET and RESET characteristics of one 

typical memristor in the array. The 

resistance state can be well modulated by 

differentcomplicance current.  

 

Supplementary Fig. 11 Gradual 

(SI, Supplementary Fig. 12) 

 

Supplementary Fig. 12 Basic operations and 

resistance/conductance characteristics of the 

memristor in the array. a Operation parameters 

(left) and the I-V characteristics (right) under DC 

double sweep mode of one typical memristor. When 

the source line (SL) is grounded and the bit line 

(BL) is fixed at a certain voltage, the DC voltage on 

the word line (WL) conducts double-sweep from 0 

to 2.5 V to SET and 0 to -2.5 V to RESET. The 

resistance state can be well modulated by different 

compliance currents determined by the bias of BL. 

b Operation parameters of the pulse SET (left) and 

pulse RESET (middle) and the gradual conductance 

modulation for 5 cycles under successive 

stimulations (right) of one typical memristor. In the 

conductivity rising stage, only the pulse SET 

 



33 

 

conductance modulation for 5 cycles under 

successive pulse stimulations based on one 

typical memristor in the array. 

 

operations are implemented, in which the bit line 

voltage increases from 1 to 2 V with a step of 0.01 

V. While in the conductivity decline stage, each 

conductance state is modulated by a couple of pulse 

RESET and pulse SET: first, a RESET operation is 

conducted to erase the conductance; then, a pulse 

SET is applied, in which the bit line voltage 

decreases from 2 to 1 V with a step of -0.01 V. The 

conductance value could be repeatatively regulated 

within approximately 0-300 µS. 

627 
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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have rigorously addressed all the feedback provided by the reviewers. 

 

I would urge that authors address this one part clearly: 

 

If there is excellent yield for the memristive crossbar, why AMP task results are achieved via 

simulation? or in other words, 

based on the response, the memrsitor-based RC network requires optimization of read-out circuit, 

ADC, control unit, etc. 

It is unclear if these parts of the system are on silicon or not. Further, it is important to note how 

would the system performance change if one considered the ADC error and overhead of peripherals. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have made satisfactory revisions according to the reviewers' suggestions. I would 

recommend it to be published in its present form. Regarding the latest progress on in-sensor 

computing, the authors may refer to Advanced Materials, 2022, 2203830. 
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Manuscript ID: NCOMMS-22-15956A  

Response to Reviewer’s Comments 

This Response Letter is regarding a former manuscript submitted to Nature 

Communications, entitled “In-sensor reservoir computing system for latent 

fingerprint recognition with deep ultraviolet photo-synapses and memristor array” 

by Zhongfang Zhang et al. (NCOMMS-22-15956A). We would like to express our 

special thanks for the affirmation from the reviewers about the revised version of this 

work. In the following response, the original comments are in black font, our responses 

are in blue font, and changes in the revised main text are highlighted in yellow. 

 

I. Comments from Reviewer 1  

Overall Comment: 

The authors have rigorously addressed all the feedback provided by the reviewers. 

I would urge that authors address this one part clearly: 

If there is excellent yield for the memristive crossbar, why AMP task results are 

achieved via simulation? Or in other words, based on the response, the memrsitor-based 

RC network requires optimization of read-out circuit, ADC, control unit, etc. 

It is unclear if these parts of the system are on silicon or not. Further, it is important to 

note how would the system performance change if one considered the ADC error and 

overhead of peripherals. 

Reply to Comment: We thank the referee for the precious time and constructive 

comments on our manuscript.  

We guess the reviewer means that the AMP task of memristor array readout is simulated. 

In our work, the peripheral circuits were integrated on a printed circuit board, including 

ADC, TIA, and control unit, as shown in Fig. R1.  
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Fig. R1 The integrated control units and peripheral circuits on the test board. 

 

The memristor array size is 32×32, which is not adapted to directly construct a network 

with 40 inputs. Thus, a block processing method is utilized on the readout array: the 

40×10 network is divided into 30×10 and 10×10 parts and assigned separately in the 

array, and then the currents of each two correlated columns are manually added for 

further processing by a computer (utilizing Softmax function via simulation). It should 

be noted that increasing the size of the array will make the readout of the network with 

only one operation. Even so, the simulation only exists in training process, and the 

inference is based on hardware data. In Fig. 4d and Fig. 4e, the actual conductance 

values of the memristor hardware were multiplied by a constant (1.25×104), to make 

the hardware and simulation results share the same color bar for better comparison. 

This does not mean that the AMP in the readout process relies on simulation. To avoid 

conflict, we added descriptions about the multiplication constant in the caption of 

Figure 4d: 

“ 

 

Fig. 4 Fingerprint recognition based on hardware DUV in-sensor RC system. d 
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hardware experiment, respectively. The actual conductance values read from hardware 

were multiplied by a constant of 1.25×104
 for better comparison with the simulated 

weights.” 

 

The read-out circuit, ADC, control unit, etc., are based on silicon. We thank the 

reviewer for the constructive suggestion to achieve a compact integration of the whole 

in-sensor computing system. Both the photo-synapse devices and peripherals deserve 

further optimization in our future work. 

There are already mature techniques of ADC and peripherals parts to meet the 

requirements of commercialized applications. By conducting quantization of the input 

and output values of the memristor array, we have conducted simulations of the 

influences of ADC precisions on the inference results, as shown in Fig. R2. As long as 

there are no significant errors during multiple operation cycles, the performance will be 

well preserved even when the ADC precision is down to 8 bits. Compared to the errors 

of photo-synapse and memristor (e.g., device-to-device and cycle-to-cycle variations, 

etc.), the circuit parts have relatively little impact on the performance in this in-sensor 

RC system.  

 

Fig. R2 The influence of ADC precision on test accuracy with increasing image noise 

level. Quantization from 8 bits to 64 bits of the input and output values of the memristor 

array simulated the ADC precision. The influence of ADC precision on the recognition 

results is far inferior to that of image noise. 

 

In addition, the peripheral overhead mainly comes from ADC, which means that the 

lower precision of ADC can reduce the hardware overhead, indicating a typical trade-

0.1 0.3 0.5 0.8
80

85

90

95

100

T
e

s
t 
a

c
c
u

ra
c
y
 (

%
)

Image noise level (%)

 64 bits

 32 bits

 16 bits

 8 bits

a

 



4 

 

off in system construction. It has been proven that the ADC precision reduction does 

not seriously affect the system performance in this work, therefore it is better to use 

low-precision ADC to construct the system. But if the accuracy requirement is very 

tough, using low-precision ADC may deteriorate the performance, which means that 

the accuracy and overhead need to be considered comprehensively.  

 

II. Comments from Reviewer 2  

Overall Comment: 

The authors have made satisfactory revisions according to the reviewers' suggestions. I 

would recommend it to be published in its present form. Regarding the latest progress 

on in-sensor computing, the authors may refer to Advanced Materials, 2022, 2203830. 

Reply to Comment: We thank the referee for the precious time and positive comments 

on our manuscript. The suggested paper has been added into the corresponding location 

and the number of the references is updated accordingly in the revised manuscript:  

 (main text, Introduction, Paragraph 1) 

“In addition, these systems utilize additional optical filters for charge-coupled devices 

(CCDs) and complementary metal-oxide-semiconductor (CMOS) image sensors, 

increasing the complexity of the entire system for latent fingerprint identification15-17.” 

(References) 

“17. Wan, T. et al. In-sensor computing: materials, devices, and integration technologies. 

Adv. Mater. 2022, e2203830 (2022).” 

 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have updated the manuscript with the suggestions provided. The manuscript can be 

accepted for publication. 
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Manuscript ID: NCOMMS-22-15956B  

Response to Reviewer’s Comments 

This Response Letter is regarding a former manuscript submitted to Nature Communications, 

entitled “In-sensor reservoir computing system for latent fingerprint recognition with deep 

ultraviolet photo-synapses and memristor array” by Zhongfang Zhang et al. (NCOMMS-22-

15956B). We would like to express our special thanks for the affirmation from the editor and 

reviewers about the revised version of this work. 

 

Comments from Reviewer 1  

Overall Comment: 

The authors have updated the manuscript with the suggestions provided. The manuscript can 

be accepted for publication. 

Our response: We sincerely thank the reviewer for the positive comments that our work is 

acceptable.  

We also sincerely thank the positive assessments from reviewer 2 in the last revision process 

that this work is commendable and could provide more insights.  

Thanks for their recommendation of this manuscript for acceptance in Nature Communications. 
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