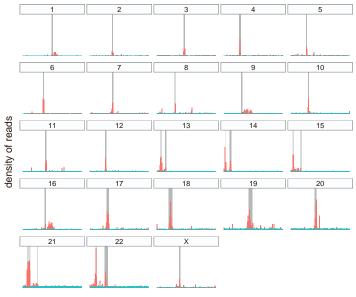
iScience, Volume 25

Supplemental information

Mapping-friendly sequence reductions: Going

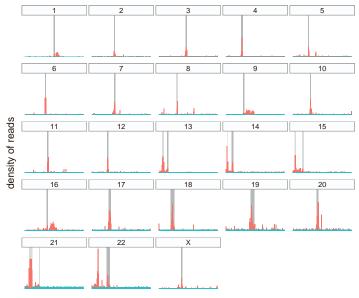
beyond homopolymer compression

Luc Blassel, Paul Medvedev, and Rayan Chikhi


Document S1. "TandemTools" dataset generation, related to STAR Methods

This dataset was obtained by taking a human X chromosome HOR sequence, concatenating it 500 times with added mutations in order to obtain an approximately 1 Mbp long sequence. Then 1200 reads were simulated from the sequence using nanosim (Yang et al., 2017) and assembled using a centromere-tailored pipeline (Bzikadze and Pevzner, 2020). A 10kbp deletion was then added to this assembly. The resulting sequence is the one we refer to as the "Centromeric sequence".

Table S1. MSR performance comparison, related to Table 1


Comparing performance of MSRs on the whole human genome, whole *Drosophila melanogaster* genome, repeated regions of the whole human genome and synthetic centromeric sequence. Results using minimap2 (Li, 2018) and winnowmap2 (Jain et al., 2020). The number of simulated reads for each reference sequence is given in parentheses and called n. Results are reported for mapq thresholds of 60, 50 and 0. The best performance for each category is highlighted in bold. The percentage difference are computed w.r.t HPC at each given threshold.

	mapq=60		$mapq \ge 50$		any mapq	
mapping friendly sequence reduction	fraction	error	fraction	error	fraction	error
Whole Drosophila melanogaster g	enome - mini	man2 (n - 25 764)				
HPC	0.957 +0%	2.27e-03 + 0%	0.963 +0%	2.34e-03 + 0%	0.998 +0%	1.48e-02 + 0%
raw	0.958 +0%	2.27e-03 - 0%	0.962 -0%	2.34e-03 + 0%	0.997 -0%	1.17e-02 -21%
MSR _F	0.952 -1%	1.18e-03 – 48%	0.960 -0%	1.37e-03 – 41%	0.998 +0%	1.36e-02 - 8%
MSR _E	0.946 -1%	0 -100%	0.954 -1%	0 -100%	0.998 +0%	1.53e-02 + 3%
MSR _P	0.950 -1%	4.90e-04 – 78%	0.957 –1%	8.11e-04 – 65%	0.998 –0%	1.39e-02 - 6%
Whole Drosophila melanogaster g						
HPC	0.923 +0%	1.51e-03 + 0%	0.930 +0%	1.59e-03 + 0%	0.989 + 0%	1.50e-02 + 0%
raw	0.949 +3%	1.92e-03 +27%	0.954 +3%	1.99e-03 +26%	0.995 +1%	1.33e-02 – 129
MSR _F	0.918 -1%	1.27e-03 –16%	0.925 -0%	1.30e-03 –18%	0.987 –0%	1.37e-02 – 9%
MSR _P	0.905 -2%	1.33e-03 -12%	0.912 -2%	1.53e-03 -3%	0.983 -1%	1.40e-02 - 7%
MSR _E	0.905 -2%	1.42e-03 - 6%	0.912 -2%	1.49e-03 - 6%	0.983 - 1%	1.44e-02 - 4%
Synthetic centromeric sequence -	miniman2 (n =	12 673)				
HPC	0.870 +0%	1.36e-03 + 0%	0.964 +0%	1.56e-03 + 0%	1.000 +0%	9.00e-03 + 0%
raw	0.936 +8%	1.86e-03 + 36%	0.984 +2%	2.09e-03 + 34%	1.000 +0%	4.50e-03 -50%
MSR⊧	0.885 +2%	3.39e-03 +149%	0.962 -0%	3.53e-03 +127%	1.000 +0%	1.20e-02 +33%
MSR _F	0.850 -2%	2.04e-03 + 50%	0.968 +0%	2.12e-03 + 36%	1.000 +0%	6.63e-03 -26%
MSR _P	0.898 +3%	1.58e-03 + 16%	0.968 +0%	1.79e-03 + 15%	1.000 +0%	9.78e-03 + 9%
Montp	0.030 +3%	1.308-03 + 16%	0.300 +0%	1.796-03 + 15%	1.000 +0%	9.700-03 + 9%
Synthetic centromeric sequence -						
HPC	0.775 + 0%	1.32e-03 + 0%	0.822 +0%	1.82e-03 + 0%	0.997 +0%	8.37e-02 + 0%
raw	0.850 +10%	2.04e-03 +54%	0.890 +8%	1.95e-03 + 7%	0.999 +0%	4.60e-02 -45%
MSR _E	0.795 + 2%	2.28e-03 +73%	0.846 +3%	2.52e-03 +38%	0.997 –0%	6.96e-02 - 17%
MSR _F	0.820 + 6%	1.83e-03 +38%	0.867 +6%	2.27e-03 +25%	0.997 -0%	5.97e-02 -29%
MSR _P	0.780 + 1%	1.62e-03 +22%	0.829 + 1%	2.09e-03 +15%	0.997 -0%	8.65e-02 + 3%
Whole human genome - minimap2	(n = 655 594)					
HPC	0.935 +0%	1.85e-03 + 0%	0.942 +0%	1.85e-03 + 0%	1.000 +0%	1.46e-02 + 0%
raw	0.921 -1%	1.86e-03 + 0%	0.927 -2%	1.86e-03 + 1%	0.998 -0%	1.29e-02 -11%
MSRF	0.926 -1%	6.92e-05 -96%	0.936 -1%	1.17e-04 –94%	0.999 -0%	1.76e-02 +20%
MSRP	0.929 -1%	2.20e-04 -88%	0.938 -0%	4.15e-04 -78%	0.999 -0%	1.55e-02 + 6%
MSRF				1.29e-03 –30%		
WShF	0.930 -1%	1.09e-03 -41%	0.938 -0%	1.298-03 -30%	1.000 –0%	1.51e-02 + 4%
Whole human genome - winnowmap						
HPC	0.894 + 0%	1.43e-03 + 0%	0.902 +0%	1.49e-03 + 0%	$0.988 \pm 0\%$	1.92e-02 + 0%
raw	0.932 + 4%	1.75e-03 +23%	0.937 +4%	1.79e-03 +20%	0.994 +1%	1.43e-02 –26%
MSR _F	0.874 – 2%	2.81e-04 -80%	0.886 -2%	3.82e-04 -74%	0.984 –0%	1.94e-02 + 1%
MSR _E	0.795 -11%	6.33e-05 –96%	0.820 -9%	8.93e-05 -94%	0.971 –2%	2.08e-02 + 9%
MSR _P	0.826 - 8%	8.68e-05 -94%	0.845 -6%	1.14e-04 –92%	0.975 -1%	2.11e-02 +10%
Whole Human genome (repeated r	eaions) - min	imap2 (n = 68811)				
HPC	0.619 + 0%	3.29e-04 + 0%	0.656 + 0%	3.10e-04 + 0%	0.998 +0%	7.79e-02 + 0%
raw	0.514 -17%	1.98e-04 -40%	0.539 -18%	2.16e-04 -30%	0.981 -2%	6.69e-02 -14%
MSR _F	0.601 - 3%	2.18e-04 -34%	0.640 - 2%	2.27e-04 -27%	0.998 -0%	8.15e-02 + 5%
MSR _F	0.601 - 3%	2.16e-04 -34% 1.41e-04 -57%	0.640 - 2% 0.658 + 0%	2.278-04-27% 1.55e-04-50%		8.23e-02 + 5%
MSR _P	0.618 - 0% 0.616 - 1%	1.41e-04-57% 1.18e-04 -64%	0.656 + 0%	1.99e-04 -36%	0.997 -0% 0.997 -0%	8.23e-02 + 6% 8.31e-02 + 7%
Whole Human genome (repeated r	egions) - wini	nowmap2 (n = 6881	1)			
HPC	0.525 + 0%	1.24e-03 + 0%	0.557 + 0%	1.49e-03 + 0%	0.950 +0%	1.19e-01 + 0%
	0.648 +23%	1.26e-03 + 1%	0.672 +21%	1.49e-03 + 0%	0.968 +2%	8.09e-02 -32%
aw		00 00 + 1/0	0.01 E TEI /0		0.000 TL /0	5.500 OL -32 /6
raw MSB-		1 63e-03 +31%	0516.7%	1 83e-03 +22%	0 940 -1%	1210-01 . 20/
raw MSR _F MSR _F	0.482 - 8% 0.366 -30%	1.63e-03 +31% 6.35e-04 -49%	0.516 - 7% 0.405 -27%	1.83e-03 +23% 9.32e-04 -37%	0.940 -1% 0.911 -4%	1.21e-01 + 2% 1.38e-01 +17%

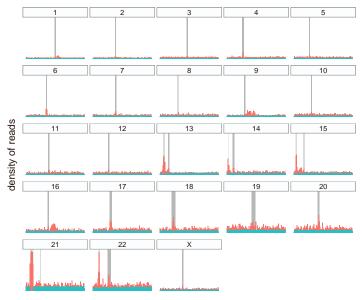

original starting position of simulated read

Figure S1. Origin of correctly and incorrectly mapped raw reads, related to Figure 6

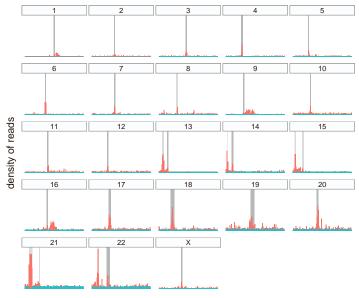

original starting position of simulated read

Figure S2. Origin of correctly (teal) and incorrectly (red) mapped reads, transformed with HPC, related to Figure 6

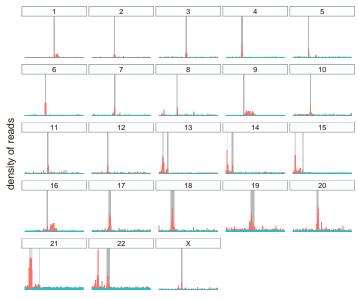

original starting position of simulated read

Figure S3. Origin of correctly (teal) and incorrectly (red) mapped reads, transformed with $\mbox{MSR}_{\mbox{\scriptsize E}},$ related to Figure 6

original starting position of simulated read

Figure S4. Origin of correctly (teal) and incorrectly (red) mapped reads, transformed with $\mbox{MSR}_{\mbox{P}},$ related to Figure 6

original starting position of simulated read

Figure S5. Origin of correctly (teal) and incorrectly (red) mapped reads, transformed with $\ensuremath{\mathsf{MSR}_{\mathsf{F}}},$ related to Figure 6

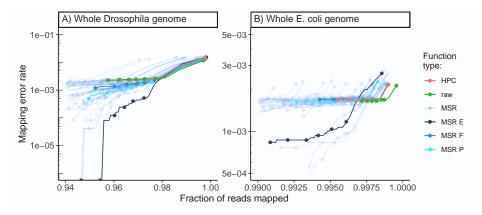


Figure S6. Performance of MSRs on whole Drosophila and E. coli genomes, related to Figure 5

Results of the paftools mapeval evaluation on reads simulated and mapped to whole *Drosophila melanogaster* and *Escherichia coli* (Genbank ID U00096.2) genomes. MSRs E, F and P are shown in different shades of blue to differentiate them from other MSRs. Reads were simulated with nanosim, and mapped with minimap2.