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Supplementary Tables

Table S1: Ten different datasets are used to validate the proposed RNA velocity inference method, UniTVelo.
This table provides manually annotated trajectories as ground truth and unique features of each biological system.

Datasets Reference Annotated Trajectory Unique Features

Pancreas (with cell cycle) Bergen et al, 2020 Differentiations Cell cycle & Multi-branching
Pancreas (without cell cycle) Lange et al, 2020 Differentiations Multi-branching

Dentate Gyrus Bergen et al, 2020 OPCs to OLs Sparse cell types
Retina Development Kharchenko, 2021 Differentiations Cell cycle & Multi-branching

scNT-seq Qiu et al, 2020 Time after stimulation Major change in early points
Intestinal Organoid Battich et al, 2020 Stem cell differentiation Branching
Hindbrain (pons) La Manno et al, 2018 COPs to NFOLs to MFOLs M-shape embedding
Mouse Erythroid Barile et al, 2021 Erythroid maturation Transcriptional boosting
Human Erythroid Barile et al, 2021 Erythroid maturation Transcriptional boosting

Human Bone Marrow Setty et al, 2019 HSCs & Erythroid maturation Multi-kinetic rates

Table S2: Number of cycle genes found which are also highly variable genes. We have noticed that both scVelo
and Seurat [1] have their own function (relies on a list of cycle genes defined in [2], 43 S genes and 54 G2M genes in
total) to assign each cell with a specific cycle phase, G1, S, and G2M. However, this function also marks cells that are not
from cycle phase, thus false positives exist, and hard to discriminate between datasets. By setting a proper threshold,
number of cycle genes which are highly variable could be a potential way to identify whether a dataset contains cycle
and could be a preliminary way to help users choosing the correct mode of UniTVelo.

Datasets S G2M

Pancreas (with cell cycle) 22 26
Pancreas 2 3

Dentate Gyrus 4 3
Retina Development (with cell cycle) 35 42

scNT-seq 3 2
Intestinal Organoid 0 0
Hindbrain (pons) 2 6
Mouse Erythroid 15 21
Human Erythroid 0 0

Human Bone Marrow 0 0
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Table S3: Performance comparison across datasets between UniTVelo and scVelo. In-cluster Coherence (ICCoh)
is used to evaluate the smoothness and consistency of velocity streams within clusters, Methods. The best performance
in each metric is highlighted in bold font. Sto: scVelo’s stochastic mode. Dyn: scVelo’s dynamical mode.

Datasets scVelo (Sto) scVelo (Dyn) UniTVelo

Pancreas (with cell cycle) 0.799 0.872 0.632
Pancreas (without cell cycle) 0.769 0.874 0.619

Dentate Gyrus 0.898 0.859 0.769
Retina Development 0.933 0.861 0.666

scNT-seq 0.666 0.838 0.984
Intestinal Organoid 0.861 0.804 0.986
Hindbrain (pons) 0.896 0.917 0.990
Mouse Erythroid 0.713 0.827 0.991
Human Erythroid 0.814 0.889 0.984

Human Bone Marrow 0.936 0.918 0.977

Table S4: Runtime comparison across datasets between scVelo dynamic mode and UniTVelo. Runtime required
for each method generally has a positive correlation with number of cells within dataset. Dynamic mode in scVelo has a
lower time complexity than UniTVelo possibly because the latter one uses gradient descent during optimization.

Datasets Number of Cells Number of Velocity Genes scVelo (Dyn) UniTVelo

Pancreas (with cell cycle) 3, 696 1028 1 min 15 s 10 min 17 s
Pancreas (without cell cycle) 2, 531 918 52 s 6 min 41 s

Dentate Gyrus 2, 930 856 33 s 7 min 59 s
Retina Development 2, 726 686 31 s 5 min 24 s

scNT-seq 3, 066 143 14 s 2 min 25 s
Intestinal Organoid 3, 831 414 42 s 4 min 35 s
Hindbrain (pons) 6, 307 637 1 min 04 s 6 min 30 s
Mouse Erythroid 9, 815 503 1 min 29 s 2 min 52 s
Human Erythroid 35, 877 737 9 min 15 s 64 min 16 s

Human Bone Marrow 5, 780 447 3 min 23 s 14 min 28 s

Table S5: Memory usage for UniTVelo and scVelo dynamical mode. The difference of memory usage between two
methods are subtle, however, UniTVelo additionally utilizes GPU for model acceleration. All units are measured in GB.

Datasets UniTVelo (GPU) UniTVelo (Memory) scVelo (Memory)

Pancreas (with cell cycle) 1.34 1.38 0.88
Pancreas (without cell cycle) 1.73 1.38 0.88

Dentate Gyrus 1.73 1.38 0.88
Retina Development 1.73 1.25 0.88

scNT-seq 1.66 2.00 0.88
Intestinal Organoid 1.63 2.00 1.00
Hindbrain (pons) 2.72 2.25 1.25
Mouse Erythroid 4.54 2.62 1.62
Human Erythroid 9.06 3.75 4.25

Human Bone Marrow 2.72 3.75 1.88
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Supplementary Figures

Figure S1: Differences in model design between UniTVelo and scVelo a, Previous framework determine the tran-
scription process often with the order of data generation, e.g. the transcription rate α is defined as step function and
other data are derived subsequently. b, Top-down strategy adopted by UniTVelo which models the spliced mRNA counts
first and other parameters can be derived afterwards. c, This top-down design is capable of fitting simulated data gen-
erated by first-order dynamics in a bottom-up generation with a step function for transcription rate. d, Model used by
UniTVelo could have a similar yet smoother relationship between un/spliced counts compared with scVelo regarding to
dynamical genes. e, A few examples on stably and monotonically changed genes of which expressions change along
with time but are generally within steady state. Colors represents different celltypes within lineage and are consistent
with Fig.2a.
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Figure S2: Systematic comparison of two strategies on entire transcriptome. The independent mode of UniTVelo,
aka the top-down strategy, fits each gene individually which shares similar logic with dynamical mode of scVelo, the
bottom-up method. To directly compare the expression profile fitness of these two strategies, we use diffusion pseu-
dotime and slingshot as reference and calculate the spearman correlation with the assigned gene-specific time matrix
across the entire transcriptome. Although the difference of overall performance for 10 datasets shown is subtle between
UniTVelo and scVelo, the comparison is done within the independent mode. We also assessed the UniTVelo unified
mode (red cross) and the scVelo aggregated latent time (yellow star), where UniTVelo generally performs better than
scVelo both in individual datasets or overall performance. The sample size used to derive statistics for each experiment
can be accessed through Supplementary Table S4. Data are presented as median values with lower and upper bound-
aries 25th and 75th percentiles, respectively. Lower and upper error lines represents minima and maxima whilst dots are
outliers. a, UniTVelo’s strategy has better performance than scVelo in 6 datasets (Erythroid Mouse, Erythroid Human,
Human BoneMarrow, Hindbrain, scEU Organoids and DentateGyrus), former 5 of which have been demonstrated with
superior performance with unified-time mode compared with scVelo, the only exception is the scNT dataset. b, Slingshot
shows similar results. Slingshot failed to infer a reasonable pseudo-time ordering / trajectory on scEU organoid dataset
thus, the spearman correlation is not calculated. Note, here the assessment is based on the whole cell population while
the CBDir metric is based on specific cell types, e.g., in the Dentate gyrus datasets.

6



Figure S3: Estimated latent time and transcription activities for mouse and human erythroid maturation. a,
Latent time estimated by scVelo (left) and UniTVelo (right) for mouse erythroid lineage. b, scVelo (left) returns erroneous
temporal information compared with UniTVelo (right) on human erythriod data. c, Scatter plot of expression counts
illustrates a clear inhibiting behavior for Cnn3 and Cyr61 and opposite for Abcg2 and Smim1. Notably, it confirms
transcriptional boosting exists in later erythroid lineage, that genes been activated significantly. Black line is model
regression result. Various colors differ in celltype and are consistent with Fig.2a.

Figure S4: Supplementary information for human bone marrow differentiation analysis. a, scVelo’s stochas-
tic mode generates reversed velocity stream in erythroid lineage and distorted velocity fields in both monocytes and
CLP lineages. b, Latent time estimation by scVelo dynamic mode suggests contradictory time assignments between
monocytes and HSCs. c, The transcriptome changes along inferred cell time of three example genes shown in Fig.3c
suggests they are inhibited during differentiation. Black line is the mean prediction level of transcriptome estimated by
UniTVelo. d, Expression profiles of relevant genes are in accordance with c.
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Figure S5: Detailed annotations for intestinal organoids validates correct trajectory by UniTVelo. a, Beside two
terminal states, enterocytes and goblet cells at the end of branch, transitions in local regions can also be captured by
UniTVelo, e.g. paneth cells are pointing at goblet cells. b, Additional examples of expression from Slc7a9 and H1f0 are
relevant with R2, suggesting low R2 genes are less informative.

Figure S6: UniTVelo has refined directionality estimation in local regions in intricate differentiation topology.
a, Neuron genesis development dataset contains sparse cell types with around 3k cells. Specifically, the development
of oligodendrocytes was identified by original paper and UniTVelo inferred a strong directionality between OPCs and
OLs (left) whilst this characteristic is less obvious in scVelo dynamical mode (right). b, Mouse retinal development
dataset contains two topology features, cell cycle and multi-branching. UniTVelo generally produce comparable results
in capturing comprehensive features as scVelo and has the ability to refine local regions where velocity fields are not
completely in order (the terminal region of RGC branch).
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Figure S7: UniTVelo’s ability to infer directed trajectories and latent time is further validated on four datasets.
a, Both scVelo and UniTVelo identified the right direction of neuron development along the stimulation time when using
BRIE2 detected differential momentum genes. b, When only using highly variable genes selected by scVelo, UniTVelo
can preserve the expected direction robustly whilst scVelo could not. c, scVelo suffers to find the full differentiation
trajectory in the hindbrain (pons) of adolescent mice, whilst UniTVelo managed to identify a continuous path from
precursors to matured cells. d-e, UniTVelo (the independent mode) and scVelo has comparable performance on major
trajectories, e.g. the cycling part or terminal areas. UniTVelo suggests subtle pattern from pre-endocrine (Fev+) to Delta
cluster. f, Results of scVelo’s stochastic mode of the above mentioned datasets are also presented.
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Figure S8: Percentage of reversed transient genes across the entire transtriptome. a, Reversed transient genes
are defined as genes with expression profile goes down and up along with cell time. It might be difficult for RBF to
model given the convex nature of the shape. To test the hypothesis that whether the abovementioned genes exist and
to what extent those genes affect the overall directionality of the velocity field, we have used quadratic function to model
the expression profiles of each gene along with inferred cell time and compared the performance with standard RBF
function (without unspliced reads). If the transient status of down and up exists, then the parabola should open upwards
(positive coefficient) and have a R2 at least slightly higher than that of RBF model. The above figure shows genes with
reversed transient status are quite rare compared to the total number of genes used to construct the velocity graph,
normally less than 10%. The numbers behind title are the ratio of identified reversed genes divided by the total number
of genes. Note that the threshold to classify whether a gene is reversed transient or not is low (R2 of quadratic - R2 of
RBF > 0.075) and that results in false positives, but still the ratio is relatively small. We anticipate a smaller ratio if a
more stringent threshold is used. b, Here are 4 example genes from scEU Organoids dataset which are identified as
reverse transient whilst they are not (colors represent different cell clusters).
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Figure S9: Down-sampling / Prediction strategy on large-scale datasets. Here, we use the erythroid human dataset
as an example and briefly describe the results. This dataset originally has 37k cells which use approximately 1 hour to
run the model with GPU acceleration. We first randomly sampled 10% of total cells, then the RNA velocity and unified
time are inferred based on this subset of data (upper panel of a and b). Then we use generated parameters to predict
the relevant RNA velocity and unified time for the rest of cells (lower panel of a and b). To assess the performance
of this down-sampling / prediction strategy with ground truth (model fitted with full batch of data), we tried two folds of
comparison, c, The inferred time for each cell is compared between prediction and full batch, the scatter plot showed a
strong correlation status. d, For RNA velocities for cells, the cosine similarity between prediction and full batch at a high
dimensional level is compared. The histogram generally showed a high similarity score which further consolidates our
down-sampling / prediction is robust to dense datasets.

11



References
[1] Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

[2] Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell rna-seq. Science 352,
189–196 (2016).

12


