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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

RNA velocity is a useful tool for scRNAseq but it can be inaccurate or inconsistent due to signal-to-noise 

ratio in unspoiled mRNAs. To overcome this, the authors presented a new way of obtaining RNA velocity 

by using the dynamic changes of spliced reads instead of directly using unspliced reads. Spliced mRNAs 

were modeled using RBF. The cell time is assigned in the space drawn by unspliced versus spliced reads. 

The authors evaluate the performance using various datasets including erythroid maturation. 

For the erythroid dataset, the authors claimed that UniTVelo overcomes the limitation of scVelo 

potentially due to transcriptional boosting in the later stage of the development. 

For the bone marrow development datasets, UniTVelo showed velocity towards the three terminal 

stages while scVelo showed some reversed direction. UniTvelo found repressive dynamics of Cd44, Celf2 

and Taok3. UniTVelo also showed the best performance in the quantification test using CBDir and ICCoh. 

The manuscript is well written and the hypothesis is well reasoned. This tool will be useful for scientific 

community. 

minor. 

Please spell out MEMP. Please provide the references. 

RBF can model transient status (up and down over time). Can it model the transient status of down and 

up? If it does not matter, how the direction of the velocity can be handled. 

Reviewer #2 (Remarks to the Author): 

RNA velocity that captures the short-term gene expression change (based on spliced and unspliced 

RNAs) provides new opportunities to reconstruct the cellular trajectories (other than the pseudo-time 



trajectory inference based on intercellular expression difference). RNA velocity or scVelo package were 

commonly used to infer the RNA velocity vectors that could be fed into other downstream analyses and 

showed great success in the past few years. In this work, the authors proposed a significant extension of 

the scVelo package-uniTVelo, which has demonstrated superior performance in multiple single-cell 

datasets with ground-truth known. 

Two major innovations of the uniTVelo that the authors claimed are: (1) it's a top-down design. In other 

words, the authors first fit the expression profiles of spliced RNAs with a radial basis function. With the 

learned expression profiles, the authors then derive the dynamics of unspliced RNAs and transcription 

rates via the first-order dynamic differential equations. This differs from the bottom-down strategy 

employed by the original scVelo method, which first defines/learns a transcription rate and then derives 

the expression profile with the differential equations. 

(2) The second innovation is the introduction of a unified latent time for a cell. Unlike scVelo, uniTvelo, 

as suggested in the name, aggregates the dynamic information across all genes to infer the temporal 

ordering of cells, which allows the effective incorporation of stably and monotonically changed genes. 

The method described in this manuscript is clear and logically sound. It is also easy to follow the 

method. However, I still have a few significant concerns regarding the proposed method that I hope the 

authors can address in the revised version. 

(1) For the 1st innovation/advantage compared to scVelo framework, the authors claimed that their top-

down strategy is more flexible and could enable a better representation of complex gene expression 

profiles. Via comparison in multiple real single-cell datasets, the authors did demonstrate that their 

method is able to present the velocity that is more consistent with known knowledge. However, there is 

no direct comparison between the expression profile 'fitness" of the top-down or bottom-up strategies. 

In those datasets where uniTVelo has superior performance, can authors show indeed that the dynamic 

gene expression profiles could be better modeled with the top-down strategy (compared with the 

scVelo bottom-up strategy)? I understand that the authors did provide some examples in Figures 2-4. I 

am wondering whether the authors could provide a systematic comparison (e.g., of the entire 

transcriptome), which could better support the first innovation that the authors claimed. 

(2) As the second major innovation, uniTVelo learns a unified latent time across the whole transcriptome 

for the cell, which allows to effectively incorporate stably and monotonically changed genes. I 

understand that the author employs this strategy to avoid potential over-fitting. However, this actually 

reduces the flexibility of the model and thus could hamper the performance in complex single-cell 

datasets. The authors did realize this potential drawback, and they proposed two separate models for 

different tasks. For most applications, the standard unified time model should be used, while the 

independent model should be used for more complicated datasets. This indeed solves the problem, at 

least partially. However, it would be difficult for the users to decide which model should be employed 



for their specific datasets. The authors provided some guidance "independent model of UniTVelo is 

intended for more complicated datasets, for instance, datasets with cell cycle or sparse cell types 

included", but the guidance is quite vague. Therefore, more clear guidance should be provided to 

instruct the users on when to use the independent model (preferably a utility script to help choose the 

mode). This should greatly boost the usefulness of the proposed UniTVelo method. 

(3) Another important aspect that should be covered in the manuscript is the running time efficiency. 

UniTVelo, as a scVelo extension, utilizes an EM strategy to learn the parameters for the model. 

Therefore, I would assume that the running time (and memory cost) would be significantly higher 

compared to the original scVelo. This may not be critical for small or regular size single-cell RNA-seq data 

(e.g., 3-30k cells). Nevertheless, this could become very important for the application of big datasets 

(e.g., for datasets with 300k-1M cells). A running time (memory) benchmarking would be needed to 

address this concern. 

A few minor comments: 

(1) In the preprocessing, the authors selected 2000 most variable genes, which were further filtered 

with other criteria. This is a common strategy employed by many single-cell methods, including the 

original scVelo. However, such stringent gene filtering often removes many important genes of interest 

and thus limits the downstream analysis. While I agree with the authors that inferring RNA velocity 

based on those most informative genes would be a good strategy, allowing post-analysis on the other 

genes (based on the inferred RNA velocity) may be very helpful for the downstream biological 

examinations. The authors could consider adding such functions to improve the practical usage of their 

method. 

(2) The evaluation metrics (CBDir) and ICCoh should be briefly described, besides the citation of the 

manuscript that the authors published last year. 
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Point-by-point response 

Reviewer 1: pages 1-2 

Reviewer 2: pages 3-7 

 

Reviewer #1 (Remarks to the Author): 

RNA velocity is a useful tool for scRNAseq but it can be inaccurate or inconsistent due to 
the signal-to-noise ratio in unspoiled mRNAs. To overcome this, the authors presented a 
new way of obtaining RNA velocity by using the dynamic changes of spliced reads instead 
of directly using unspliced reads. Spliced mRNAs were modeled using RBF. The cell time 
is assigned in the space drawn by unspliced versus spliced reads. The authors evaluate 
the performance using various datasets including erythroid maturation. 

For the erythroid dataset, the authors claimed that UniTVelo overcomes the limitation of 
scVelo potentially due to transcriptional boosting in the later stage of the development. 

For the bone marrow development datasets, UniTVelo showed velocity towards the three 
terminal stages while scVelo showed some reversed direction. UniTVelo found repressive 
dynamics of Cd44, Celf2, and Taok3. UniTVelo also showed the best performance in the 
quantification test using CBDir and ICCoh. The manuscript is well written, and the 
hypothesis is well reasoned. This tool will be useful for the scientific community. 

Response: we thank the reviewer for the appreciation of our work. 

 
(1) Please spell out MEMP. Please provide the references. 

Response: Added in the revised manuscript (p.2); thanks.  

  
(2) RBF can model transient status (up and down over time). Can it model the transient 
status of down and up? If it does not matter, how the direction of the velocity can be 
handled. 
 
Response: Thank you for this fundamental question. 

By default, RBF indeed could only model induction phase (monotonic increasing), 
repression phase (monotonic decreasing) and transient phase (up and down over time), 
and it is difficult to model the transient status of down and up over time for the time being, 
given the convex nature of the shape.  

To test the hypothesis that whether the abovementioned genes exist and to what extent 
those genes affect the overall directionality of the velocity field, we have used quadratic 
function to model the expression profiles of each gene along with inferred cell time and 
compared the performance with standard RBF function (without unspliced reads). If the 
transient status of down and up exists, then the parabola should open upwards (positive 
coefficient) and have a 𝑅ଶ at least slightly higher than that of RBF model.  

We’ve tested this on available datasets and came to a conclusion that generally, genes 
with reversed transient status are quite rare compared to the total number of genes used 
to construct the velocity graph, normally less than 10%, except for scEU-seq and one of 
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the Pancreas data (but with quite a few false positives exist due to unbalanced number of 
cells in each cluster). Details are shown with the following scatter plots,  

Here shows a comprehensive comparison for each gene. The numbers behind title are 
the ratio of identified reversed genes divided by the total number of genes. Note that the 
threshold to classify whether a gene is reversed transient or not is low (𝑅ଶ of quadratic - 
𝑅ଶ of RBF > 0.075) and can result in false positives, but still the ratio is relatively small. 
We anticipate a smaller ratio if a more stringent threshold is used. Below are 3 example 
genes from scEU Organoids dataset which are identified as reverse transient whilst they 
are more likely in an induction state (colors represent different cell clusters).  

 
 

To conclude, in our current implementation, we keep a positive sign for RBF, hence cannot 
model the reverse transient shape. We think this setting is beneficial, considering that very 
limited genes have strong reverse transient dynamics. In case there are such scenarios, 
we can easily relax the sign of RBF to account for the reverse transient shape. We have 
added this figure in Supp Fig. S8 and more discussion on p.8. 
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Reviewer #2 (Remarks to the Author): 

RNA velocity that captures the short-term gene expression change (based on spliced and 
unspliced RNAs) provides new opportunities to reconstruct the cellular trajectories (other 
than the pseudo-time trajectory inference based on intercellular expression difference). 
RNA velocity or scVelo package were commonly used to infer the RNA velocity vectors 
that could be fed into other downstream analyses and showed great success in the past 
few years. In this work, the authors proposed a significant extension of the scVelo 
package-uniTVelo, which has demonstrated superior performance in multiple single-cell 
datasets with ground-truth known. 

 
Two major innovations of the UniTVelo that the authors claimed are:  

(1) it is a top-down design. In other words, the authors first fit the expression profiles of 
spliced RNAs with a radial basis function. With the learned expression profiles, the authors 
then derive the dynamics of unspliced RNAs and transcription rates via the first-order 
dynamic differential equations. This differs from the bottom-down strategy employed by 
the original scVelo method, which first defines/learns a transcription rate and then derives 
the expression profile with the differential equations. 

(2) The second innovation is the introduction of a unified latent time for a cell. Unlike 
scVelo, UniTVelo, as suggested in the name, aggregates the dynamic information across 
all genes to infer the temporal ordering of cells, which allows the effective incorporation of 
stably and monotonically changed genes. 

Response: thank you for the precise summary of our innovations. 

 

The method described in this manuscript is clear and logically sound. It is also easy to 
follow the method. However, I still have a few significant concerns regarding the proposed 
method that I hope the authors can address in the revised version. 

 
(1) For the 1st innovation/advantage compared to scVelo framework, the authors claimed 
that their top-down strategy is more flexible and could enable a better representation of 
complex gene expression profiles. Via comparison in multiple real single-cell datasets, the 
authors did demonstrate that their method is able to present the velocity that is more 
consistent with known knowledge. However, there is no direct comparison between the 
expression profile fitness of the top-down or bottom-up strategies. In those datasets where 
UniTVelo has superior performance, can authors show indeed that the dynamic gene 
expression profiles could be better modeled with the top-down strategy (compared with 
the scVelo bottom-up strategy)? I understand that the authors did provide some examples 
in Figures 2-4. I am wondering whether the authors could provide a systematic comparison 
(e.g., of the entire transcriptome), which could better support the first innovation that the 
authors claimed. 

Response: Thank you for the very good questions and suggestions.  

UniTVelo has two separate modes, of which the unified-time mode periodically revises the 
time matrix during the optimization process, resulting in the assigned time and phase 
portraits for each cell and gene being largely affected by an overall representation. Thus, 
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it might be difficult to conduct a systematic comparison of the entire transcriptome in gene-
specific level.  

However, the independent mode of UniTVelo, aka the top-down strategy, fits each gene 
individually which shares similar logic with dynamical mode of scVelo, the bottom-up 
method. To directly compare the expression profile fitness of these two strategies, we use 
diffusion pseudotime as reference (by specifying the expected root cells) and calculate 
the spearman correlation with the assigned gene-specific time matrix across the entire 
transcriptome. Results are shown in the following figure,  

UniTVelo’s strategy has better performance than scVelo in 6 datasets (Erythroid Mouse, 
Erythroid Human, Human BoneMarrow, Hindbrain, scEU Organoids and DentateGyrus), 
former 5 of which have been demonstrated with superior performance with unified-time 
mode compared with scVelo, the only exception is the scNT dataset which UniTVelo has 
better performance with unified-time mode whilst scVelo fits better on gene level.  

Although the difference of overall performance for 10 datasets shown is subtle between 
UniTVelo and scVelo, the comparison is done within the independent mode, for those 
datasets ought to be run with unified-time mode, we anticipate a much higher spearman 
correlation (Erythroid Mouse 0.986, Erythroid Human 0.978, Human BoneMarrow 0.811, 
Hindbrain pons 0.868, scEU Organoids 0.486, scNT Neuron 0.580).  

Overall, we hope the reviewer agrees with us that our top-down strategy has a comparable 
performance to the bottom-up strategy, if not better, in a side-by-side comparison. On the 
other hand, our top-down strategy introduces computational convenience not only to be 
compatible with the unified-time framework but also to support broad families of dynamical 
functions though we only demonstrate RBF here. We have added this figure in Supp. Fig 
S2 and more discussion on p.2 in this revision. 

 
(2) As the second major innovation, UniTVelo learns a unified latent time across the whole 
transcriptome for the cell, which allows for effectively incorporating stably and 
monotonically changed genes. I understand that the author employs this strategy to avoid 
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potential over-fitting. However, this actually reduces the flexibility of the model and thus 
could hamper the performance in complex single-cell datasets. The authors did realize 
this potential drawback, and they proposed two separate models for different tasks. For 
most applications, the standard unified time model should be used, while the independent 
model should be used for more complicated datasets. This indeed solves the problem, at 
least partially. However, it would be difficult for the users to decide which model should be 
employed for their specific datasets. The authors provided some guidance "independent 
model of UniTVelo is intended for more complicated datasets, for instance, datasets with 
cell cycle or sparse cell types included", but the guidance is quite vague. Therefore, more 
clear guidance should be provided to instruct the users on when to use the independent 
model (preferably a utility script to help choose the mode). This should greatly boost the 
usefulness of the proposed UniTVelo method.  

Response: Exactly, that is the motivation for keeping the two modes and we agree that 
more detailed guidance will be helpful for users when choosing. 

As mentioned, UniTVelo utilizes unified-time optimization to avoid commonly seen over-
fitting as scVelo does and this has been set as default mode for most of the applications. 
However, for certain complicated datasets, this might hamper the model performance. 
Specifically, we define complicated datasets with the following criteria,  

 Datasets with cell cycle included (e.g., Supplementary figures S6b and S7d). We’ve 
noticed that after basic normalization and selection of variable genes, both scVelo and 
Seurat have their own function (relies on a list of cycle genes defined in Irosh et al, 
Science, 2015,) to calculate the cell cycle scores and assign each cell with a specific 
cycle phase, G1, S, and G2M. However, this function would also mark cells that are 
not from the cell cycle, thus false positives exist, and hard to be discriminative between 
datasets that contain a cycle and those do not.  

Determining whether a dataset contains cell cycle stage might not be straightforward, 
based on tested datasets, whilst we have noticed that one potential way is to check 
number of cycle genes which are highly variable (as shown in the following table, with 
a total number of 43 genes for S phase and 54 genes for G2M phase),  

 S G2M 
Erythroid Mouse 15 21 
Erythroid Human 0 0 
Human BoneMarrow 0 0 
Hindbrain (pons) 2 6 
scEU Organoids 0 0 
ScNT Neuron 3 2 
Retina Development (with Cell Cyle) 35 42 
Dentate Gyrus 4 3 
Pancreas (with Cell Cycle) 22 26 
Pancreas 2 3 

 

Generally, we observed that for cell cycle related datasets, number of cycle genes in 
both S and G2M phases which are highly variable are significantly higher than other 
datasets (except for Erythroid Mouse). By setting a proper threshold, this could be a 
potential way to identify cycle related datasets and help users to choose which mode 
to use, we have prepared a small script for this purpose.  
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 Datasets with sparse cell types included (e.g., Supplementary figure S6a). Normally 
scRNA-seq data and the related velocity streamlines are visualized on embeddings 
like UMAP, which reflects the similarity of expression profiles of various cell types, to 
certain extent. Therefore, if there are quite a few clusters scattered around with no 
obvious connections with other clusters (identified by KNN graphs of each cell and 
calculate proportion of neighbor cells which are within the same cluster), we consider 
it as a sparse cell type dataset and recommend independent mode.  

For other kind of datasets, the default mode unified time would be used. In summary, we 
have compiled the above specific guidance and implemented into a utility function as 
following script for suggesting the mode use. For less certain scenario, we also suggest 
user to try both. We have also added these guidances into the revised manuscript on p.10. 

utv.utils.choose_mode(adata, label) 

 
(3) Another important aspect that should be covered in the manuscript is the running time 
efficiency. UniTVelo, as a scVelo extension, utilizes an EM strategy to learn the 
parameters for the model. Therefore, I would assume that the running time (and memory 
cost) would be significantly higher compared to the original scVelo. This may not be critical 
for small or regular size single-cell RNA-seq data (e.g., 3-30k cells). Nevertheless, this 
could become very important for the application of big datasets (e.g., for datasets with 
300k-1M cells). A running time (memory) benchmarking would be needed to address this 
concern. 

Response: Thank you for raising this important issue. 

Now, we have more clearly emphasized the benchmarking of running time and memory 
usage in the revised manuscript (p.9) and supplementary materials (Supp. Tables S4 and 
S5).  

Benchmarking is conducted on regular size scRNA-seq data, the largest dataset we’ve 
tested has around 36k cells. The memory usage between two methods is subtle except 
UniTVelo additionally utilizes GPU for model acceleration. This approximate EM strategy 
requires more running time than scVelo whilst it is acceptable given the size of dataset 
and more accurate results.  

We haven’t tested UniTVelo on bigger datasets though, datasets with 300k – 1M cells. 
Yet, based on the available results, we anticipate a linearly increasing relationship 
between dataset size and running time (memory usage as well), both for UniTVelo and 
scVelo. There’s one concern that current model is deployed on a single GPU with 12GB, 
we estimate that a dataset with more than 40k cells could face out of memory problem. 
Therefore, when there are larger datasets and the GPU memory is a bottleneck, we 
recommend a sub-sampling scheme and have implemented a following utility function and 
added discussion on p.9. 

utv.utils.subset_adata(adata, label, proportion) 

 
A few minor comments: 

(1) In the preprocessing, the authors selected 2000 most variable genes, which were 
further filtered with other criteria. This is a common strategy employed by many single-cell 
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methods, including the original scVelo. However, such stringent gene filtering often 
removes many important genes of interest and thus limits the downstream analysis. While 
I agree with the authors that inferring RNA velocity based on those most informative genes 
would be a good strategy, allowing post-analysis on the other genes (based on the inferred 
RNA velocity) may be very helpful for the downstream biological examinations. The 
authors could consider adding such functions to improve the practical usage of their 
method. 

Response: Thanks for the very good practical suggestion and indeed we agreed that 
having a utility function to re-analyze more genes can be beneficial. 

Now, the stringent gene filtering process has been revised by a more flexible function in 
our newly pre-release version of UniTVelo model. It contains extensions at the following 
two levels. 

First, among the 2,000 initially selected highly variable genes, we introduced a way to 
expand the velocity genes during the optimization process. Specifically, we fitted a linear 
regression between interim inferred cell time and spliced mRNA reads of each gene, and 
genes with a 𝑅ଶ  higher than the user-defined threshold (config.AGENES_R2) will be 
added to the subsequent model and be a part of the calculations. This allows post-analysis 
on more genes and the RNA velocity of those genes can be calculated as well. This 
approach has worked on a few datasets with dozens, or hundreds of genes being 
additionally identified and contributing to the overall optimization process.  

Second, outside of the 2,000 variable genes, we keep most informative genes in the adata, 
so users can further analyze them, e.g., by correlation analysis between the spliced RNAs 
and the inferred latent time. 

 
(2) The evaluation metrics (CBDir) and ICCoh should be briefly described, besides 
the citation of the manuscript that the authors published last year.  

Response: Thanks; added in the manuscript (p.10).  



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

All comments are well answered. 

Reviewer #2 (Remarks to the Author): 

The reviewers addressed most of my primary concerns. I am generally positive about the publication of 

the manuscript in the journal. However, there remain a few responses that I believe are insufficient. 

1) For my comment on the first claimed advantage of the top-down strategy over the bottom-up 

strategy employed by scvelo, the authors did perform some systematic comparisons. As shown in 

Supplementary Figure s2, both strategies (UniTVelo vs. scVelo) present a very similar performance 

(almost identical mean spearman correlations with the reference diffusion pseudotime). It failed to 

support the authors' claim that the top-down strategy that they proposed is superior to the bottom-up 

strategy employed by the original scvelo. The authors also acknowledged that the performances of the 

two strategies are similar, and they further argued that the top-down strategy is more flexible and 

introduces computational convenience. However, this argument is very vague and lacks concrete 

evidence and supporting examples. The authors mentioned that the top-down strategy could support a 

broad family of dynamical functions, but it's not straightforward to see how this could benefit the 

inference of RNA velocity. The authors need to provide concrete evidence to back up this argument. 

Besides, it's also questionable to use the diffusion pseudotime as the reference as it could be quite 

different from the ground truth. The authors should try to find datasets with a known order of the cells 

(e.g., this neuro reprogramming data https://pubmed.ncbi.nlm.nih.gov/27281220/) and use the 

validated cell order as the reference to calculate the correlation. If such a dataset is difficult to find, the 

authors should at least compare the predictions to the reference pseudotime inferred by a few other 

tools (e.g., SLINGSHOT) 

(2)Another big concern is the running time. As I guessed, the proposed method is very computationally 

expensive (requires a lot of computing resources, GPU memory, and running time). Moreover, given 

that a single-cell dataset with over 40k cells is very common and the size of single-cell data is ever-

increasing, the scalability of the method could become a bottleneck that limits its application ( ~ over 5x 

more running time and 2x more GPU memory as shown in Table S4 and S5). The authors should provide 

an estimation of required memory and running time for large-scale single-cell data (say over 100k cells) 

so that users can know how much computing resource they will need to analyze their extensive single-



cell datasets (e.g., over 40k cells). The authors did mention a down-sampling strategy. However, this 

strategy will unavoidably suffer from information loss and could badly hurt the RNA velocity inference. 

For example, the rare cell populations could be seriously affected by the random subsampling strategy. 

A more sophisticated downsampling strategy might be necessary, and the authors will need to provide a 

systematic evaluation of different downsampling strategies to inform the users. 

Minor comments: 

The description of the criteria to select from two modes remains vague. I would suggest the authors add 

more specific guidelines. I understand that the users have implemented a utility script to choose the 

model. Maybe explicitly explain the concrete criteria the users had implemented. The authors also 

suggest running both modes. However, it would be difficult for users to judge results from which mode 

would be better. In addition, the running cost (time and memory) for running two modes will be 

prohibitive. Therefore, selecting a proper mode is not trivial and would require more explicit guidelines 

for users to follow. 
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Point-by-point response 

Reviewer 1: None 

Reviewer 2: Pages 1 – 6 

 

Reviewer #1 (Remarks to the Author): 

All comments are well answered. 

 

Reviewer #2 (Remarks to the Author): 

The reviewers addressed most of my primary concerns. I am generally positive about 
the publication of the manuscript in the journal. However, there remain a few 
responses that I believe are insufficient. 

1) For my comment on the first claimed advantage of the top-down strategy over the 
bottom-up strategy employed by scvelo, the authors did perform some systematic 
comparisons. As shown in Supplementary Figure s2, both strategies (UniTVelo vs. 
scVelo) present a very similar performance (almost identical mean spearman 
correlations with the reference diffusion pseudotime). It failed to support the authors' 
claim that the top-down strategy that they proposed is superior to the bottom-up 
strategy employed by the scvelo. The authors also acknowledged that the 
performances of the two strategies are similar, and they further argued that the top-
down strategy is more flexible and introduces computational convenience. However, 
this argument is very vague and lacks concrete evidence and supporting examples. 
The authors mentioned that the top-down strategy could support a broad family of 
dynamical functions, but it's not straightforward to see how this could benefit the 
inference of RNA velocity. The authors need to provide concrete evidence to back up 
this argument. Besides, it's also questionable to use the diffusion pseudotime as 
reference as it could be quite different from the ground truth. The authors should try to 
find datasets with a known order of cells (e.g., neuro reprogramming data 
https://pubmed.ncbi.nlm.nih.gov/27281220/) and use the validated cell order as the 
reference to calculate the correlation. If such a dataset is difficult to find, the authors 
should at least compare the predictions to the reference pseudotime inferred by a few 
other tools (e.g., SLINGSHOT) 

Response:  

Thank you for the insistence on this important challenge. Here, we further revised our 
manuscript in three folds.  

First, we have further considered the ground truth of the differentiation time.  Thanks 
for suggesting Slingshot, which we found that it returns similar results compared to 
that of diffusion pseudo-time in various types of datasets with minor exceptions, e.g., 
on scNT data (see the updated Supp. Fig. S2 and below). Of note, Slingshot fails to 
infer the reasonable trajectory / pseudo-time on scEU organoids data, so the 
spearman correlation is not calculated. This demonstrates the alike ability of two 
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algorithms in inferring gene-wise time as an individual, however, when aggregating 
gene-wise time to a unified-cell time, our method generally shows a better 
performance than that of scVelo, which are also included in the figure now. 

Second, we further rephrased the texts (p.2) and added more discussions (p.7) to 
clarify our claim that our top-down strategy returns comparable accuracy to the 
conventional bottom-up design in a per-gene setting and the major benefit is its 
computational convenience for an easy extension to a unified mode. On the other 
hand, we still want to emphasize that the expression profiles between unspliced and 
spliced reads are complex, and it might be difficult to imitate them satisfactorily with a 
single approach. The top-down strategy, however, relaxes the stringent assumptions 
and limitations of scVelo that transcription rate is a fixed stepwise function, and the 
phase portraits of genes produced are not robust enough to abnormal expressions as 
well, e.g., transcriptional boosting or genes which are continuously in steady states.  

Third, besides the convenience to support a unified mode, we still want to highlight 
that the top-down design enjoys higher flexibility thus we introduced more concrete 
literature examples to demonstrate the benefits of the top-down design. Whilst it is out 
of scope in this manuscript to explore how this strategy could be extended to a broader 
family and how it will benefit the research field explicitly, more recent literature, 
including scTour (Li BioRxiv 488600, 2022) could be ideal examples of this approach 
which utilized a similar spliced read oriented design but with deep learning architecture 
and facilitates RNA velocity-related research work. Therefore, we added more 
discussion on this point (p.7) and leave it as an open question for future evaluation 
and studies. 
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(2) Another big concern is the running time. As I guessed, the proposed method is 
very computationally expensive (requires a lot of computing resources, GPU memory, 
and running time). Moreover, given that a single-cell dataset with over 40k cells is very 
common and the size of single-cell data is ever-increasing, the scalability of the 
method could become a bottleneck that limits its application (~ over 5x more running 
time and 2x more GPU memory as shown in Table S4 and S5). The authors should 
provide an estimation of required memory and running time for large-scale single-cell 
data (say over 100k cells) so that users can know how much computing resource they 
will need to analyze their extensive single-cell datasets (e.g., over 40k cells). The 
authors did mention a down-sampling strategy. However, this strategy will unavoidably 
suffer from information loss and could badly hurt the RNA velocity inference. For 
example, the rare cell populations could be seriously affected by the random 
subsampling strategy. A more sophisticated down-sampling strategy might be 



  
 

 4 

necessary, and the authors will need to provide a systematic evaluation of different 
down-sampling strategies to inform the users. 

Response:  

Thank you for further emphasising this important issue. We agreed that the running 
time of UniTVelo is not perfect, particularly considering the increasingly larger 
datasets. On the other hand, we think running for 1 hour on 36K cells is widely 
acceptable considering the model gives more accurate results. Given the running time 
is generally linear to the number of cells (Supp. Table S4), analysing 400K cells may 
finish within a half day which is probably not a major concern for most analyses. 

Nonetheless, we still provide a down-sampling strategy in case computing resource is 
a bottleneck for some small labs. Here, we’d like to clarify that the down-sampling 
strategy provided by UniTVelo actually already considers the problem of rare cell 
populations in scRNA-seq datasets, by providing a user-defined threshold parameter 
specifying the minimal number of cells (e.g., 50) within each cluster to keep, and a 
parameter representing the percentage of sampling,  

1) If the number of cells of a particular cell type is lower than threshold, all cells 
will be kept for model optimization.  

2) If estimated cell number after sampling is lower than threshold (e.g., randomly 
select 50% of 80 cells which is 40 cells), then 50 cells will be selected.  

3) For other clusters, the utility script will sample cells randomly based on pre-
defined percentage.  

In this revision, we also provide a utility script for using the down-sampled data to 
predict RNA velocity and cellular time for the rest of the cells, hence having all cells 
for downstream analysis (p.8 and Supp. Fig. S9 in p.21).  

Here, we use the erythroid human dataset as an example and briefly describe the 
results. This dataset originally has 37k cells which use approximately 1 hour to run 
the model with GPU acceleration. We first randomly sampled 10% of total cells using 
the down-sampling strategy mentioned above, which is around 3.6k cells. Then the 
model is applied to this subset, and RNA velocity and unified time are inferred (upper 
panel of a and b; running time around 10mins). Then we use parameters generated to 
predict the relevant RNA velocity and unified time for the rest of the cells (lower panels 
of a and b; running time 3mins). To assess the performance of this down-sampling / 
prediction strategy with ground truth (model fitted with full batch of data), we tried two 
folds of comparison,  

 We have compared the inferred time for each cell between prediction and full 
batch, the scatter plot showed a strong correlation status.  

 For the RNA velocities for cells, we compared the cosine similarity between 
prediction and full batch at a high dimensional level. The histogram generally 
showed a high similarity score which further consolidates our down-sampling / 
prediction is robust to dense datasets.  
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In other scenarios when GPU resources are not available, users could run UniTVelo 
on CPU as well by setting `config.GPU` = -1. This also means higher peak memory 
usage and running time, the algorithm required 17GB memory and 9.0 hours for 
erythroid human dataset, 37k cells. 

Overall, we provided effective trade-off approaches for users to analyse datasets with 
different sizes or configurations, while we agreed that the sampling method itself is an 
open challenge and we leave it to the future for a systematic comparison, especially 
when huge datasets are routinely used. We will monitor the feedbacks from users to 
further consider more sophisticated methods for running time optimization in future. 

  
Minor comments:  

The description of the criteria to select from two modes remains vague. I would 
suggest the authors add more specific guidelines. I understand that the users have 
implemented a utility script to choose the model. Maybe explicitly explain the concrete 
criteria the users had implemented. The authors also suggest running both modes. 
However, it would be difficult for users to judge results from which mode would be 
better. In addition, the running cost (time and memory) for running two modes will be 
prohibitive. Therefore, selecting a proper mode is not trivial and would require more 
explicit guidelines for users to follow. 

Response:  

Thank you for the kind suggestions! We have updated the selection criteria and briefly 
explained the rationale behind the utility script (Choose the suitable modes under 
Methods section, p10).  

Indeed, determining the suitable mode for a specific dataset is a non-trivial and an 
interesting topic to explore both for scVelo (deterministic / stochastic / dynamical 
mode), UniTVelo (unified-time / independent mode), or other algorithms, as gene 
regulations during the biological process and associated expression profiles (phase 
portraits) are complex. The basic differences lie in how we reconstruct the temporal 
relationships between unspliced and spliced mRNA reads. The unified-time mode and 
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independent mode represent two opposite ways of exploration and suit different 
scenarios (or genes’ activities). Nevertheless, although we recommend using unified-
time as default, there are a few genes whose phase portraits exhibit clear, 
comprehensive induction or repression phases, and those genes are better to be fitted 
individually (the independent mode) and vice versa.  

To elaborate, there is a trade-off between using two modes based on the displayed 
expression profiles. We anticipate a more comprehensive method to be developed for 
RNA velocity which may calculate gene-specific time matrix for a subset of genes 
whilst aggregate the time information of other genes.  

In our utility script, we provided a simple way of choosing two modes,  

(1) The script will first identify whether cell cycle exists,  
 Assume we do not know the explicit clustering results (which is quite common 

in early phases of scRNA-seq analysis). Therefore, from a data point of view, 
we observed that for cycle related datasets, number of cycle genes in both S 
and G2M phases which are highly variable are significantly higher than other 
datasets. This could be a potential way to identify cycle related datasets and 
independent mode is recommended.  

 Specifically, after selecting the HVGs (same as scVelo and Seurat).  Datasets 
with number of cycle genes in either S or G2M phases higher than half (an 
adjustable hyper-parameter) of the gene lists (43 S genes & 54 G2M genes) 
are considered as datasets with cell cycle included.  

 

(2) Then the script will detect whether this is a dataset with sparse cell types,  
 Normally scRNA-seq data and the related velocity streamlines are visualized 

on embeddings like UMAP, which reflects the similarity of expression profiles 
of various cell types.  

 To elaborate, sparsity refers to a few cell clusters scattered around with no 
obvious connections with others, meaning the proportion of its neighbour cells 
belong to the same cluster should be quite high. For now, we define if there are 
more than 2 clusters with more than 95% of its neighbour cells are within the 
same cluster (both are adjustable hyper-parameter), we consider this is a 
sparse dataset.  

Despite its simplicity, we found this strategy effectively aligns with the 10 datasets we 
are using that have diverse biological properties. On the other hand, we admit that it 
may not perfectly generalise to all scenarios and we anticipate this will be an 
interesting topic and may motivate more future studies to develop comprehensive 
methods to determine these two modes or to integrate them into one framework.  



REVIEWERS' COMMENTS 

Reviewer #2 (Remarks to the Author): 

The authors have addressed my remaining concerns with a very detailed response and convincing 

evidence. I have no further comments and now recommend the acceptance of the manuscript. 
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