Tu et al, Tyrosine phosphorylation regulates RIPK1 activity to limit cell death and inflammation

Supplementary Information:

Supplementary Figures 1, 2, 3, 4, 5, 6, 7, 8.

Supplementary Tables 1, 2, 3, 4, 5.

Supplementary Figures

Supplementary Figure 1: Identification of tyrosine phosphorylation as potential regulation of RIPK1 activity

a Schematic overview of mass spectrometry analysis-mediated identification of RIPK1 interacting proteins in 293T cells. PSM: peptide-spectrum match. **b** RIPK1 KO HEK293T cells co-transfected with Flag-RIPK1 and HA-JAK1 for 24h. Cell lysates were immunoprecipitated with anti-Flag-Protein A/G agarose and analyzed by immunoblotting with the indicated antibodies. **c** HEK293T cells co-transfected with Flag-RIPK1, HA-JAK1 and GFP-SRC for 24h. Cell lysates were immunoprecipitated with anti-GFP reesin and analyzed by immunoblotting with the indicated antibodies.

Supplementary Figure 2: Y384 is a major tyrosine phosphorylation site of RIPK1 a, b WT (**a**) or RIPK1 KO (**b**) HEK293T cells co-transfected with HA-RIPK1-ID and Flag-JAK1 for 24h. Cell lysates were immunoprecipitated with anti-Flag-Protein A/G agarose and analyzed by immunoblotting with the indicated antibodies. **c** Schematic of RIPK1 phosphorylation sites from the PhosphoSitePlus database. HTP, highthroughput papers.

Supplementary Figure 3: Loss of tyrosine phosphorylation of RIPK1 promotes TNF-induced apoptosis and necroptosis

a Primary WT BMDMs were stimulated by TNF/BV-6 with or without Nec-1 (RIPK1 inhibitor), JAK1 and SRC inhibitors for 24h. Cell death were measured by SytoxGreen positivity. **b**, **c** Immortalized WT MEFs were stimulated by TNF with or without JAK1 (**b**) or SRC (**c**) inhibition treatment for indicated time points and cell death were measured by SytoxGreen positivity. **d** Schematic overview of strategy to generate *Ripk1*^{Y383F/Y383F} mice by CRISPR-Cas9 technology. **e**, **f** *Ripk1*^{+/+} and *Ripk1*^{Y383F/Y383F} immortalized MEFs were stimulated by TNF for indicated time points. Whole-cell lysates were collected for western blotting (**f**) and cell death were measured by SytoxGreen positivity (**e**). **g** *Ripk1*^{+/+} and *Ripk1*^{Y383F/Y383F} immortalized MEFs were treated by different stimulators for 6h. Cell death were measured by SytoxGreen positivity. T: TNF; B: BV-6; Z: zVAD.fmk; N: Necrostatin-1. **h**, **i** *Ripk1*^{+/+} and *Ripk1*^{Y383F/Y383F} immortalized MEFs were stimulated by TNF/BV-6 (**h**) and TNF/zVAD (**i**) for indicated time points and whole-cell lysates were collected for western blotting. TNF: 100 ng/ml (**b-c**, **e-f**, **i**) and 10 ng/ml (**a**, **g-h**); BV-6: 2.5 uM; zVAD.fmk: 20 µM; Necrostatin-1: 10 µM; JAK1 inhibitor: 10µM; Src inhibitor: 10µM. In **a-c**, **e** and **g**, data

are represented as mean \pm SEM (n = 3 independent cell samples). Statistical significance was determined using a two-tailed unpaired t test. n.s., p > 0.05; ****p < 0.0001.

Supplementary Figure 4: Tyrosine phosphorylation of RIPK1 is essential for limiting RIPK1 kinase activity

a *Ripk1*^{+/+} and *Ripk1*^{Y383F/Y383F} immortalized MEFs were stimulated with TNF (10 ng/ml) for indicated time points. Whole-cell lysates were immunoprecipitated with antiphospho-tyrosine antibody for western blotting with indicated antibodies. **b**, **d**-f *Ripk1*^{+/+} and *Ripk1*^{Y383F/Y383F} primary BMDMs were stimulated with TNF (**b**, **d**: 10 ng/ml), IFN γ (**e**: 10 ng/ml) and LPS (**f**: 10 ng/ml) for indicated time points. Whole-cell lysates were collected for western blotting with indicated antibodies. **c** Primary *Ripk1*^{+/+} and *Ripk1*^{Y383F/Y383F} BMDMs were stimulated with TNF (10 ng/ml) at different time point. The expression level of inflammatory IL6 and TNF were measured by ELISA. **g** Primary *Ripk1*^{+/+} and *Ripk1*^{Y383F/Y383F} BMDMs were stimulated with TNF (10 ng/ml) at indicated time point with or without BV-6 (2.5 uM) pretreatment. The transcriptional and expression level of inflammatory NF- κ B target genes were measured by qPCR. **h**, **i** Immortalized WT MEFs with or without knockdown of JAK1 (**h**) or Src (**i**) were treated with Flag-TNF (100 ng/ml) (**h**) or TNF (10 ng/ml)/BV-6 (2.5 uM) (**i**) for indicated time points and whole-cell lysates were immunoprecipitated using anti-Flag resins (**h**) or anti-RIPK1 (**i**) antibody for western blotting with indicated antibodies. Data are represented as mean ± SEM. Statistical significance was determined using a two-tailed unpaired t test. n.s., p > 0.05.

Supplementary Figure 5: RIPK1 Y383F mice develop systemic inflammation and emergency hematopoiesis

a Quantification of genotypes of offspring mice from intercrosses of *Ripk1*^{Y383F/+} mice. **b** The level of IL6 and IL1 β in serum of *Ripk1*^{+/+} (n = 4) and *Ripk1*^{Y383F/Y383F} (n = 4) mice at age of 8 weeks. c Representative images of H&E staining of liver, kidney, lung and skin tissue from $Ripk1^{+/+}$ and $Ripk1^{Y383F/Y383F}$ mice at age of 8 weeks (Scale bar, 100 µm). d Flow cytometry and statistical analysis of neutrophils, monocytes and macrophages in the bone marrow from $Ripk1^{+/+}$ (n = 5) and $Ripk1^{Y383F/Y383F}$ (n = 5) mice at age of 8 weeks. e-g Flow cytometry and statistical analysis of erythroid lineage Ter119⁺ cells (\mathbf{e}, \mathbf{g}) and different erythroblast populations (\mathbf{f}) in the bone marrow (\mathbf{e}, \mathbf{f}) and spleen (g) from $Ripkl^{+/+}$ (n = 5) and $Ripkl^{Y383F/Y383F}$ (n = 5) mice at age of 8 weeks. R1 contains immature red blood cell progenitors, including primitive and later-stage erythroid progenitor cells (erythroid burst-forming unit (BFU-E) and colony-forming unit (CFU-E), respectively); R2 comprises mainly pro-erythroblasts and early basophilic erythroblasts; R3 contains both early and late basophilic erythroblasts; R4 is composed of chromatophilic and orthochromatophilic erythroblasts; R5 consists of late orthochromatophilic erythroblasts and reticulocytes. Data are represented as mean \pm SEM. Statistical significance was determined using a two-tailed unpaired t test. *p <0.05; ** p < 0.01; *** p < 0.001; *** p < 0.0001.

Supplementary Figure 6: TNF-induced cell death is responsible for systemic inflammation and emergency hematopoiesis in RIPK1 Y383F mice

a, **b** $Ripk1^{+/+}$ and $Ripk1^{Y383F/Y383F}$ mice were treated with Nec-1s (3mg/kg) every one day after 3 weeks old (n = 3). After 8 weeks, Representative images and weight of skin tissue (**a**) and neutrophils (CD11b⁺Ly6G⁺) (**b**) in the spleen were analyzed. **c**, **d** Representative images and statistical analysis of spleen tissue from $Ripk1^{+/+}$,

Ripk1^{Y383F/Y383F}, *Ripk3^{-/-}Caspase8^{-/-}* and *Ripk1*^{Y383F/Y383F} *Ripk3^{-/-}Caspase8^{-/-}* mice at age of 8 (c) and 16 (d) weeks (n = 3). e, f Flow cytometry and statistical analysis for CD3+B220+ lymphocytes (e) and neutrophils (CD11b⁺Ly6G⁺) (f) in the spleen from *Ripk1^{+/+}*, *Ripk1*^{Y383F/Y383F}, *Ripk3^{-/-}Caspase8^{-/-}* and *Ripk1*^{Y383F/Y383F} *Ripk3^{-/-}Caspase8^{-/-}* mice at age of 16 weeks (n = 3). Data are represented as mean \pm SEM. Statistical significance was determined using a two-tailed unpaired t test. n.s., *p* > 0.05; **p* < 0.05; **p* < 0.05; **p* < 0.01; ****p* < 0.001.

Supplementary Figure 7: Proposed model that tyrosine phosphorylation of RIPK1 on Y383 regulates RIPK1 kinase activity to prevent cell death and inflammation Up, ligation of TNF on TNFR1 induces formation of TNF-RSC, and subsequent phosphorylation and ubiquitination of RIPK1 to activate NF- κ B and MAPK-dependent survival genes. These post-translational modifications of RIPK1 could stabilize TNF-RSC and further inhibit cytotoxic activity of RIPK1. Herein, we identify non-receptor tyrosine kinases JAK1 and SRC could phosphorylate RIPK1 on Y383 to recruit and activate downstream kinase MK2. **Down**, deficiency of tyrosine phosphorylation of RIPK1 by Y383F mutation activates RIPK1 kinase partially though blocking MK2 activation, which leads to enhanced TNF-induced apoptosis and necroptosis and systemic inflammation and emergency hematopoiesis in *Ripk1*^{Y383F/Y383F} mice.

Supplementary Figure 8: Hematopoietic gating strategy

a, For characterization of myeloid cell in spleen and bone marrow, the living cell fractions gated from preliminary FSC/SSC gates could be further divided into $CD11b^+Ly6G^+$ neutrophils, $CD11b^+Ly6C^+$ inflammatory monocytes, $CD11b^+F4/80^+$ macrophages. **b**, For characterization of lymphocytes in spleen, bone marrow and thymus, the living cell fractions gated from preliminary FSC/SSC gates could be further

divided into B220⁺ B cells, CD3⁺ T cells, B220⁻CD3⁺CD4⁺ T cells and B220⁻CD3⁺CD8⁺ T cells. **c**, For characterization of red blood cells and erythroblast populations in spleen, bone marrow, the living cell fractions gated from preliminary FSC/SSC gates could be further divided into Ter119⁺ red blood cells, Ter119^{int}CD71^{int} erythroblast R1, Ter119^{int}CD71^{high} erythroblast R2, Ter119^{high}CD71^{high} erythroblast R3, Ter119^{high}CD71^{int} erythroblast R4 and Ter119^{high}CD71^{low} erythroblast R5 population. **d**, For characterization of hematopoietic progenitor populations in bone marrow, the living cell fractions gated from preliminary FSC/SSC gates could be further divided into Lin⁻Sca-1⁺Kit⁺ (LSKs) progenitors, Lin⁻Sca-1⁻Kit⁺FcγR⁺CD34⁺ (GMPs) progenitors, Lin⁻Sca-1⁻Kit⁺FcγR⁺CD34⁺ (MEPs) progenitors.

Supplementary Tables

Supplementary Table 1: Identification of RIPK1 interacting proteins via mass spectrum.

RIPK1-Mass-spectrum	Protein	PSM
	TAB1	32
Scaffold proteins	TAB2	24
	TRADD	15
	TAB3	1
	CASPASE8	131
Cell death complexes	FADD	109
	CASPASE9	3
	cFLIP	2

Supplementary Table 2: Primer sequences for generation of *Ripk1*^{Y383F/Y383F} mice.

sgRNA	5'-tattccaaaagcatgataggc-3'	
Donor	5'-cacaggacgagaatgatcgcagtgtgcaggctaagctgcaagaggaagc	
	aagttttcatgcttttggaatatttgcagagaaacagacaaaaccgcagccaaggca	
	gaatgaggcttacaa-3'	

	Forward Primer (5'3')	Reverse Primer (5'3')
RIPK1 WT	agctgcaagaggaagccagcta	gtgctgggatcagaatgacc
RIPK1 K376R	agctgcaagaggaagcaagttt	gtgctgggatcagaatgacc

Supplementary Table 3. The primer sequences for genotyping PCR.

Gene	Forward Primer (5'3')	Reverse Primer (5'3')
Gapdh	aacagcaactcccactcttc	cctgttgctgtagccgtatt
ΙΙΙβ	gaaatgccaccttttgacagtg	tggatgctctcatcaggacag
Tnf	ctaccttgttgcctcctcttt	gagcagaggttcagtgatgtag
ΙκΒα	tgaaggacgaggagtacgagc	ttcgtggatgattgccaagtg
Cxcl10	ccaagtgctgccgtcattttc	ggctcgcagggatgatttcaa

Supplementary Table 4. The primer sequences for qRT-PCR.

Supplementary Table 5. The primer sequences for generating MK2 deficient MEFs.

	Oligo 1	Oligo 2
MK2 sgRNA1	CACCGcgccatcaccgacgactaca	AAACtgtagtcgtcggtgatggcgC
MK2 sgRNA2	CACCGggcccgacttgacgtggaac	AAACgttccacgtcaagtcgggccC