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These supplementary materials include the detailed algorithm, theoretical

details of the proposed method, and additional figures. In Section A, we

develop the proposed algorithm. In Sections B and C, we include theoretical

details of the statistical consistency of the proposed clustering method and

convergence of the algorithm, respectively. In Section D, additional lemmas

with proofs are included. In Sections E and F, we include brief discussion

of time complexity of the algorithm and evaluation metrics used in the main

paper, respectively. Detailed data processing steps and additional figures are

provided in Sections G and H, respectively. Application to stomach cancer

is illustrated in Section I.

A Algorithm

Let F ({Pm}, {cm}, {wml}) be the objective function of (4) in the main paper.

Although F (·) is not a jointly convex function, it is convex for one parameter

when the other variables are fixed. Hence we iteratively solve (4) as follows:

at the (i+ 1)th iterate of each update,

{cm}i+1 = argmin
{cm}

F ({Pm}i, {cm}, {wml}i) (S1)

{wml}i+1 = argmin
{wml}

F ({Pm}i, {cm}i+1, {wml}) (S2)

{Pm}i+1 = argmin
{Pm}

F ({Pm}, {cm}i+1, {wml}i+1) (S3)

until convergence. Note that (S1)-(S3) are convex optimizations.

2



A.1 Update {cm}i+1

Step 1: Update {cm}i+1

For m = 1, · · · ,M , let

c̃(i+1)
m = exp

(
1

ρ

(
−ε‖P (i)

m ‖2
F + 〈S(i)

m , P
(i)
m 〉 − λ‖P (i)

m ‖1

))
.

Then, we update {cm}i+1 by

c(i+1)
m =

Mc̃
(i+1)
m∑

m c̃
(i+1)
m

for all m = 1, · · · ,M, (S4)

which is the minimizer of (S1).

A.2 Update {wml}i+1

Step 2: Update {wml}i+1

For fixed m ∈ {1, · · · ,M} and l ∈ {1, · · · , `},

w
(i+1)
ml =

exp
(
c
(i+1)
m

ρ
〈Gml, P

(i)
m 〉
)

∑
l̃ exp

(
c
(i+1)
m

ρ
〈Gml̃, P

(i)
m 〉
) ,

which is the minimizer of (S2).

A.3 Update {Pm}i+1 via ADMM

Step 3: Update {Pm}i+1 via ADMM

Note that solving (S3) is equivalent to solving

min
{Pm}

ε
∑
m

c(i+1)
m ‖Pm‖2

F −
∑
m

c(i+1)
m 〈S(i+1)

m , Pm〉+ λ
∑
m

c(i+1)
m ‖Pm‖1 + µ

∑
m6=j

‖Pm − Pj‖2

s.t. tr(Pm) = C, 0 � Pm � I. (S5)
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We solve (S5) using the general idea of ADMM. Consider the following equiv-

alent formulation:

min
{Pm}

ε
∑
m

c(i+1)
m ‖Pm‖2

F −
∑
m

c(i+1)
m 〈S(i+1)

m , Pm〉+ λ
∑
m

c(i+1)
m ‖Pm‖1 + µ

∑
m6=j

‖Pm −Qj‖2

s.t. Qm = Pm, tr(Qm) = C, 0 � Qm � I.

By the augmented Lagrangian method, we solve

min
{Pm},{Qm},{Γm}

ε
∑
m

c(i+1)
m ‖Pm‖2

F −
∑
m

c(i+1)
m 〈S(i+1)

m , Pm〉+ λ
∑
m

c(i+1)
m ‖Pm‖1

+ µ
∑
m6=j

‖Pm −Qj‖2 +
∑
m

〈Γm, Pm −Qm〉+
η

2

∑
m

‖Pm −Qm‖2

s.t. tr(Qm) = C, 0 � Qm � I, (S6)

where the dual variables Γm’s are the Lagrangian multipliers and η > 0

is the penalty parameter. We iteratively update Pm, Qm, and Γm. Since

the optimization (S6) is convex, this ADMM guarantees convergences of the

iterates.

Let H({Pm}, {Qm}, {Γm} | {cm}i+1, {wml}i+1) be the objective function

in (S6). At the (t + 1)th iterate of the ADMM, we solve for the minimizer

iteratively using the following steps until it converges:

A.3.1 Update {Pm}t+1

Update {Pm}t+1 = {P t+1
1 , · · · , P t+1

M } by

{Pm}t+1 = argmin
{Pm}

H({Pm}, {Qt
m}, {Γtm} | {cm}i+1, {wml}i+1).
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This is equivalent to solving for each m = 1, · · · ,M ,

P t+1
m = argmin

P
εc(i+1)
m ‖P‖2

F − c(i+1)
m 〈S(i+1)

m , P 〉+ λc(i+1)
m ‖P‖1 + µ

∑
m̃6=m

‖P −Qt
m̃‖2

+〈Γtm, P −Qt
m〉+

η

2
‖P −Qt

m‖2.

Then by the KKT condition, we have for k, j ∈ {1, · · · , n},

2εc(i+1)
m Pkj − c(i+1)

m S
(i+1)
m,kj + λc(i+1)

m sign(Pkj) + 2µ
∑
m̃ 6=m

(Pkj −Qt
m̃,kj)

+Γtm,kj + η(Pkj −Qt
m,kj) = 0.

Let tm,kj = c
(i+1)
m S

(i+1)
m,kj − Γtm,kj + ηQt

m,kj + 2µ
∑

m̃ 6=mQ
t
m̃,kj. Then,

(P t+1
m )kj = (tm,kj − λc(i+1)

m )(2εc(i+1)
m + η + 2µ(M − 1))−1 if tm,kj > λc(i+1)

m

(P t+1
m )kj = (tm,kj + λc(i+1)

m )(2εc(i+1)
m + η + 2µ(M − 1))−1 if tm,kj < −λc(i+1)

m

(P t+1
m )kj = 0 if |tm,kj| ≤ λc(i+1)

m .

A.3.2 Update {Qm}t+1

Update {Qm}t+1 = {Qt+1
1 , · · · , Qt+1

M } by solving for each m = 1, · · · ,M ,

Qt+1
m = argmin

Q
µ
∑
m̃ 6=m

‖P t+1
m̃ −Q‖2 + 〈−Γtm̃, Q〉+

η

2
‖P t+1

m̃ −Q‖2

s.t. tr(Q) = C, 0 � Q � I,

which can be rewritten as

min
Q
‖Q− Tm‖2

F s.t. tr(Q) = C, 0 � Q � I,

where Tm = (2µ
∑

m̃6=m P
t+1
m̃ + Γtm + ηP t+1

m )(2µ(M − 1) + η)−1. Let Bm =

(Tm + T Tm)/2 and Bm = U diag(u)UT is the spectral decomposition of the
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symmetric matrix Bm. By using Theorem 2 in Lu et al. (2016), we obtain

Qt+1
m = U diag(λ∗)UT , where λ∗ is the solution to

min
λ
‖λ− u‖2 s.t. 0 ≤ λ ≤ 1, 1Tλ = C,

which can be efficiently solved as in Wang and Lu (2015).

A.3.3 Update {Γm}t+1

Update {Γm}t+1 = {Γt+1
1 , · · · ,Γt+1

M } by Γt+1
m = Γtm + η(P t+1

m −Qt+1
m ).

We repeat this procedure until convergence of sequences {Pm}t, {Qm}t,

and {Γm}t. The obtained {Pm}t at the last iterate of the above ADMM is

updated as {Pm}i+1 in (S3).

B Proof of statistical consistency

In this section, we prove statistical consistency of the proposed clustering

method as in (4) in the main paper. We first state Theorem S1 with its

proof.

Theorem S1. Suppose the n data points x1, x2, · · · , xn ∈ Rp follow the fol-

lowing sub-Gaussian distribution: xi = µ(f(i))+zi, where zi := (zi1, · · · , zip)T ∈

Rp is a random vector with independent component satisfying E[zij] = 0,

E[z2
ij] = σ2

z , and ‖zij‖ψ2 ≤ σzψ for some positive constants ψ and σz. Here,

µ(1), · · · , µ(C∗) represent the underlying center of each of the C∗ clusters. Sup-

pose mink 6=k̃ ‖µ(k̃) − µ(k)‖2
2 ≥ 8pσ2

z + 64σ2
zψ

2 log n/c for some constant c > 0.

Assume c1n ≤ |Tk| ≤ (1− c1)n for some constant c1 ∈ (0, 1/2). Let P̂ be the
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solution to (2) with λ = C∗/n2, ε = 1/n3, W = D−1/2SD−1/2, and C = C∗,

where the similarity matrix S = (si,j) is constructed as si,j = Kσ,g(xi, xj),

where

Kσ,g(xi, xj) =


exp

(
−‖xi−xj‖

2

2ε2ij

)
if i ∈ Ng(j) or j ∈ Ng(i)

0 otherwise,

(S7)

where

εij =
σ(µi + µj)

2
, µi =

∑
j∈Ng(i) ‖xi − xj‖

g

for some positive number σ and g < n. Let L̂ be the n by C∗ matrix consisting

of C∗ eigenvectors of P̂ corresponding to the first C∗ largest eigenvalues.

Then, k-means clustering to the normalized row vectors of L̂ guarantees the

exact clustering results with probability 1− 2(C∗)2/n.

Proof of Theorem S1. We first state the following curvature lemma (Lemma

S1), where the details and the proof can be found in Vu et al. (2013):

Lemma S1. Let A be a symmetric matrix and E be the projection onto

the subspace spanned by the eigenvectors of A corresponding to its d largest

eigenvalues λ1 ≥ · · · ≥ λd. If δA = λd − λd+1 > 0, then

δA
2
‖E − F‖2

F ≤ 〈A,E − F 〉

for all F satisfying 0 � F � I and tr(F ) = d.

Note that S is the similarity matrix as in Theorem S1. Let S∗ be the

similarity matrix by adding 1/n2, on some entries of S such that points

xi and xj in the same cluster have other samples xk1 , · · · , xkq in the same

cluster such that Si,k1 , Sk1,k2 , · · · , Skq−1,kq , Skq ,j have non-zero values, where
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q, k1, · · · , kq depend on i and j. There are many ways to construct such

S∗, but we consider the case that S∗ is constructed by adding the least

number of 1/n2 on S. We can see that this least number is less than 2n.

Let D∗ = diag(d∗1, · · · , d∗n) be the corresponding degree matrix. Let W ∗ =

(D∗)−1/2S∗(D∗)−1/2 be the graph Laplacian and L∗ be the n by C∗ matrix

consisting of C∗ eigenvectors corresponding to the C∗ largest eigenvalues of

W ∗. By Lemma S6, with probability at least 1− 2(C∗)2/n, we have W ∗
i,j = 0

if f(i) 6= f(j).

Furthermore, we can see that

L∗i,l =


√
d∗i
/√∑

k: f(k)=f(i) d
∗
k if l = f(i)

0 if l 6= f(i).

Let P ∗ = L∗(L∗)T be the underlying projection matrix. By Lemma S5, we

have with probability 1 − 2n−1, g exp(−10σ−2) ≤ d∗i ≤ 2g exp(−0.1σ−2) for

all i. Hence, we have√
exp(−9.9σ−2)

2(1− c1)n
≤

√
exp(−9.9σ−2)

2nf(i)

≤ L∗i,f(i) ≤

√
2 exp(9.9σ−2)

nf(i)

≤

√
2 exp(9.9σ−2)

c1n
.

(S8)

Since P̂ is the solution to (2) in the main paper, we have

0 ≤ ε
(
‖P ∗‖2

F − ‖P̂‖2
F

)
+ 〈W, P̂ − P ∗〉+ λ

(
‖P ∗‖1 − ‖P̂‖1

)
≤ εC∗‖P ∗ − P̂‖F + 〈W −W ∗, P̂ − P ∗〉 − 〈W ∗, P ∗ − P̂ 〉+ λ

(
‖P ∗‖1 − ‖P̂‖1

)
.

Let T = support(W ) ∪ support(W ∗). We have |T | ≤ 2n + 4ng ≤ 6ng.

Let T̃ = support(P ∗). Since P ∗ is the projection matrix onto the subspace

spanned by the eigenvectors of W ∗ corresponding to its C∗ largest eigenvalues
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and λC∗(W
∗)− λC∗+1(W ∗) = 1− 0 = 1, it holds that by Lemma S1,

1

2
‖P̂ − P ∗‖2

F ≤ εC∗‖P̂ − P ∗‖F + 〈W −W ∗, P̂ − P ∗〉+ λ
(
‖P ∗‖1 − ‖P̂‖1

)
≤ εC∗‖P̂ − P ∗‖F + ‖(W −W ∗)T‖max‖(P̂ − P ∗)T‖1 + λ

(
‖P ∗‖1 − ‖P̂‖1

)
≤ εC∗‖P̂ − P ∗‖F + λ

(
‖∆T‖1 + ‖P ∗

T̃
‖1 − ‖P ∗T̃ + ∆T̃‖1

)
,

where ∆ = P̂ − P ∗ and the second inequality follows from ‖W −W ∗‖max ≤

C∗/n2 = λ. Then, we have

1

2
‖∆‖2

F ≤ λ(‖∆T‖1 + ‖∆T̃‖1) + C∗ε‖∆‖F ≤ 2λ
√
ng‖∆‖F + C∗ε‖∆‖F .

Solving the above inequalities with ε = 1/n3, we have

‖∆‖F ≤ 4λ
√
ng + 2C∗ε ≤ 5

√
gC∗n−3/2.

Thus, we have ‖P̂ − P ∗‖F . n−3/2. By using the sinΘ theorem (Davis and

Kahan, 1970), we have

‖L̂L̂T − L̃∗(L̃∗)T‖F . n−3/2. (S9)

Note that for i and j from the same cluster (i.e., f(i) = f(j)), we have

〈L̂i, L̂j〉
‖L̂i‖2‖L̂j‖2

&
〈L∗i , L∗j〉 − n−3/2√

‖L∗i ‖2 + n−3/2
√
‖L∗j‖2 + n−3/2

= 1−
n−1.5(L∗i,f(i) + L∗j,f(i))

2

t(t+ L∗i,f(i)L
∗
j,f(i) − n−1.5)

& 1− n−1/2,

where t :=
√

(L∗i,f(i))
2 + n−1.5

√
(L∗j,f(i))

2 + n−1.5, and the first and the second

inequality follows from (S9) and (S8). Thus, we have∥∥∥L̂i/‖L̂i‖2 − L̂j/‖L̂j‖2

∥∥∥
2
. n−1/4.
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For samples i and j from different clusters, we have

〈L̂i, L̂j〉
‖L̂i‖2‖L̂j‖2

≤
〈L∗i , L∗j〉+ n−3/2√

‖L∗i ‖2 − n−3/2
√
‖L∗j‖2 − n−3/2

≤ n−1/2,

where the first inequality follows from the fact that 〈L∗i , L∗j〉 = 0 for the i

and j from different clusters. Thus, we have∥∥∥L̂i/‖L̂i‖2 − L̂j/‖L̂j‖2

∥∥∥
2
&
√

2− 2n−1/2.

By Lemma S4, the k-means clustering algorithm with normalized L̂ guaran-

tees the exact clustering results. This completes the proof.

We now move to the proof of Theorem 1 of the main paper. To better

understand the proof, we first present an overview of the proof with main

ideas, and then move to details of the proof.

Overview of the proof of Theorem 1. First, for each similarity matrix

Sml, we consider a new similarity matrix S∗ml by adding a small value to

a few entries in Sml such that samples in the same underlying cluster be-

come connected in each graph of the new similarity matrix S∗ml (see the

proof of Theorem 1 for details). Here, Sml represents the similarity matrix

constructed by the Gaussian kernel Kσ,g, where σ is the mth component of

{1, 1.25, · · · , 2} and g is the lth component of {10, 12, · · · , 30}, respectively.

Second, for each data set (e.g. mth data set), we consider the weighted

normalized similarity matrix S∗m generated from the S∗ml weighted by the

obtained ŵml for l = 1, · · · , `. Let P ∗m be the projection matrix onto the
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subspace spanned by the eigenvectors of S∗m corresponding to its C∗ largest

eigenvalues. We show that P ∗m enjoys nice theoretical properties that actually

include a true clustering information.

Third, we compare two matrices P̂m and P ∗m, where P̂m is the obtained

target matrix from the proposed optimization. We prove that P̂m and P ∗m

are close, which implies that clustering information contained in these two

projection matrices are close through the proposed method. Finally, by using

the fact that P ∗m provides the true clustering information, we prove that the

proposed method utilizing P̂m also provides the true clustering results with

high probability.

Proof of Theorem 1. The basic idea of proof is similar to Theorem S1.

Let Sml be the similarity matrix constructed by the kernel function Kσ,g,

where σ is the mth component of {1, 1.25, · · · , 2} and g is the lth component

of {10, 12, · · · , 30}, respectively, as in Section 2.2 of the main paper. Let

{S∗ml} be the set of similarity matrices constructed by the multiple Gaussian

kernels by adding sufficiently small weights 1/n2 on some components of

{Sml} as in the proof of Theorem S1. Let G∗ml = (D∗ml)
−1/2S∗ml(D

∗
ml)
−1/2

be the corresponding graph Laplacian, where D∗ml = diag(d∗1, · · · , d∗n) is the

degree matrix and d∗i is a degree of the sample i. Let L∗m be the n by C∗

matrix consisting of C∗ eigenvectors corresponding to the first C∗ largest

eigenvalues of S∗m :=
∑

l ŵmlG
∗
ml

First, by Lemma S6, with probability at least 1 − 2`(C∗)2/n, we have

(S∗m)i,j = 0 if f(i) 6= f(j). Furthermore, we have (L∗m)i,f(i) =

√
d∗i√∑

j: f(j)=f(i) d
∗
j

and (L∗m)i,j = 0 when j 6= f(i). Let P ∗m = L∗m(L∗m)T be the underlying
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projection matrix. By Lemma S5, with probability 1− 2n−1, we have

g exp(−10) ≤ g exp(−10σ−2) ≤ d∗i ≤ 2g exp(−0.1σ−2) ≤ 2g exp(−0.1/4).

for all i. Hence, it holds that√
exp(−9.9σ−2)

2(1− c1)n
≤

√
exp(−9.9σ−2)

2nf(i)

≤ (L∗m)i,f(i) ≤

√
2 exp(9.9σ−2)

nf(i)

≤

√
2 exp(9.9σ−2)

c1n
.

(S10)

Since {P̂m} is the solution to (4) in the main paper, by comparing the objec-

tive function values between {P̂1, · · · , P̂M} and {P̂1, · · · , P̂m−1, P
∗
m, P̂m+1, · · · , P̂M}

given {ĉm} and {ŵml}, we have for each m,

εĉm‖P̂m‖2
F − ĉm〈Ŝm, P̂m〉+ λĉm‖P̂m‖1 + µ

∑
j 6=m

‖P̂m − P̂j‖2
F

≤ εĉm‖P ∗m‖2
F − ĉm〈Ŝm, P ∗m〉+ λĉm‖P ∗m‖1 + µ

∑
j 6=m

‖P ∗m − P̂j‖2
F ,

where Ŝm =
∑

l ŵmlGml. Hence, we have

0 ≤ εĉm

(
‖P ∗m‖2

F − ‖P̂m‖2
F

)
+ ĉm〈Ŝm, P̂m − P ∗m〉+ λĉm

(
‖P ∗m‖1 − ‖P̂m‖1

)
+µ

(∑
j 6=m

‖P ∗m − P̂j‖2
F −

∑
j 6=m

‖P̂m − P̂j‖2
F

)
≤ (εĉm + µM)

(
‖P ∗m‖2

F − ‖P̂m‖2
F

)
+ 〈ĉmŜm + 2µ

∑
j 6=m

P̂j, P̂m − P ∗m〉

+λĉm

(
‖P ∗m‖1 − ‖P̂m‖1

)
.

Since P ∗m is the projection matrix onto the subspace spanned by the eigen-

vectors of S∗m corresponding to its C∗ largest eigenvalues, and λC∗(S
∗
m) −
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λC∗+1(S∗m) = 1− 0 = 1, it holds that by Lemma S1,

1

2
‖P̂m − P ∗m‖2

F ≤ 〈S∗m, P ∗m − P̂m〉

= 〈S∗m − Ŝm, P ∗m − P̂m〉+ 〈Ŝm, P ∗m − P̂m〉

≤ 〈S∗m − Ŝm, P ∗m − P̂m〉+ (ε+ µM/ĉm)
(
‖P ∗m‖2

F − ‖P̂m‖2
F

)
+〈2µ

∑
j 6=m

P̂j/ĉm, P̂m − P ∗m〉+ λ
(
‖P ∗m‖1 − ‖P̂m‖1

)
≤ ‖S∗m − Ŝm − 2µ

∑
j 6=m

P̂j/ĉm‖max ‖P ∗m − P̂m‖1

+λ
(
‖P ∗m‖1 − ‖P̂m‖1

)
+ C∗‖∆m‖F (ε+ µM/ĉm)

. λ/ĉm

(
‖P̂m − P ∗m‖1 + ‖P ∗m‖1 − ‖P̂m‖1

)
+ C∗‖∆m‖F (ε+ µM/ĉm)

≤ λ/ĉm (‖∆m‖1 + ‖P ∗m‖1 − ‖P ∗m + ∆m‖1) + C∗‖∆m‖F (ε+ µM/ĉm),

where ∆m = P̂m−P ∗m, the third and fourth inequality uses ‖P ∗m‖2
F , ‖P̂m‖2

F ≤

C∗ and ‖S∗m − Ŝm‖max ≤ 1/n2 ≤ λ and µ =
√
nλ/(C∗M). Since ε = 1/n3,

we have

1

2
‖∆m‖2

F . 2λ‖∆m‖1/ĉm + C∗‖∆m‖F (ε+ µM/ĉm)

. 2λ
√
n‖∆m‖F/ĉm + C∗‖∆m‖F (n−3 +

√
nλ/(ĉmC

∗))

. λ
√
nC∗‖∆m‖F/ĉm.

Solving the above inequalities, we have ‖∆m‖F . λ
√
nC∗/ĉm.

Since λ = C∗/n2, we have ‖P̂m−P ∗m‖F . 1/(ĉmn
3/2). exp(3C∗)/(Mn3/2)

due to Lemma S11 with a entropy penalty function. This means that all the

eigenvalues of P̂m are near zero or one, i.e., P̂m is very close to the following

original nonlinear space:

{P : tr(P ) = C∗, P = LLT for some L with LTL = IC∗}.
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Hence, by using the sin Θ theorem (Davis and Kahan, 1970), we have

‖L̂mL̂Tm − L∗m(L∗m)T‖F.M−1n−3/2. (S11)

Let L̃ = [ĉ1L̂1, · · · , ĉM L̂M ]. Then, for samples i and j from the same cluster,

it holds that

〈L̃i, L̃j〉
‖L̃i‖2‖L̃j‖2

=

∑M
k=1 ĉ

2
k〈(L̂k)i, (L̂k)j〉√∑M

k=1 ĉ
2
k‖(L̂k)i‖2

√∑M
k=1 ĉ

2
k‖(L̂k)j‖2

≥
∑M

k=1 ĉ
2
k〈(L∗k)i, (L∗k)j〉 −

∑M
k=1 ĉ

2
kM

−1n−3/2√∑M
k=1 ĉ

2
k‖(L∗k)i‖2 +

∑M
k=1 ĉ

2
kM

−1n−3/2

√∑M
k=1 ĉ

2
k‖(L∗k)j‖2 +

∑M
k=1 ĉ

2
kM

−1n−3/2

& 1− n−1/2,

where we utilize (S11). Thus, we have∥∥∥L̃i/‖L̃i‖2 − L̃j/‖L̃j‖2

∥∥∥
2
. n−1/4.

For the samples i and j from different clusters, we have

〈L̃i, L̃j〉
‖L̃i‖2‖L̃j‖2

≤
∑M

k=1 ĉ
2
k〈(L∗k)i, (L∗k)j〉+

∑M
k=1 ĉ

2
kM

−1n−3/2√∑M
k=1 ĉ

2
k‖(L∗k)i‖2 −

∑M
k=1 ĉ

2
kM

−1n−3/2

√∑M
k=1 ĉ

2
k‖(L∗k)j‖2 −

∑M
k=1 ĉ

2
kM

−1n−3/2

. n−1/2,

where the second inequality follows from the fact that 〈(L∗k)i, (L∗k)j〉 = 0 for

the i and j from different clusters and (S10). Thus, we have∥∥∥L̃i/‖L̃i‖2 − L̃j/‖L̃j‖2

∥∥∥
2
&
√

2− 2n−1/2.

By Lemma S4, the k-means clustering algorithm with the normalized L̃ guar-

antees the exact clustering results. This completes the proof.
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C Proof of computational convergence

Throughout the proof, we write a = O(b) or a . b if a ≤ Cb for some positive

constants C. If a ≥ Cb for some positive constants C, then we write a = Ω(b)

or a & b. We use a � b when a . b and b . a. For an n by p matrix A, let

vec(A) be the np by 1 column vector obtained by stacking the columns of A

on top of one another. We first state the following Lemma S2 and Lemma

S3 with the detailed proof at the end of this section, which will be used to

prove the global convergence of the proposed algorithm (Theorem S2).

Lemma S2. Let F ({Pm}, {cm}, {wml}) be the objective function of (4) in

the main paper. Let {P̄m}i, {c̄m}i, {w̄ml}i be the iterates of (S1)-(S3) by

assuming that {P̄m}i+1 is the minimum point of (S3) given {c̄m}i+1 and

{w̄ml}i+1 for each i. Then, the iterate {P̄m}i, {c̄m}i, {w̄ml}i converges to

some stationary point {P ∗m}, {c∗m}, {w∗ml} of F (·) in the sense that there exist

certain i0 > 0, θ ∈ (1/2, 1), and C4 > 0 such that∑
m

‖P̄ (i)
m −P ∗m‖F+

∑
m

‖c̄(i)
m−c∗m‖F+

∑
m

‖w̄(i)
m −w∗m‖F ≤ C4i

−(1−θ)/(2θ−1) (S12)

for all i ≥ i0. Moreover, it holds that

F ({P̄m}i−1, {c̄m}i−1, {w̄ml}i−1)− F ({P̄m}i, {c̄m}i, {w̄ml}i)

≥ ρ

2M
‖c̄(i−1) − c̄(i)‖2 +

ρ

2

∑
m

‖W̄ (i−1)
m − W̄ (i)

m ‖2,

where c̄(i) = [c̄
(i)
1 , · · · , c̄

(i)
M ]T and W̄ i

m = [w̄
(i)
m1, · · · , w̄

(i)
m`]

T , that is, the objective

value F ({P̄m}i, {c̄m}i, {w̄ml}i) is monotonically decreasing.
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Lemma S2 shows the convergence property of the iterates {P̄m}i, {c̄m}i, {w̄ml}i.

Note that the sequence {P̄m}i, {c̄m}i, {w̄ml}i is oracle in the sense that it

uses the optimal point of (S3) for updating {P̄m}i+1 instead of updates via

ADMM.

Lemma S3 shows the difference of the ADMM iterates in (S3) when dif-

ferent sets of {cm}i and {wml}i are entered in (S3).

Lemma S3. For fixed iterate number i, let {P̂m}i,t = {P̂ i,t
1 , · · · , P̂ i,t

M },

{Q̂m}i,t = {Q̂i,t
1 , · · · , Q̂

i,t
M}, and {Γ̂m}i,t = {Γ̂i,t1 , · · · , Γ̂

i,t
M} be the t-th iter-

ate of the ADMM in (S3) given {ĉm}i and {ŵml}i. Similarly, let {P̄m}i,t =

{P̄ i,t
1 , · · · , P̄ i,t

M }, {Q̄m}i,t = {Q̄i,t
1 , · · · , Q̄

i,t
M}, and {Γ̄m}i,t = {Γ̄i,t1 , · · · , Γ̄

i,t
M} be

the t-th iterate of the ADMM in (S3) given {c̄m}i and {w̄ml}i. Then, we

have

‖P̂ i,t
m − P̄ i,t

m ‖F . |ĉ(i)
m − c̄(i)

m |+ max
l
|ŵ(i)

ml − w̄
(i)
ml|+ ‖Γ̂

i,t−1
m − Γ̄i,t−1

m ‖F

+
∑
m

‖Q̂i,t−1
m − Q̄i,t−1

m ‖F ,

‖Q̂i,t
m − Q̄i,t

m‖F .
∑
m′

‖P̂ i,t
m′ − P̄

i,t
m′‖F + ‖Γ̂i,t−1

m − Γ̄i,t−1
m ‖F

‖Γ̂i,tm − Γ̄i,tm‖F . ‖Γ̂i,t−1
m − Γ̄i,t−1

m ‖F + ‖P̂ i,t
m − P̄ i,t

m ‖F + ‖Q̂i,t
m − Q̄i,t

m‖F .

Theorem S2 is the main results showing the convergence of the proposed

algorithm.

Theorem S2. Let θ be the constant as in Lemma S2. Let F ({Pm}, {cm}, {wml})

be the objective function of (4) in the main paper. Let {P̂m}i, {ĉm}i, {ŵml}i

16



be the obtained iterate of the proposed algorithm in Section A. Then {P̂m}i =

{P̂ (i)
1 , · · · , P̂ (i)

M }, {ĉm}i = {ĉ(i)
1 , · · · , ĉ

(i)
M }, and {ŵml}i = {ŵ(i)

11 , · · · , ŵ
(i)
M`} con-

verges to some stationary point of F in the sense that for a fixed tolerance

parameter δ > 0,∑
m

‖P̂ (i∗)
m − P ∗m‖F +

∑
m

|ĉ(i∗)
m − c∗m|+

∑
m

∑
l

|ŵ(i∗)
ml − w

∗
ml| ≤ C6δ

for some absolute constant C6 > 0, with the iterate number i∗ � δ−(2θ−1)/(1−θ),

and the iterate number of ADMM for (S3) being ti∗ � log(δ/i∗)/ log(µ) and

ti∗−k � ti∗(ti∗ + 1)k−1 for all 1 ≤ k ≤ i∗ − 1.

We first include the proofs of Lemma S2 and Lemma S3 followed by the

proof of Theorem S2.

Proof of Lemma S2. Note that the iterates {P̄m}i, {c̄m}i, {w̄ml}i are ob-

tained via block coordinate descent method (Xu and Yin, 2013) as follows:

at the ith iterate of each update,

{c̄m}i = argmin
{cm}

F ({P̄m}i−1, {cm}, {w̄ml}i−1) (S13)

{w̄ml}i = argmin
{wml}

F ({P̄m}i−1, {c̄m}i, {wml}) (S14)

{P̄m}i = argmin
{Pm}

F ({Pm}, {c̄m}i, {w̄ml}i). (S15)
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We rewrite F ({Pm}, {cm}, {wml}) as follows:

F ({Pm}, {cm}, {wml})

= ε
∑
m

cm‖Pm‖2
F −

∑
m

cm〈Sm, Pm〉+ µ
∑
m6=j

‖Pm − Pj‖2
F

+
∑
m

gc(cm) +
∑
m

∑
l

gw(wml) + λ
∑
m

cm‖Pm‖1

:= f({Pm}, {cm}, {wml}) + λ
∑
m

cm‖Pm‖1,

where f({Pm}, {cm}, {wml}) is a differentiable and block multiconvex func-

tion (Xu and Yin, 2013), and λ
∑

m cm‖Pm‖1 is a convex block-separable

function. Now to apply the results in Section 2.3 of Xu and Yin (2013), we

check the following required conditions as in (A1)-(A5):

(A1) F ({Pm}, {cm}, {wml}) is a continous function.

(A2) The F ({Pm}, {cm}, {wml}) is lower bounded as follows:

F ({Pm}, {cm}, {wml}) ≥ ε
∑
m

cm‖Pm‖2
F−
∑
m

cm〈Sm, Pm〉 ≥ −
∑
m

‖Sm‖2
F

4εcm
> −∞.

(A3) f({Pm}, {cm}, {wml}) is a strongly convex function of any variable

given the other variables are fixed. Let P = [vec(P1)T , · · · , vec(PM)T ]T ,

c = [c1, · · · , cM ]T , and w = [vec(w1)T , · · · , vec(wM)T ]T . Then, the following

hold:

f(P, c, w)− f(P̄ , c, w) ≥ 〈∇Pf(P̄ , c, w), P − P̄ 〉+ µ(M − 1)‖P − P̄‖2

f(P, c, w)− f(P, c̄, w) ≥ 〈∇cf(P, c̄, w), c− c̄〉+
ρ

2M
‖c− c̄‖2

f(P, c, w)− f(P, c, w̄) ≥ 〈∇wf(P, c, w̄), w − w̄〉+
ρ

2
‖w − w̄‖2.
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(A4) ∇Pf(P̄ , c, w) is Lipschitz continuous on any bounded set because it

holds that

∇Pf(P, c, w) = 2ε[c1P
T
1 , · · · , cMP T

M ]T − [c1vec(S1)T , · · · cMvec(SM)T ]T

+ 2µ(M − 1)[P T
1 , · · · , P T

M ]T − [vec(
∑
j 6=1

Pj)
T , · · · , vec(

∑
j 6=M

Pj)
T ]T ,

thus we have

‖∇Pf(P, c, w)−∇Pf(P̄ , c, w)‖ ≤ (2εM + 2µM +M2)‖P − P̄‖.

Similarly, we have

‖∇cf(P, c, w)−∇cf(P, c̄, w)‖ ≤ 1

cmin

‖c− c̄‖,

‖∇wf(P, c, w)−∇wf(P, c, w̄)‖ ≤ 1

wmin

‖w − w̄‖

for some positive constants cmin and wmin.

(A5) We note that f(P, c, w) and g(P, c) = λ
∑

m cm‖Pm‖1 are both suban-

alytic and g maps bounded sets to bounded sets, thus f + g is also subana-

lytic and satisfies the Kurdyka-Lojasiewicz (KL) inequality. See Xu and Yin

(2013) for details of KL inequality.

By (A1)-(A5) and Theorem 2.9 of Xu and Yin (2013), there exist certain

i0 > 0, θ ∈ (1/2, 1), and C > 0 such that

‖P̄ i − P ∗‖F + ‖c̄i − c∗‖F + ‖w̄i − w∗‖F ≤ Ci−(1−θ)/(2θ−1) (S16)

for all i ≥ i0. Here P ∗ = [vec(P ∗1 )T , · · · , vec(P ∗M)T ]T , c∗ = [c∗1, · · · , c∗M ]T , and

w∗ = [vec(w∗1)T , · · · , vec(w∗M)T ]T is some stationary point of (4) in the main
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paper. Since M is finite, this completes the proof.

Proof of Lemma S3. Let

t̂m = ĉ(i)
m Ŝ

(i)
m − Γ̂i,t−1

m + ηQ̂i,t−1
m + 2µ

∑
m̃6=m

Q̂i,t−1
m̃ ,

t̄m = c̄(i)
m S̄

(i)
m − Γ̄i,t−1

m + ηQ̄i,t−1
m + 2µ

∑
m̃ 6=m

Q̄i,t−1
m̃ .

Then, for fixed k, j ∈ {1, · · · , n}, we have as in Section A.3.1,

(P̂ i,t
m )kj = (t̂m,kj − λ)(2εĉ(i)

m + η + 2µ(M − 1))−1 if t̂m,kj > λ

(P̂ i,t
m )kj = (t̂m,kj + λ)(2εĉ(i)

m + η + 2µ(M − 1))−1 if t̂m,kj < −λ

(P̂ i,t
m )kj = 0 if |t̂m,kj| ≤ λ.

Similarly, we define (P̄ i,t
m )kj using t̄m,kj. Since

η + 2µ(M − 1) ≤ 2εĉ(i+1)
m + η + 2µ(M − 1) ≤ 2εM + η + 2µ(M − 1),

it holds that for all k, j ∈ {1, · · · , n}

|(P̂ i,t
m )kj − (P̄ i,t

m )kj| ≤
|t̂m,kj − t̄m,kj|
η + 2µ(M − 1)

,

thus we have

‖P̂ i,t
m − P̄ i,t

m ‖F . ‖t̂m − t̄m‖F (S17)

. |ĉ(i)
m − c̄(i)

m |‖Ŝ(i)
m ‖F + c̄(i)

m ‖Ŝ(i)
m − S̄(i)

m ‖F + ‖Γ̂i,t−1
m − Γ̄i,t−1

m ‖F +
∑
m

‖Q̂i,t−1
m − Q̄i,t−1

m ‖F

. |ĉ(i)
m − c̄(i)

m |+ max
l
|ŵ(i)

ml − w̄
(i)
ml|+ ‖Γ̂

i,t−1
m − Γ̄i,t−1

m ‖F +
∑
m

‖Q̂i,t−1
m − Q̄i,t−1

m ‖F ,

where we use ‖Ŝ(i)
m ‖F ≤ 1 and ‖Ŝ(i)

m − S̄
(i)
m ‖F ≤ 55 maxl |ŵ(i)

ml − w̄
(i)
ml|. See

Lemma S7 and the proof of Lemma S8 for details of these inequalities.
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For the updating {Q̂m}i,t part, we have as in Section A.3.2,

Q̂i,t
m = argmin

Q
‖Q− T̂m‖2

F s.t. tr(Q) = C∗, 0 � Q � I,

where T̂m = (2µ
∑

m̃ 6=m P̂
i,t
m̃ + Γ̂i,t−1

m + ηP̂ i,t
m )(2µ(M − 1) + η)−1. Similarly, we

define T̄m using P̄ i,t
m̃ and Γ̄i,t−1

m . By Lemma S10, we have

‖Q̂i,t
m−Q̄i,t

m‖F ≤ ‖T̂m− T̄m‖F .
∑
m′

‖P̂ i,t
m′−P̄

i,t
m′‖F +‖Γ̂i,t−1

m −Γ̄i,t−1
m ‖F . (S18)

For updating {Γ̂m}i,t = {Γ̂i,t1 , · · · , Γ̂
i,t
M}, as in Section A.3.3, we have Γ̂i,tm =

Γ̂i,t−1
m + η(P̂ i,t

m − Q̂i,t
m). Hence

‖Γ̂i,tm − Γ̄i,tm‖F . ‖Γ̂i,t−1
m − Γ̄i,t−1

m ‖F + ‖P̂ i,t
m − P̄ i,t

m ‖F + ‖Q̂i,t
m − Q̄i,t

m‖F . (S19)

This completes the proof.

Proof of Theorem S2. Note that the sequence {P̄m}i, {c̄m}i, {w̄ml}i in Lemma

S2 is oracle in the sense that it uses the optimal point of (S3) for updating

{P̄m}i+1. In this proof, we investigate the differences of the actual iterates

{P̂m}i, {ĉm}i, {ŵml}i and the oracle iterates {P̄m}i, {c̄m}i, {w̄ml}i. Through-

out the proof, we use the hat(â) and bar(ā) notations for the parameter a if

a is associated with the actual and oracle iterates, respectively.

For updating {ĉm}i = {ĉ(i)
1 , · · · , ĉ

(i)
M } as in Section A.1, we have

ĉ(i)
m =

Md̂
(i)
m∑

m d̂
(i)
m

, c̄(i)
m =

Md̄
(i)
m∑

m d̄
(i)
m

,

where

d̂(i)
m = exp

(
1

ρ

(
−ε‖P̂ (i−1)

m ‖2
F + 〈Ŝ(i−1)

m , P̂ (i−1)
m 〉

))
, Ŝ(i)

m =
∑
l

ŵ
(i)
mlGml,
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d̄(i)
m = exp

(
1

ρ

(
−ε‖P̄ (i−1)

m ‖2
F + 〈S̄(i−1)

m , P̄ (i−1)
m 〉

))
, S̄(i)

m =
∑
l

w̄
(i)
mlGml.

By Lemma S8, we have

|ĉ(i)
m − c̄(i)

m | ≤
M |d̂(i)

m − d̄(i)
m |∑

m d̄
i
m

+
Md̂

(i)
m |
∑

m d̂
(i)
m −

∑
m d̄

(i)
m |∑

m d̂
(i)
m

∑
m d̄

(i)
m

. ‖P̂ (i−1)
m − P̄ (i−1)

m ‖F + ‖ŵ(i−1)
m − w̄(i−1)

m ‖F . (S20)

For updating {ŵml}i = {ŵ(i)
11 , · · · , ŵ

(i)
M`} as in Section A.2, we have

ŵ
(i)
ml =

exp
(
ĉ
(i)
m

ρ
〈Gml, P̂

(i−1)
m 〉

)
∑

m̃ exp

(
ĉ
(i)
m̃

ρ
〈Gm̃l, P̂

(i−1)
m̃ 〉

) , w̄
(i)
ml =

exp
(
c̄
(i)
m

ρ
〈Gml, P̄

(i−1)
m 〉

)
∑

m̃ exp

(
c̄
(i)
m̃

ρ
〈Gm̃l, P̄

(i−1)
m̃ 〉

)
By Lemma S9, it holds that for ŵ

(i)
m = [ŵ

(i)
m1, · · · , ŵ

(i)
m`]

T and w̄
(i)
m =

[w̄
(i)
m1, · · · , w̄

(i)
m`]

T ,

‖ŵ(i)
m − w̄(i)

m ‖F . ‖P̂ (i−1)
m − P̄ (i−1)

m ‖F + ‖ĉ(i) − c̄(i)‖F . (S21)

For updating {P̂m}i = {P̂ (i)
1 , · · · , P̂ (i)

M }, note that we use the ADMM

as described in Section A.3. Let {P̂m}i,t = {P̂ i,t
1 , · · · , P̂ i,t

M }, {Q̂m}i,t =

{Q̂i,t
1 , · · · , Q̂

i,t
M}, and {Γ̂m}i,t = {Γ̂i,t1 , · · · , Γ̂

i,t
M} be the t-th iterate of the

ADMM given {ĉm}i and {ŵml}i. Similarly, let {P̄m}i,t = {P̄ i,t
1 , · · · , P̄ i,t

M },

{Q̄m}i,t = {Q̄i,t
1 , · · · , Q̄

i,t
M}, and {Γ̄m}i,t = {Γ̄i,t1 , · · · , Γ̄

i,t
M} be the t-th iterate

of the ADMM given {c̄m}i and {w̄ml}i.

For simplicity, let

ε(i)c := ‖ĉ(i) − c̄(i)‖F , ε(i)w := ‖ŵ(i) − w̄(i)‖F , ε
(i)
P := ‖P̂ (i) − P̄ (i)‖F

εitP := ‖P̂ i,t − P̄ i,t‖F , εitQ := ‖Q̂i,t − Q̄i,t‖F , εitΓ := ‖Γ̂i,t − Γ̄i,t‖F ,

where P̂ (i) = vec(vec(P̂
(i)
1 ), · · · , vec(P̂

(i)
M )) is the obtained output from ADMM

with the iterate number Ti, which will be defined later, and ŵ(i) = (ŵ
(i)
11 , · · · , ŵ

(i)
M`)

T
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and ĉ(i) = (ĉ
(i)
1 , · · · , ĉ

(i)
M )T . Similarly, P̄ (i) = vec(vec(P̄

(i)
1 ), · · · , vec(P̄

(i)
M )),

w̄(i) = (w̄
(i)
11 , · · · , w̄

(i)
M`)

T and c̄(i) = (c̄
(i)
1 , · · · , c̄

(i)
M )T .

By Lemma S3, we have

‖P̂ i,1
m −P̄ i,1

m ‖F . ε(i)c +ε(i)w , ‖Q̂i,1
m−Q̄i,1

m ‖F . ε(i)c +ε(i)w , ‖Γ̂i,1m−Γ̄i,1m ‖F . 2ε(i)c +2ε(i)w .

Using recursive formulas in Lemma S3 and the fact that M is finite, we have∑
m

‖P̂ i,t
m −P̄ i,t

m ‖F +
∑
m

‖Q̂i,t
m−Q̄i,t

m‖F +
∑
m

‖Γ̂i,tm−Γ̄i,tm‖F . 5t(ε(i)c +ε(i)w ). (S22)

Note that since (S5) is convex in {Pm}, it holds that for all t and some

µ ∈ (0, 1) (Lin et al., 2015; Deng and Yin, 2016)

‖P̄ i,t − P̄ (i)‖F . µt. (S23)

By (S22) and (S23), we have

‖P̂ i,t − P̄ (i)‖F . 5t(ε(i)c + ε(i)w ) + µt. (S24)

Note that since ε
(1)
c = ε

(1)
w = 0, we have ε

(1)
P . µT1 . Using recursive formulas

(S20), (S21), and (S24) with P̂ (j) = P̂ j,Tj for 1 ≤ j ≤ i, we have for each i,

‖P̂ (i)− P̄ (i)‖F + ‖ĉ(i)− c̄(i)‖F + ‖ŵ(i)− w̄(i)‖F .
i∑

j=1

µTj5
∑i

k=j+1 Tk , (S25)

where letting Ti+1 = 0. For fixed tolerance parameter δ > 0, we choose the

iterate number i∗ � δ−(2θ−1)/(1−θ), where θ is the constant defined in (S16)

in Lemma S2.

Let ψ � − log 5/ log µ. We set the iterate number of ADMM as Ti∗ �

log(δ/i∗)/ log(µ) and Ti∗−k � ψTi∗(Ti∗ + 1)k−1 for all 1 ≤ k ≤ i∗ − 1. Then

(S25) implies for all 1 ≤ i ≤ i∗,

‖P̂ (i) − P̄ (i)‖F + ‖ĉ(i) − c̄(i)‖F + ‖ŵ(i) − w̄(i)‖F ≤ C5δi/i
∗ (S26)
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for some absolute constant C5 > 0. Note that we have by the results of

Lemma S2,

‖P̄ (i) − P ∗‖F + ‖c̄(i) − c∗‖F + ‖w̄(i) − w∗‖F . i−(1−θ)/(2θ−1). (S27)

Combining (S26) and (S27), we have

‖P̂ (i∗) − P ∗‖F + ‖ĉ(i∗) − c∗‖F + ‖ŵ(i∗) − w∗‖F ≤ C6δ

for some absolute constant C6 > 0. Since M is finite, this completes the

proof.

D Lemmas and proofs

In this section, we include additional lemmas with their proofs that are used

to prove the main theorems. We write [K] to denote {1, 2, · · · , K} for any

positive integer K.

Lemma S4. Suppose that C1, · · · , CK ⊆ [n] are partitions of points y1, · · · , yn
which satisfying

max
k∈[K]

max
i,j∈Ck

‖yi − yj‖2 ≤ a, min
k 6=k̃

min
i∈Ck, j∈Ck̃

‖yi − yj‖2 ≥ b

with b > a
√
n. Then, the k-means clustering algorithm gives the clusters

C1, · · · , CK .
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Proof of Lemma S4. Note that for the n points y1, · · · , yn, we have∑
i,j

‖yi − yj‖2
2 =

∑
i,j

‖yi − ȳ + ȳ − yj‖2
2

= 2n
∑
i

‖yi − ȳ‖2
2 + 2

∑
i,j

〈yi − ȳ, ȳ − yj〉

= 2n
∑
i

‖yi − ȳ‖2
2 + 2

∑
i

〈yi − ȳ, nȳ −
∑
j

yj〉

= 2n
∑
i

‖yi − ȳ‖2
2.

Thus, we have

argmin
{C1,··· ,CK}

K∑
k=1

∑
x∈Ck

∥∥∥∥x−
∑

x∈Ck
x

|Ck|

∥∥∥∥2

2

= argmin
{C1,··· ,CK}

K∑
k=1

1

|Ck|
∑
x,y∈Ck

‖x− y‖2
2,

i.e. k-means clustering algorithm is equivalent to minimizing

F ({C1, · · · , CK}) :=
K∑
k=1

1

|Ck|
∑
x,y∈Ck

‖x− y‖2
2.

Suppose there exists a partition C∗1 , · · · , C∗K satisfying maxk∈[K] maxi,j∈C∗k ‖yi−

yj‖2 ≤ a and mink∈[K] mini∈C∗k , j∈C∗k̃
‖yi − yj‖2 ≥ b with b > a

√
n. Then, ob-

viously,

F ({C∗1 , · · · , C∗K}) ≤
∑
k

a2 |C∗k | − 1

2
= (n−K)a2/2.

For any other partitions C1, · · · , CK , there exists at least one pair of (yi, yj)

in some Ck satisfying ‖yi− yj‖ ≥ b. Let C1
k , · · · , CK

k be the partition of such

Ck such that Ci
k = C∗i ∩ Ck with at least two Ci

k are non-empty. Then,

F ({C1, · · · , CK}) ≥
∑

l 6=u b
2|C l

k||Cu
k |

|Ck|
≥ b2 > (n−K)a2/2 = F ({C∗1 , · · · , C∗K}),

which implies {C∗1 , · · · , C∗K} are the outcome of k-means clustering algorithm.

This completes the proof.
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Lemma S5. Suppose conditions of Theorem S1. For fixed cluster Ck, let

d∗1, · · · , d∗nk
be the degrees of nk samples based on the matrix S∗ presented in

the proof of Theorem S1. Then, with probability 1− 2n−2, g exp(−10σ−2) ≤

d∗i ≤ 2g exp(−0.1σ−2) for all i ∈ Ck.

Proof of Lemma S5. We fix sample i with i ∈ Ck. Note that since S∗ij = 0

for j /∈ Ck, we have d∗i =
∑

j∈Ck
S∗ij. We see S∗ij = exp

(
−‖xi−xj‖

2

2ε2ij

)
=

exp
(
−‖zi−zj‖

2

2ε2ij

)
for at most 2g number of j ∈ Ck, where εij =

σ(µi+µj)

2
and

µi =
∑

j∈Ng(i)
‖xi−xj‖
g

.

Notice that zij := zi−zj is a random vector with independent component

zijl which satisfying E[zijl ] = 0 and ‖zijl ‖ψ2 ≤ 2σzψ. Hence, by Theorem 1.1

of Rudelson and Vershynin (2013), we have for any t ≥ 0,

P
[∣∣‖zij‖2

2 − E[‖zij‖2
2]
∣∣ > t

]
≤ 2 exp

[
−c min

(
t2

16σ4
zψ

4
,

t

4σ2
zψ

2

)]
for some absolute constant c > 0. SinceE[‖zij‖2

2] = 2pσ2
z , with t = 16σ2

zψ
2 log n/c,

we have with probability at least 1− 2n−4, |‖zij‖2
2 − 2pσ2

z | ≤ 16σ2
zψ

2 log n/c,

i.e.,

∣∣∣‖zij‖2 −
√

2pσz

∣∣∣ ≤ 4σzψ
√

log n/c/(
√

2pσz) = 4ψ

√
log n

2pc
.

Combined with 4ψ
√

logn
2pc
≤ 0.5

√
2pσz, we have 0.5

√
2pσz ≤ ‖zij‖2 ≤ 1.5

√
2pσz.

By the union bound, we have with probability 1− 2n−3,

∣∣∣µi −√2pσz

∣∣∣ ≤ ∑
j∈Ng(i)

1

g

∣∣∣‖zij‖2 −
√

2pσz

∣∣∣ ≤ 4ψ

√
log n

2pc
,

i.e. 0.5
√

2pσz ≤ µi ≤ 1.5
√

2pσz. Hence, with probability 1 − 2n−2, we

have 0.5
√

2pσz ≤ µi ≤ 1.5
√

2pσz for all i. Thus, for any i and j, we have
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0.5σσz
√

2p ≤ εij ≤ 1.5σσz
√

2p. Hence, for i and j such that i ∈ Ng(j) or

j ∈ Ng(i), with probability 1− 2n−2,

exp(−10σ−2) ≤ exp

(
− 1.522pσ2

z

0.52σ2σ2
z2p

)
≤ S∗ij = exp

(
−‖z

i − zj‖2

2ε2ij

)
≤ exp

(
− 0.522pσ2

z

1.52σ2σ2
z2p

)
≤ exp(−0.1σ−2),

thus we have g exp(−10σ−2) ≤ d∗i ≤ 2g exp(−0.1σ−2). This completes the

proof.

Lemma S6. Suppose conditions of Theorem S1. Then, with probability at

least 1− 2(C∗)2/n, Ng(i) consists of the samples from the same cluster of i,

provided that g < mini∈[K] ni.

Proof of Lemma S6. We calculate the probability that for any sample xi be-

longing to cluster k̃, its nearest g-neighborhoods also comes from the same

cluster k̃ with high probability. Let Ei be the event that some of the nearest

g-neighbors of xi are from other clusters. Then, we have

P [Ei] = P [∪j∈Cc
k̃
{j ∈ Ng(i)}]

≤
∑
j∈Cc

k̃

P [j ∈ Ng(i)]

=
∑
k 6=k̃

∑
j∈Ck

P [j ∈ Ng(i)]

=
∑
k 6=k̃

nkP [j ∈ Ng(i) | j ∈ Ck]

≤
∑
k 6=k̃

nknk̃P [‖xi − xj‖2 < ‖xi − xl‖2 | j ∈ Ck, l ∈ Ck̃] , (S28)

where the last inequality follows from the inequality

{j ∈ Ng(i)} ⊂ ∪l∈Ck̃
{‖xi − xj‖2 < ‖xi − xl‖2}
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because of g < nk̃, and the union bound. Note that since xi = µ(k̃) + zi,

xl = µ(k̃) + zl, and xj = µ(k) + zj, we have

‖xi − xj‖2 = ‖µ(k̃) − µ(k) + zi − zj‖2 ≥ ‖µ(k̃) − µ(k)‖2 − ‖zi − zj‖2

‖xi − xl‖2 = ‖zi − zl‖2,

thus we have

P [‖xi − xj‖2 < ‖xi − xl‖2 | j ∈ Ck, l ∈ Ck̃]

≤ P [µ(k̃) − µ(k)‖2 < ‖zi − zl‖2 + ‖zi − zj‖2]

≤ P [µ(k̃) − µ(k)‖2 < 2‖zi − zl‖2] + P [µ(k̃) − µ(k)‖2 < 2‖zi − zj‖2]

= 2P [‖zi − zj‖2 > ‖µ(k̃) − µ(k)‖2/2].

Notice that zij := zi − zj is a random vector with independent component

zijl satisfying E[zijl ] = 0 and ‖zijl ‖ψ2 ≤ 2σzψ. Hence, by Theorem 1.1 of

Rudelson and Vershynin (2013), we have for any t ≥ 0,

P
[∣∣‖zij‖2

2 − E[‖zij‖2
2]
∣∣ > t

]
≤ 2 exp

[
−c min

(
t2

16σ4
zψ

4
,

t

4σ2
zψ

2

)]
for some absolute constant c > 0. Since E[‖zij‖2

2] = 2pσ2
z , by letting t =

16σ2
zψ

2 log n/c, we have with probability at least 1− 2n−4,

‖zij‖2
2 ≤ 2pσ2

z + 16σ2
zψ

2 log n/c ≤ min
k 6=k̃
‖µ(k̃) − µ(k)‖2

2/4,

where we use the condition mink 6=k̃ ‖µ(k̃) − µ(k)‖2
2 ≥ 8pσ2

z + 64σ2
zψ

2 log n/c.

Combining with (S28), we have

P [Ei] ≤
∑
k 6=k̃

nknk̃(2n
−4) ≤ 2(C∗)2n−2.
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Thus, P [∪iEi] ≤ 2(C∗)2/n, i.e., the nearest g-neighborhoods also comes from

the same cluster with probability at least 1− 2(C∗)2/n. This completes the

proof.

Lemma S7. Let Gml = D
−1/2
ml SmlD

−1/2
ml for m = 1, · · · ,M and l = 1, · · · , 55

be the normalized similarity matrix as defined in Section 2.2 of the main

paper. Then ‖Gml‖F ≤ 1.

Proof. For fixed l and m, let Sml = (Sij) and Dml = diag(d1, · · · , dn). We

have

‖Gml‖F =
√

tr(D−1
mlSmlD

−1
mlSml) =

√√√√∑
ij

S2
ij

didj
.

Since |Sij| ≤ 1 by the definition as in Section 2.2, we have(∑
ij

S2
ij

didj

)(∑
ij

didj

)
≤ (
∑
ij

S2
ij)

2 ≤ (
∑
ij

Sij)
2 =

∑
ij

didj,

where the last equality follows from di =
∑

j Sij. Combining the above two

inequalities, we have ‖Gml‖F ≤ 1. This completes the proof.

Lemma S8. For m = 1, · · · ,M , let

d̂(i)
m = exp

(
1

ρ

(
−ε‖P̂ (i−1)

m ‖2
F + 〈Ŝ(i−1)

m , P̂ (i−1)
m 〉

))
, Ŝ(i)

m =
∑
l

ŵ
(i)
mlGml,

d̄(i)
m = exp

(
1

ρ

(
−ε‖P̄ (i−1)

m ‖2
F + 〈S̄(i−1)

m , P̄ (i−1)
m 〉

))
, S̄(i)

m =
∑
l

w̄
(i)
mlGml,

where Gml is defined in Lemma S7. Then, we have

exp(−(εC∗ +
√
C∗)/ρ) ≤ |d̂(i)

m | ≤ exp(
√
C∗/ρ)

exp(−(εC∗ +
√
C∗)/ρ) ≤ |d̄(i)

m | ≤ exp(
√
C∗/ρ)

|d̄(i)
m − d̂(i)

m | . ‖P̂ (i−1)
m − P̄ (i−1)

m ‖F + ‖ŵ(i−1)
m − w̄(i−1)

m ‖F .
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Proof. First, since 0 � P̄
(i)
m � I, we have

‖P̄ (i)
m ‖F =

√
tr((P̄

(i)
m )2) ≤

√
tr(P̄

(i)
m ) =

√
C∗.

Similarly, ‖P̂ (i)
m ‖F ≤

√
C∗. Hence, it holds that

|‖P̂ (i)
m ‖2

F−‖P̄ (i)
m ‖2

F | ≤ (‖P̂ (i)
m ‖F+‖P̄ (i)

m ‖F )‖P̂ (i)
m −P̄ (i)

m ‖F ≤ 2
√
C∗‖P̂ (i)

m −P̄ (i)
m ‖F .

By Lemma S7, we have

‖Ŝ(i)
m ‖F ≤ max

l
‖Gml‖F ≤ 1.

Hence, we have

‖Ŝ(i)
m − S̄(i)

m ‖F = ‖
∑
l

ŵ
(i)
mlGml −

∑
l

w̄
(i)
mlGml‖F

≤ 55 max
l
|ŵ(i)

ml − w̄
(i)
ml|max

l
‖Gml‖F

≤ 55 max
l
|ŵ(i)

ml − w̄
(i)
ml|.

Hence it holds that

|〈Ŝ(i)
m , P̂

(i)
m 〉 − 〈S̄(i)

m , P̄
(i)
m 〉| ≤ |〈Ŝ(i)

m , P̂
(i)
m − P̄ (i)

m 〉|+ |〈Ŝ(i)
m − S̄(i)

m , P̄
(i)
m 〉|

≤ |〈Ŝ(i)
m , P̂

(i)
m − P̄ (i)

m 〉|+ |〈Ŝ(i)
m − S̄(i)

m , P̄
(i)
m 〉|

≤ ‖P̂ (i)
m − P̄ (i)

m ‖F +
√
C∗‖Ŝ(i)

m − S̄(i)
m ‖F

≤ ‖P̂ (i)
m − P̄ (i)

m ‖F + 55
√
C∗max

l
|ŵ(i)

ml − w̄
(i)
ml|.

Combining the above results, we have

| log(d̄(i)
m )− log(d̂(i)

m )| ≤ 1

ρ

(
ε
∣∣∣‖P̂ (i)

m ‖2
F − ‖P̄ (i)

m ‖2
F

∣∣∣+
∣∣∣〈Ŝ(i)

m , P̂
(i)
m 〉 − 〈S̄(i)

m , P̄
(i)
m 〉
∣∣∣)

≤ ε

ρ

∣∣∣‖P̂ (i)
m ‖2

F − ‖P̄ (i)
m ‖2

F

∣∣∣+
1

ρ

∣∣∣〈Ŝ(i)
m , P̂

(i)
m 〉 − 〈S̄(i)

m , P̄
(i)
m 〉
∣∣∣

≤ 2
√
C∗ε

ρ
‖P̂ (i)

m − P̄ (i)
m ‖F +

1

ρ

(
‖P̂ (i)

m − P̄ (i)
m ‖F + 55

√
C∗max

l
|ŵ(i)

ml − w̄
(i)
ml|
)

:= x.
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Since

|〈Ŝ(i−1)
m , P̂ (i−1)

m 〉| ≤ ‖Ŝ(i−1)
m ‖F‖P̂ (i−1)

m ‖F ≤
√
C∗, |〈S̄(i−1)

m , P̄ (i−1)
m 〉| ≤ ‖S̄(i−1)

m ‖F‖P̄ (i−1)
m ‖F ≤

√
C∗,

it holds that

exp(−(εC∗ +
√
C∗)/ρ) ≤ |d̂(i)

m | ≤ exp(
√
C∗/ρ)

exp(−(εC∗ +
√
C∗)/ρ) ≤ |d̄(i)

m | ≤ exp(
√
C∗/ρ).

Hence, by the mean value theorem, we have

|d̄(i)
m − d̂(i)

m | ≤ exp(
√
C∗/ρ) | log(d̄(i)

m )− log(d̂(i)
m )| ≤ x exp(

√
C∗/ρ).

This completes the proof.

Lemma S9. For fixed l ∈ {1, · · · , `} and m ∈ {1, · · · ,M}, let

ŵ
(i)
ml =

exp
(
ĉ
(i)
m

ρ
〈Gml, P̂

(i−1)
m 〉

)
∑

m̃ exp

(
ĉ
(i)
m̃

ρ
〈Gm̃l, P̂

(i−1)
m̃ 〉

) , w̄
(i)
ml =

exp
(
c̄
(i)
m

ρ
〈Gml, P̄

(i−1)
m 〉

)
∑

m̃ exp

(
c̄
(i)
m̃

ρ
〈Gm̃l, P̄

(i−1)
m̃ 〉

) ,
where ρ, ĉ

(i)
m , c̄

(i)
m > 0, Gml is defined in Lemma S7, and P̂

(i−1)
m and P̄

(i−1)
m

satisfy the constraint (S5) with C = C∗. Then, we have

|ŵ(i)
ml − w̄

(i)
ml| . ‖P̂

(i−1)
m − P̄ (i−1)

m ‖F + ‖ĉ(i) − c̄(i)‖.

Proof. We can easily show that

55 exp

(
−
√
C∗

ρ

)
≤
∑
m̃

exp

(
ĉ

(i)
m̃

ρ
〈Gm̃l, P̂

i−1
m̃ 〉

)
≤ 55 exp

(√
C∗

ρ

)
.

Since ‖Gml‖F ≤ 1, |ĉ(i)
m̃ | ≤ 1, and 〈Gml, P̄

(i−1)
m 〉 ≤

√
C∗, we have∣∣∣∣∣ ĉ(i)

m

ρ
〈Gml, P̂

(i−1)
m 〉 − c̄

(i)
m

ρ
〈Gml, P̄

(i−1)
m 〉

∣∣∣∣∣ ≤ 1

ρ

∥∥∥ĉ(i)
m̃ P̂

(i−1)
m − c̄(i)

m̃ P̄
(i−1)
m

∥∥∥
F

≤ 1

ρ
‖P̂ (i−1)

m − P̄ (i−1)
m ‖F +

√
C∗

ρ
|ĉ(i)
m − c̄(i)

m |.
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Since

∣∣∣∣ ĉ(i)m̃

ρ
〈Gm̃l, P̂

(i−1)
m̃ 〉

∣∣∣∣ ≤ √
C∗

ρ
, we have∣∣∣∣∣exp

(
ĉ

(i)
m

ρ
〈Gml, P̂

(i−1)
m 〉

)
− exp

(
c̄

(i)
m

ρ
〈Gml, P̄

(i−1)
m 〉

)∣∣∣∣∣
≤ 55 exp

(√
C∗

ρ

)∣∣∣∣∣ ĉ(i)
m

ρ
〈Gml, P̂

(i−1)
m 〉 − c̄

(i)
m

ρ
〈Gml, P̄

(i−1)
m 〉

∣∣∣∣∣
≤ 55 exp

(√
C∗

ρ

)(
1

ρ
‖P̂ (i−1)

m − P̄ (i−1)
m ‖F +

√
C∗

ρ
|ĉ(i)
m − c̄(i)

m |

)
:= y.

Note that we have

exp

(
ĉ

(i)
m

ρ
〈Gml, P̂

(i−1)
m 〉

)∣∣∣∣∣∑
m̃

exp

(
ĉ

(i)
m̃

ρ
〈Gm̃l, P̂

(i−1)
m̃ 〉

)
−
∑
m̃

exp

(
c̄

(i)
m̃

ρ
〈Gm̃l, P̄

(i−1)
m̃ 〉

)∣∣∣∣∣
≤ 3025 exp

(
2
√
C∗

ρ

)(
1

ρ
‖P̂ (i−1)

m − P̄ (i−1)
m ‖F +

√
C∗

ρ
‖ĉ(i) − c̄(i)‖

)
.

Combining the above inequalities, we have

|ŵ(i)
ml − w̄

(i)
ml| ≤

y

3025 exp
(
−
√
C∗

ρ

) +
3025 exp

(√
C∗

ρ

)
y

3025 exp
(
−2
√
C∗

ρ

)
≤ 2 exp

(
3
√
C∗

ρ

)
y.

This completes the proof.

Lemma S10. For any n by n matrices T̂1 and T̄1, let

Q̂i,t
m = argmin

Q
‖Q− T̂1‖2

F s.t. tr(Q) = C, 0 � Q � I,

Q̄i,t
m = argmin

Q
‖Q− T̄1‖2

F s.t. tr(Q) = C, 0 � Q � I.

Then, we have

‖Q̂i,t
m − Q̄i,t

m‖F ≤ ‖T̂1 − T̄1‖F .
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Proof. Let mat(·) be the inverse of the vectorization operator such that

mat(vec(Q)) = Q for any n by n matrix Q. Define the set

E = {q ∈ Rn2 | tr(mat(q)) = C, 0 � mat(q) � I},

which is a nonempty closed convex set of Rn2
. Note that vec(Q̂i,t

m) and

vec(Q̄i,t
m) are the projections of vec(T̂1) and vec(T̄1) on the set E, respec-

tively. Hence by the Projection theorem (Bertsekas, 2009), it holds that

(vec(T̂1)− vec(Q̂i,t
m))T (vec(Q̄i,t

m)− vec(Q̂i,t
m)) ≤ 0,

(vec(T̄1)− vec(Q̄i,t
m))T (vec(Q̂i,t

m)− vec(Q̄i,t
m)) ≤ 0.

This implies

‖vec(Q̂i,t
m)− vec(Q̄i,t

m)‖2 ≤ (vec(Q̄i,t
m)− vec(Q̂i,t

m))T (vec(T̄1)− vec(T̂1)),

thus ‖vec(Q̂i,t
m)− vec(Q̄i,t

m)‖ ≤ ‖vec(T̄1)− vec(T̂1)‖. Hence we have

‖Q̂i,t
m − Q̄i,t

m‖F ≤ ‖T̂1 − T̄1‖F .

This completes the proof.

Lemma S11. Suppose conditions of Theorem 1. Then, ĉm ≥M exp(−3C∗)

for all m = 1, · · · ,M .

Proof. Note that {ĉm} is the solution to the following optimization problem:

min
{cm}

ε
∑
m

cm‖P̂m‖2
F −

∑
m

cm〈Sm, P̂m〉+ λ
∑
m

cm‖P̂m‖1 + ρ
∑
m

cm log cm

s.t.
∑
m

cm = 1.
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By the method of Lagrange multipliers, {ĉm} is the solution to the following

unconstrained problem:

min
{cm}

ε
∑
m

cm‖P̂m‖2
F−
∑
m

cm〈Sm, P̂m〉+λ
∑
m

cm‖P̂m‖1+ρ
∑
m

cm log cm+λ̃

(∑
m

cm −M

)

for some Lagrange multiplier λ̃. The derivative of the above function with

respect to cm equal to zero gives the solution

ĉm = exp

(
−ε‖P̂m‖2

F − 〈Sm, P̂m〉 − λ‖P̂m‖1 − λ̃− ρ
ρ

)
.

Since it holds that ‖P̂m‖2
F ≤ C∗, λ‖P̂m‖1 ≤ C∗n−2nC∗ = (C∗)2/n, and

|〈Sm, P̂m〉| ≤ ‖Sm‖F‖P̂m‖F ≤ ‖P̂m‖F max
m,l
‖Gm,l‖F ≤ C∗

due to Lemma S7, we have ĉm/ĉm′ ≥ exp(−3C∗/ρ) for anym,m′ ∈ {1, · · · ,M}.

Since
∑

m ĉm = M , this implies ĉm ≥M exp(−3C∗) as ρ = 1. This completes

the proof.

E Time complexity of the algorithm

The computational complexity of the algorithm is O(Kn3), where n is the

number of data points and K is the number of iterations. In the experiments,

K is less than 30. Note that the traditional spectral clustering algorithm has

the complexity O(n3). The proposed algorithm is still fast for the cancer data

set because n is quite small compared with the number of variables (genes).
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F Evaluation metrics

We use the following three performance metrics to evaluate the consistency

between the obtained clustering and the true labels: Normalized Mutual

Information (NMI) (Strehl and Ghosh, 2003), Purity (Wagner and Wagner,

2007), and Adjusted Rand Index (ARI) (Wagner and Wagner, 2007). Given

two clustering results U and V on a set of n data points with CU and CV

clusters, respectively, the mutual information is NMI is defined as

NMI(U, V ) =

∑CU

p=1

∑CV

q=1 |Up ∩ Vq| log n|Up∩Vq |
|Up|×|Vq |

max
(
−
∑CU

p=1 |Up| log |Up|
n
,−
∑CV

q=1 |Vq| log |Vq |
n

) ,
where Up and Vq are the index sets of the pth and qth clusters of clustering

results U and V , for p = 1, · · · , CU and q = 1, · · · , CV , respectively. Here, the

numerator is the mutual information between U and V , and the denominator

represents the entropy of the clustering U and V . For Purity, each identified

cluster is assigned to the one which is most frequent in the cluster, and

then the accuracy of this assignment is computed by counting the number of

correctly assigned samples divided by the number n:

Purity(U, V ) =

∑
p maxq |Up ∩ Vq|

n
.

The value of ARI depends on the following four quantities: auv, the number

of objects in a pair that are placed in the same group in U and V ; au, the

number of objects in a pair that are placed in the same group in U but in

different groups in V ; av, the number of objects in a pair that are placed

in the same group in V but in different groups in U ; and a, the number of

objects in a pair that are placed in the different groups in U and V . ARI is
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defined as

ARI(U, V ) =

(
n
2

)
(auv + a)− [(auv + au)(auv + av) + (av + a)(au + a)](

n
2

)
− [(auv + au)(auv + av) + (av + a)(au + a)]

.

Note that the NMI and Purity take on values between 0 and 1, but ARI

can yield negative values. These metrics measure the concordance of two

clustering results such that higher value refers to higher concordance with

true labels.

G Data

We collect 22 major cancer types with sufficient patients from the TCGA

project, where three molecular profiles are used: RNA expression (RNA-

seq V2), miRNA, and copy number alterations (CNA). To reduce platform

differences, we only consider each molecular profile from one platform. We

consider the RNA data sets measured using the IIllumina sequencing tech-

nology with the log2(x + 1) transformed RSEM (RNA-Seq by Expectation

Maximization) values, the miRNA mature strand expression RNAseq data

sets measured by Illumina miRNA-seq, and the CNA estimated using the

GISTIC2 threshold method and compiled using data from all TCGA cohorts

(Weinstein et al., 2013). Specifically, CNA have values in {−2,−1, 0, 1, 2}.

They are obtained by applying both low-level and high-level thresholds to

the gene copy levels of all the samples. The value 2 or −2 means that corre-

sponding gene copy levels exceed the high-level thresholds for amplification

or deletion, respectively, and those with 1 or −1 means that corresponding

gene copy levels exceed the low-level thresholds for amplification or deletion

but not the high-level thresholds, respectively (Mermel et al., 2011).
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We remove patients with missing molecular profiles with 6,976 patients

included in the clustering and survival analysis as follows:

• Bladder Cancer (BLCA), n=400, C=3.

• Breast Invasive Carcinoma (BRCA), n=741, C=4.

• Cervical Squamous Cell Carcinoma (CESC), n=289, C=3.

• Colon Adenocarcinoma (COAD), n=249, C=4.

• Esophageal Cancer (ESCA), n=180, C=5.

• Head and Neck Squamous Cell carcinoma (HNSC), n=471, C=6.

• Kidney Renal Clear cell carcinoma (KIRC), n=236, C=3.

• Kidney Papillary Cell Carcinoma (KIRP), n=283, C=3.

• Lower Grade Glioma (LGG), n=505, C=4.

• Liver Cancer (LIHC), n=357, C=4.

• Lung Adenocarcinoma (LUAD), n=442, C=5.

• Lung Squamous Cell carcinoma (LUSC), n=333, C=3.

• Mesothelioma (MESO), n=87, C=3.

• Ovarian Cancer (OV), n=297, C=4.

• Pancreatic Cancer (PAAD), n=176, C=4.

• Prostate Adenocarcinoma (PRAD), n=484, C=3.
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• Rectum Adenocarcinoma (READ), n=87, C=3.

• Sarcoma (SARC), n=250, C=4.

• Stomach Adenocarcinoma (STAD), n=365, C=4.

• Thyroid Cancer (THCA), n=494, C=4.

• Uterine Corpus Endometrioid Carcinoma (UCEC), n=170, C=4.

• Uveal Melanoma (UVM), n=80. C=3.
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Figure S1: Heatmaps of selected similarity matrices for the three data sets.

The patients are ordered based on their cancer types.
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Figure S2: The average Purity and one standard deviation of 50 replicates

for the 25 clustering methods when thirty patients were randomly selected

from each of the 22 cancer types. The methods are ordered according to the

Purity values.
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Figure S3: The average ARI and one standard deviation of 50 replicates for

the 25 clustering methods when thirty patients were randomly selected from

each of the 22 cancer types. The methods are ordered according to the ARI

values.
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Figure S4: The NMI for the 25 clustering methods when all patients were

included in the analysis. The methods are ordered according to the NMI

values.
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Figure S5: The Purity for the 25 clustering methods when all patients were

included in the analysis. The methods are ordered according to the Purity

values.
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Figure S6: The ARI for the 25 clustering methods when all patients were

included in the analysis. The methods are ordered according to the ARI

values.
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Figure S7: The average NMI and one standard deviation of 50 replicates for

the 25 clustering methods when about half of patients were randomly selected

from each of the 22 cancer types. The methods are ordered according to the

NMI values.
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Figure S8: The average Purity and one standard deviation of 50 replicates for

the 25 clustering methods when about half of patients were randomly selected

from each of the 22 cancer types. The methods are ordered according to the

Purity values.
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Figure S9: The average ARI and one standard deviation of 50 replicates for

the 25 clustering methods when about half of patients were randomly selected

from each of the 22 cancer types. The methods are ordered according to the

ARI values.
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Figure S10: Robustness of clustering for additive noises when the target

cluster number is varied between 2 and 30, when all patients were included

in the analysis. The adjusted Purity values are averaged over 100 runs for

each target cluster number. The error bars represent one standard deviation.
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Figure S11: Robustness of clustering for additive noises when the target

cluster number is varied between 2 and 30, when about half of patients were

randomly selected from each of the 22 cancer types. The adjusted Purity

values are averaged over 100 runs for each target cluster number. The error

bars represent one standard deviation.
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Figure S12: Heatmap of log p-values of the log-rank test.
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Figure S13: The survival distributions of Pancreatic cancer patients treated

versus untreated for each of the four clusters identified by ‘MKerW-A’.
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Figure S14: Difference of survival time of all pancreatic cancer patients

treated versus those not treated with targeted therapy.

I Application to Stomach Adenocarcinoma

To gain further insights into the biological consequences of the identified

clusters, we have investigated how patients of the individual clusters respond

to different treatments. Note that four clusters are identified by our method,

‘MKerW-A’. Figure S15 shows the survival time of patients treated versus

those not treated with Radiotherapy for each cluster.
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Figure S15: Survival curves of STAD patients for treatment with Radio-

therapy in the different clusterings. The specified p-values are corrected for

multiple testing using the Bonferroni method.
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We observe that Radiotherapy is effective only in a subset of the identified

groups. Patients in Clusters 2 and 4 have a significantly increased survival

time when treated with Radiotherapy (log-rank test p-value< 0.05). Patients

in Cluster 1 also seem to have an increased survival time with radiotherapy

(log-rank test p-value = 0.08), but this pattern is reversed and the differ-

ence is very small after 5 years. For Cluster 3, we do not detect significant

differences in survival time between treated and untreated patients.
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