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Supplementary Tables and Figures 
 

SI Table 1. PDB ids of 20 antibodies selected from DeepAb Test set[1] for sequence recovery. 

PDB IDs 

1bey, 1cz8, 1dlf, 1fns, 1gig, 1jfq, 1jpt, 1mfa, 1mim, 1mlb, 1mqk, 1nlb, 1oaq, 1seq, 1sy6, 1yy8, 

2d7t, 2e27, 2fb4, 2fbj 

 
SI Table 2. Spearman correlation between perplexities of PyIgClassify cluster profiles and hallucinated 
profiles for CDR loops with and without wildtype seeding. 

CDR Wildtype Seeding No Seeding 

Spearman p-value Spearman p-value 

H1 0.55 < 0.001 0.439 < 0.001 

H2 0.42 < 0.001 0.296 < 0.001 

H3 0.25 < 0.001 0.261 < 0.001 

L1 0.438 < 0.001 0.195 < 0.001 

L2 0.08 0.096 -0.0 0.32 

L3 0.437 < 0.001 0.363 < 0.001 

 
 

 

 

 

 



SI Table 3. Percentage of hallucinated sequences that fold into the target structure for different 
modes of hallucination for the trastuzumab antibody CDR H3 loop. 

Run 
% Designs with RMSD ≤ 2 Å 

DeepAb IgFold 

Unrestricted 54.5 43.6 

Motif-Restricted (95 and 100A) 72.0 61.1 

Motif-Restricted (95, 99, 100, 100A) 78.6 62.0 

Motif- (95 and 100A) and Seq-Restricted 72.1 74.3 

 
SI Figure 1. Hallucination minimizes geometric losses of designed sequences. A. 

Comparison of distribution of CCE loss of the designed sequences versus random 

sequences they were initialized with. B. Minimization of CCE losses over ~200 

hallucination trajectories for an example CDR H3 loop. 

 

 
SI Figure 2. Likelihood of recovering wildtype sequence based on PyIgClassify sequence 

profile for cluster corresponding to wildtype sequence for “ALL” positions (or 100% 

sequence recovery) on the CDR, for “Top 50%” most conserved positions and for “Top 

30%” most conserved positions. 



 
SI Figure 3. Sequence recovery for “All” positions, “Top 50%” most conserved positions 

and “Top 30%” most conserved positions (conservation estimated from PyIgClassify 

cluster profiles) for hallucination without seeding (A, B, C) and with seeding (D, E, F). 

 

 



 
SI Figure 4. Sequence recovery with (DeepAbTest WtSeed) and without wildtype seeding 

(DeepAbTest NoSeed) on a benchmark set of 20 antibodies selected from the DeepAb test 

set. This benchmark set was “blind” to the pre-trained DeepAb model used in this work. 

The sequence recovery numbers are similar to those obtained for the RAbD dataset with 

and without wildtype seeding. The 54/60 antibodies in the RAbD dataset were also in 

DeepAb’s training set. However, no difference is sequence recovery is observed between the 

DeepAb Test set and the RAbD dataset. We have also included the sequence recovery of the 

RAbD method on the RAbD dataset (RAbD) for comparison. See SI Table 1 for the pdb ids 

of 20 antibodies chosen from the DeepAb test set. 

 

 



 
SI Figure 5. Average Bhattacharya distance (BD) between the hallucinated sequence and 

the Target and non-Target PyIgClassify clusters.  BD is the negative logarithm of BC and a 

measure of the distance between two distributions. BD is first averaged over all 

hallucinated sequences for each target and then averaged over all targets for each CDR. 

Sequence profiles of hallucinated designs are closer to the target (blue) PyIgCluster than 

non-target (gray) clusters. 



 
 

SI Figure 6. Bhattacharya coefficient averaged over all designed positions between the 

sequence profile from 50 hallucinated (no wildtype seeding) CDRs and the target cluster 

(blue) and non-target cluster (gray) for all 6 CDRs for targets 1-12 from the RAbD 

benchmark set. 



 
SI Figure 7. Bhattacharya coefficient averaged over all designed positions between the 

sequence profile from 50 hallucinated (no wildtype seeding) CDRs and the target cluster 

(blue) and non-target cluster (gray) for all 6 CDRs for targets 12-24 from the RAbD 

benchmark set. For 2GHW H3, the PyIgClassify target clusters are “starred” clusters. 

These clusters are considered unreliable and not considered in our analysis.  

 



 

SI Figure 8. Bhattacharya coefficient averaged over all designed positions between the 

sequence profile from 50 hallucinated (no wildtype seeding) CDRs and the target cluster 

(blue) and non-target cluster (gray) for all 6 CDRs for targets 24-36 from the RAbD 

benchmark set. 

 



 

SI Figure 9. Bhattacharya coefficient averaged over all designed positions between the 

sequence profile from 50 hallucinated (no wildtype seeding) CDRs and the target cluster 

(blue) and non-target cluster (gray) for all 6 CDRs for targets 26-48 from the RAbD 

benchmark set. For 6G6M H3 and 4XNQ H3, the PyIgClassify target clusters are 

“starred” clusters. These clusters are considered unreliable and not considered in our 

analysis.  

 



 
SI Figure 10. Bhattacharya coefficient averaged over all designed positions between the 

sequence profile from 50 hallucinated (no wildtype seeding) CDRs and the target cluster 

(blue) and non-target cluster (gray) for all 6 CDRs for targets 48-60 from the RAbD 

benchmark set. 

 

 



 
SI Figure 11. Effect of wildtype seeding and geometric losses on sampled profiles. 

Geometric losses guide hallucination to sample profiles resembling those of target 

structural clusters. When geometric losses are scrambled, wildtype seeding does not result 

in either retention of the wildtype sequence nor sampling of PyIgClassify target cluster-like 

profiles. Thus, wildtype seeding with incorrect geometric losses generates random 

sampling. When geometric losses are completely removed, the wildtype sequence is 

sampled about 50% of the times for all positions same as the degree to which the wildtype 

sequence is spiked in the initialization of the designed sequence. However, the sequence 

profiles do not resemble those observed for PyIgClassify clusters. For example, with 

geometric losses (top panel), H26 almost always samples a glycine same as PyIgClassify. 

This is not true when geometric losses are absent.  



 

SI Figure 12. Comparison of perplexity of per-residue probability distribution derived 

from hallucinated designs (without wildtype seeding) for CDRs of antibody (PDB: 1A14, 

RAbD dataset) and the target PyIgClassify cluster. Wildtype sequence is shown in grey. 

Each sequence logo was constructed from 50 designs for CDRs H1, H2, L1, L2 and L3 and 

100 designs for CDR H3. 

 

 



 
SI Figure 13. Comparison between perplexities of PyIgClassify cluster profiles and hallucinated profiles 
with wildtype seeding for CDRs H1, H2 and H3. 



 
SI Figure 14. Comparison between perplexities of PyIgClassify cluster profiles and hallucinated profiles 
with wildtype seeding for CDRs L1, L2 and L3. 

 



 
SI Figure 15. Comparison between perplexities of PyIgClassify cluster profiles and hallucinated profiles 
without wildtype seeding for CDRs H1, H2 and H3. 



 
SI Figure 16. Comparison between perplexities of PyIgClassify cluster profiles and hallucinated profiles 
without wildtype seeding for CDRs L1, L2 and L3. 

 



 
SI Figure 17. Comparison with CDR L2 loop clusters from PyIgClassify. A. Bhattacharyya distance of 
sequence profiles of PyIgClassify cluster L2-8-1 (the most represented dataset in the RAbD dataset--
57/60 Abs belong to this cluster) from other L2 clusters of the same length. B. CDR L2 loop 
conformation of representative loops for each canonical cluster. Loop conformations for different 
clusters show significant overlap. C. and D. Sequences profiles and perplexity comparisons for three 
selected antibodies from the RAbD benchmark set. Hallucinated profiles (C: with wildtype seeding, D: 
without seeding) do not capture lower perplexities (grey boxes) at positions L52, L54 and L56 
observed in PyIgClassify clusters. 



 

 

SI Figure 18. FR scores per design for hallucinated designs for the VH-VL interface for the 

humanized antibodies dataset. 

 
 

SI Figure 19. (Top) Distribution of H3 RMSD of the forward folded designs with 

DeepAb[1] and IgFold[2] from different hallucination runs for the Trastuzumab antibody. 

(Bottom) Comparison of IgFold and DeepAb RMSD’s for hallucinated designs.   

 
 

 



 
SI Figure 20. Distribution of per-residue backbone heavy atom RMSDs of forward folded 

designs from different hallucination runs for the Trastuzumab antibody. 

 



 
SI Figure 21. Distribution of developability metrics for hallucinated designs, 500 randomly selected 
experimental binders[3] and wildtype (solid lines for distributions and dashed lines for single 
sequence or structure). Min NetMHCII Rank refers to the lowest Rank for each design across all 26 
alleles (see Methods) and across all 15-mer peptides (for that design) derived from the padded 
hallucinated sequences. Mean NetMHCII Rank refers to the average across all 26 alleles for all 15-mer 
peptides derived from the padded design sequences. For SAP score calculations, we used DeepAb 
folded structures. Grey boxes indicate windows of favorable metrics identified in Mason et al.[3]. For 
all plots except immunogenicity, we show metric scores for 500 randomly selected experimental 
binders. Red lines indicate NetMHCII Rank values for strong (< 2) and weak binders (< 10). 



 

SI Figure 22. Distribution of ΔGbinding between HER2 and designs from different 

hallucination runs for the Trastuzumab antibody. Wildtype ΔG is indicated by the dashed 

line. 

 



 
SI Figure 23. Sequence logos for designs with binding free energy either “Better/Same” as 

the wildtype or “Worse” than the wildtype after virtual screening for hallucinated libraries 

in different hallucination modes for the Trastuzumab antibody CDR H3. 

 



 
SI Figure 24. Distribution of various developability metrics for hallucinated and screened designs (with 
99, 100A positions restricted), 500 randomly selected experimental binders[3] and wildtype (solid 
lines for distributions and dashed lines for single sequence or structure). Grey boxes indicate windows 
of favorable metrics identified in Mason et al.[3]. For all plots except immunogenicity, we show metric 
scores for 500 randomly selected experimental binders.  
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