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Supplementary Figure 1. Curation of knowledge-based metabolic reaction network (KMRN) with in-

silico enzymatic reactions. (a) Examples for the curation of unknown metabolites through in-silico 

enzymatic reaction; (b) The workflow to curate the knowledge-based metabolic reaction network with 

in-silico enzymatic reactions. The known metabolites and reaction pairs were downloaded from the 

KEGG database, while the unknown metabolites were curated through in-silico enzymatic reactions. 

The reactant and product were paired and filtered with structural similarity. The knowledge-based 

metabolic reaction network was linked to the known metabolic reaction network. (c-d) Knowledge-

based metabolic reaction networks: (c) known metabolites are connected through known reactions 

(6,397 nodes and 8,129 edges); (d) known and unknown metabolites are connected with known or 

in-silico reactions (41,336 nodes and 52,137 edges). The largest subnetwork is shown here. 
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Supplementary Figure 2. Statistics of linked nodes in MS/MS similarity network or knowledge-guided 

MS/MS similarity network in positive (a) and negative modes (b), respectively. The linked nodes from 

seed metabolites in NIST human urine sample (N=181 and 163 in positive and negative modes, 

respectively) were included here. The cutoff of MS/MS similarity score is defined as 0.5. Neighbor 

metabolites within 3 steps were considered in knowledge-guided MS/MS similarity network. The lower, 

middle and upper lines in box plots (a, b) correspond to 25th, 50th and 75th quartiles, and the whiskers 

extend to the most extreme data point within 1.5 interquartile range (IQR). 
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Supplementary Figure 3. The construction and optimization of global peak annotation network. Step 

1: co-eluted peaks are extracted as one peak group according to the putative metabolite annotations 

in knowledge-guided MS/MS similarity network; Step 2: recognition of different ion forms to build the 

subnetwork, including adducts, isotopes, in-source fragments and neutral losses; Step 3: all 

recognized subnetworks are merged as a global peak correlation network; Step 4: global optimization 

and conflict resolving to improve the peak annotation accuracy. Three types of conflict annotations 

are checked and resolved, including empirical rule, removal of conflict peaks and annotations, and 

consolidation of redundant ion form peaks.  
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Supplementary Figure 4. Flowchart for the optimization and filtering of subnetworks in the global peak 

correlation network. 
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Supplementary Figure 5. The workflow of accuracy evaluation with a manually curated data set. (a) 

Curation of manually checked table; (b) Comparison of annotation results with manually checked 

results. 

 

 



S9 

 

Supplementary Figure 6. Comparison between MetDNA1 and KGMN in different biological samples, 

including NIST human urine, NIST human plasma, BV2 cells, head tissues of fruit fly, and 200STD 

spiked mouse liver tissues. (a-b) Comparison of annotation coverages and correct/error percentages 

between MetDNA1 and KGMN in positive (a) and negative modes (b), respectively. (c-d) Correct and 

error rates among top n (n = 1 to 10) annotations in different biological samples in positive (c) and 

negative modes (d), respectively. 
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Supplementary Figure 7. Benchmark comparison between CAMERA and KGMN for annotating ion forms 

of metabolic peaks. (a) Percentages of annotation coverage and correct/error rates for annotating ion 

forms of metabolic peaks. (b) Annotation percentages for different types of ion forms. The R package 

“CAMERA” (v1.46.0) and the same rule table were used for evaluation.  
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Supplementary Figure 8. KGMN recognized the in-source fragments of N4-Acetylcytidine. (a) Peak 

M286T283 and peak M112T282 were annotated as N4-Acetylcytidine and cytosine in MetDNA1, 

respectively. (b-c) MS/MS spectral match between experimental MS/MS spectra and the standard 

spectral libraries for N4-Acetylcytidine (b) and cytosine (c). (d) Peak correlation subnetwork 

recognized M112T282 as an in-source fragment of M286T283. (e) The parallel acquisition of NIST 

human urine sample and chemical standards confirmed that peak M112T282 is an in-source fragment 

of M286T283. 
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Supplementary Figure 9. Examples of different ion form recognition and peak assignment in KGMN. 

(a-c) Different ion form peaks and putative annotations for (a) M372T650, (b) M218T573 and (c) 

M218T484. The left panel is the table for the reduction of putative annotations; the middle panel is 

the conflicted peak correlation subnetworks; the right panel is the pseudo MS1 spectrum after 

resolving the conflict peak correlations. The examples were retrieved from NIST human urine samples.  
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Supplementary Figure 10. Knowledge-guided multi-layer networks of 46std_mix data sets. (a) 

Knowledge-based metabolic reaction network of 46 seed metabolites and unknown metabolites. The 

orange and red nodes represent seed and unknown metabolites, respectively. The unknown 

metabolites were curated via in-silico enzymatic reactions. The edges represent a biotransformation 

from known reactions or in-silico reactions. This network contains 531 unknown structures and 642 
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reaction pairs. (b) Knowledge-guided MS2 similarity network of 46 seed metabolites and unknown 

metabolites. The black and red edges represent the biotransformation and MS/MS spectral similarity. 

The edge of biotransformation represents two nodes can be transformed within 3-step reactions. The 

edge of MS/MS spectral similarity represents two nodes having MS/MS similarity (dot product score 

≥0.5) or shared fragments (n≥4). Only linked peaks are showed here. (c) Global peak correlation 

network of 46std_mix data sets. The orange, red and green nodes represent seed, unknown and 

different ion form peaks. The edge represents an ion form relationship (isotope, adduct, neutral loss 

or in-source fragment) between two nodes. A total of 700 and 741 peaks are included in positive and 

negative modes, respectively. 
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Supplementary Figure 11. Validation examples of annotated unknowns in 46std_mix data sets. (a-

b) Validation of unknowns using standards: (a) M156T683 (Exd007045, L-Histidine); and (b) 

M259T844 (Exd001651, D-Fructose 6-phosphate) in positive and negative modes, respectively; (c-d) 

validation of unknowns using public spectral databases: (c) M228T355 (Exd000286, Deoxycytidine), 

and (d) M433T203 (Exd001267, Naringenin 7-O-beta-D-glucoside) through MoNA and Metlin 

databases, respectively. 
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Supplementary Figure 12. Knowledge-guided MS/MS similarity network of NIST human urine 

sample: (a) positive mode; (b) negative mode. The positive mode network contains 1,100 nodes, and 

3,170 edges. The negative mode contains 1,444 nodes, and 7,810 edges. The orange, blue, and red 

nodes represent seed, known and unknown metabolites, respectively. The black and red edges 

represent the biotransformation edge and the MS/MS similarity edge, respectively. The edge of 

biotransformation represents two nodes can be transformed within 3-step reactions. The edge of 

MS/MS similarity represents two nodes having MS/MS similarity (dot product score ≥ 0.5) or shared 

fragments (n ≥ 4). Only linked peaks are showed here. 
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Supplementary Figure 13. Global peak correlation network of NIST human urine sample in positive 

(a) and negative (b) modes. It contains 3,301 nodes and 4,374 edges in positive mode, and 4,117 

nodes and 5,750 edges in negative mode. The orange, blue, and red nodes represent seed, known 

and unknown metabolites from network 2, which were used as base peaks here. The green nodes 

represent different ion form peaks.  
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Supplementary Figure 14. Global annotation of unknown metabolites in negative mode and 

validation examples of unknowns using in-silico MS/MS tools. (a) The annotated known and unknown 

metabolites in NIST human urine samples in negative mode. The left panel is the statistics of 

annotated peaks in the multi-layer networks, and the right panel is the statistics of annotated known 

and unknown peaks. (b) Validations of annotated unknown metabolites in urine samples with different 

in-silico MS/MS tools. (c) Global annotations of metabolites in different biological samples in negative 

mode. The left panel is the statistics of annotated peaks in the multi-layer network, and the right panel 

is the statistics of known and unknown metabolites. (d-h) Validation examples of unknown metabolites 

using in-silico MS/MS tools. 
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Supplementary Figure 15. The repository-mining and structural validations of 3 recurrent unknown 

metabolites. (a-c) a recurrent unknown metabolite (M196T388, 3-hydroxyhippuric acid); (d-g) a 

recurrent unknown metabolite (M233T407, protocatechuic acid 3-O-sulfate); (g-i) a recurrent 

unknown metabolite (M217T395, 3-hydroxybenzoic acid-3-O-sulphate). The panels a, d, g are 

recurrent distributions of species and sample types; the inner and outer pie plots are the distributions 

in species and sample types, respectively. The panels b, e, h are the details of unknown annotations 

using KGMN. The panels c, f, i are the structural validations using the synthetic standards by matching 

the retention time and MS/MS spectra. 
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Supplementary Figure 16. Curated unknown metabolites and reaction pairs in the knowledge-based 

metabolic reaction network (KMRN). (a) Distribution of natural product likeness score of unknown 

metabolites in KMRN, KEGG metabolites, and PubChem compounds. 100,000 PubChem compounds 

were randomly retrieved to represent the PubChem database. (b) Natural product likeness score of 

unknown metabolites in KMRN (n=159,083), KEGG metabolites (n=16,085), and PubChem 

compounds (n=100,000). (c-d) MS/MS spectral similarity comparison among KEGG reaction pairs, 

in-silico curated unknown reaction pairs (i.e., constructed RP), and non-reaction pairs in positive (c) 

and negative (d), respectively. The lower, middle and upper lines in box plots (b) correspond to 25th, 

50th and 75th quartiles, and the whiskers extend to the most extreme data point within 1.5 interquartile 

range (IQR).  
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Supplementary Table 1. The supported data processing tools with KGMN 

Stage Usage Tool Version Tutorial 

Peak picking 

software 

Generation of required 

feature list for KGMN 

XCMS V1.46.0 or higher Link 1 

MS-DIAL V4.60 or higher Link 2 

MZmine V3.0.21 or higher Link 3 

In-silico 

MS/MS tools 

Cross validation of 

putative metabolites from 

KGMN 

MetFrag V2.4.5 or higher Link 4 

CFM-ID V2.4 or higher Link 4 

MS-FINDER V3.24 or higher Link 4 

Repository 

mining 

Search in the 

metabolomics repository 

MASST Workflow29 Link 5 

Visualization Visualization of KGMN 

results 

Cytoscape V5.8.3 or higher Link 6 

Note: 

 Link 1: http://metdna.zhulab.cn/metdna/help#3.1 

 Link 2: http://metdna.zhulab.cn/metdna/help#3.2 

 Link 3: http://metdna.zhulab.cn/metdna/help#3.3 

 Link 4: 

https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_KGMN_and_insilico

_ms2.pdf 

 Link 5: 

https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_KGMN_and_MASS

T.pdf 

 Link 6: 

https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_visualization.pdf 

 

  

http://metdna.zhulab.cn/metdna/help#3.1
http://metdna.zhulab.cn/metdna/help#3.2
https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_data_preprocessing_MZmine.pdf
https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_KGMN_and_insilico_ms2.pdf
https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_KGMN_and_insilico_ms2.pdf
https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_KGMN_and_insilico_ms2.pdf
https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_KGMN_and_MASST.pdf
https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_visualization.pdf
http://metdna.zhulab.cn/metdna/help#3.1
http://metdna.zhulab.cn/metdna/help#3.2
http://metdna.zhulab.cn/metdna/help#3.3
https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_KGMN_and_insilico_ms2.pdf
https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_KGMN_and_insilico_ms2.pdf
https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_KGMN_and_MASST.pdf
https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_KGMN_and_MASST.pdf
https://github.com/ZhuMetLab/MetDNA2_Web/blob/main/Tutorials/Tutorial_visualization.pdf
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Supplementary Table 2. Statistics of global peak annotation optimization to improve annotation 

accuracy. 

No. 
Data set 

(Polarity) 
Peaks 

MetDNA1 MetDNA2 

Peak with 

candi. 

Candi

. 

Accuracy 

(Top3) 

Peak with 

candi. 
Candi. 

Accuracy 

(Top 3) 

1 
NIST urine 

(Pos) 
425 278 596 

152 

(54.7%) 
422 464 

422 

(100%) 

2 
NIST urine 

(Neg) 
325 221 423 

151 

(68.3%) 
313 316 

313 

(100%) 

3 

NIST 

plasma 

(Pos) 

368 229 361 
177 

(77.3%) 
355 392 

337 

(94.9%) 

4 

NIST 

plasma 

(Neg) 

139 79 129 
58 

(73.4%) 
139 153 

139 

(100%) 

5 
BV2 cell 

(Pos) 
464 368 604 

249 

(67.7%) 
446 457 

444 

(99.6%) 

6 
BV2 cell 

(Neg) 
262 191 307 

134 

(70.2%) 
257 286 

254 

(98.8%) 

7 

Fruit fly 

head 

(Pos) 

365 288 442 
223 

(77.4%) 
360 383 

359 

(99.7%) 

8 

Fruit fly 

head 

(Neg) 

258 183 353 
135 

(73.8%) 
256 280 

253 

(98.8%) 

9 

200STD in 

mouse 

liver 

(Pos) 

508 369 459 
289 

(78.3%) 
491 506 

469 

(95.5%) 

10 

200STD in 

mouse 

liver 

(Neg) 

337 243 361 
199 

(81.9%) 
335 356 

335 

(100%) 

Summary 3,451 2,449 4,035 1,767 3,374 3,593 3,325 
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Supplementary Table 3. Statistics of biotransformation types in 46std_mix data set. 

No. Biotransformation Positive mode Negative mode 

1 C6H8O6 6 47 

2 SO3 10 44 

3 HPO3 24 30 

4 O 7 17 

5 H2O 3 11 

6 C2H2O 0 4 

7 CH3 0 4 

8 C2H3NO 0 3 

9 C4H4O3 1 2 

10 C3H5NO 2 1 

11 C10H10N4O3 0 1 

12 C6H10O4 0 1 

13 C6H9O6 0 1 

14 H2 0 1 

15 CO2 1 0 
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Supplementary Table 4. Statistics of annotated peaks in different biological samples 

Data sets Seed peaks 

MS/MS network Peak 

correlation 

network 
Known Unknown Sum 

NIST urine 

(Pos) 
173 634 293 927 3,301 

NIST urine 

(Neg) 
161 652 631 1,283 4,117 

NIST plasma 

(Pos) 
135 310 73 383 1,774 

NIST plasma 

(Neg) 
125 337 189 526 2,083 

BV2 cell 

(Pos) 
188 398 183 581 2,827 

BV2 cell 

(Neg) 
96 287 187 474 2,016 

Fruit fly brain 

(Pos) 
187 265 122 387 1,883 

Fruit fly brain 

(Neg) 
127 341 227 568 1,899 

Mouse liver 

(Pos) 
209 270 107 377 2,464 

Mouse liver 

(Neg) 
134 351 215 566 2,087 

Average 154 385 223 607 2,445 
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Supplementary Table 5. Statistics of unknown biotransformation types in NIST urine data set 

No. Biotransformation Pos Neg No. Biotransformation Pos Neg 

1 SO3 322 1045 31 H 2 3 

2 C6H8O6 353 905 32 C19H20N3O11P 2 2 

3 H2 251 505 33 C29H49N3O17P2 0 2 

4 O 71 160 34 C3H3O5P 0 2 

5 HPO3 15 119 35 C5H8NO3 0 2 

6 H2O 100 108 36 CO 6 2 

7 C2H2O 60 105 37 C12H22N2O7 0 1 

8 C2H3NO 57 83 38 C14H26O 0 1 

9 CH2 41 59 39 C15H9O4 4 1 

10 isomer 33 56 40 C18H14N2O7 0 1 

11 CH3 10 38 41 C2H4O 0 1 

12 C7H12O6 20 34 42 C30H25O12 6 1 

13 C6H9O6 3 29 43 C30H48O2 1 1 

14 C6H10O5 33 22 44 C3H2O 0 1 

15 C6H11O5 17 20 45 C61H100O11P2 0 1 

16 CO2 10 19 46 C67H110O16P2 0 1 

17 C11H18O10 0 10 47 C6H13N4O 0 1 

18 C7H10O6 8 10 48 C8H13NO 0 1 

19 C2O3 0 6 49 HO3S 0 1 

20 C15H9O5 3 4 50 -2O+H 12 0 

21 C23H34N4O19P2 7 4 51 C3H2O3 6 0 

22 C2H4 2 4 52 C33H50O8 5 0 

23 C5H7NO3 0 4 53 C27H40O2 3 0 

24 C10H15N3O6S 2 3 54 C6H10O4 2 0 

25 C12H16O10 3 3 55 C7H4O4 1 0 

26 C12H20O10 5 3 56 C7H5NO 1 0 

27 C15H8O2 6 3     

28 C3H6NO 1 3     

29 C8H12O7 4 3     

30 CH6N7O15P3S 0 3     
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Supplementary Note 1.  

Tutorial of KGMN result visualization and analysis 

Zhiwei Zhou 

2022-06-05 

Introduction 

Unknown metabolite annotation is one of long-standing challenges in untargeted metabolomics. We 

develop an approach, namely, knowledge-guided multi-layer network (KGMN), to enable global 

metabolite annotation from knowns to unknowns in untargeted metabolomics. The KGMN approach 

integrates three-layer networks, including knowledge-based metabolic reaction network (Network 1), 

knowledge-guided MS/MS similarity network (Network 2), and global peak correlation network 

(Network 3). This tutorial will help users to visualize, reproduce and investigate putatively annotated 

known and unknown metabolites from KGMN. 

 

1. Installation 

The analysis and visualization of KGMN results mainly relies on R package – MetDNA2Vis, and its 

depended R packages; The Cytoscape software is used for manually visualize networks, and 

interactively investigate results of KGMN; The ChemDraw software is involved for drawing chemical 

structures.  

• Install R packages 

# Install related packages 

if(!require(devtools)){ 

install.packages("devtools") 

} 

 

if(!require(BiocManager)){ 

install.packages("BiocManager") 

} 

 

# Install CRAN/Bioconductor packages 

required_pkgs <- c("dplyr","tidyr","readr","CHNOSZ","igraph", 

  "magrittr","ggplot2","ggraph","tidygraph") 
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list_installed <- installed.packages() 

 

new_pkgs <- required_pkgs[!(required_pkgs %in% list_installed[,'Package'])] 

if (length(new_pkgs) > 0) { 

  BiocManager::install(new_pkgs) 

} else { 

  cat('Required CRAN/Bioconductor packages installed\n') 

} 

 

 

# Install ZhuLab packages 

devtools::install_github("ZhuMetLab/SpectraTools") 

devtools::install_github("ZhuMetLab/MetDNA2Vis") 

• Cytoscape software (Version 3.8 or higher required): https://cytoscape.org/ 

• ChemDraw software (Version 19.0 or higher required): 

https://perkinelmerinformatics.com/products/research/chemdraw 

 

2. Step-by-step instruction for visualization 

In this part, we introduce how to visualize multi-layer networks from KGMN. It will help users to 

reproduce figures in KGMN manuscripts. Here, the Human NIST urine (Positive data, used in KGMN 

manuscript) is used as a demo dataset. This data set have been processed and exported by 

MetDNA2 web server (version 1.0.4). The raw data files and results can be downloaded at here 

(https://mega.nz/file/8v50iL6T#oILf8wlVJU_iqTfjcOtH1TRHhnP1GGbvG_ZNb1xniGc). The more 

details of sample extraction and data preprocessing can be found in our KGMN manuscript.  

 

The step-by-step demonstration is provided as below. 

2.1 Download demo data and unzip the archive. 

• All required intermediate files for visualization is provided in ‘06_visualization’ folder. 

https://cytoscape.org/
https://perkinelmerinformatics.com/products/research/chemdraw
https://mega.nz/file/8v50iL6T#oILf8wlVJU_iqTfjcOtH1TRHhnP1GGbvG_ZNb1xniGc
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2.2 Preparing.  

• Set the working directory (‘your_path/06_visualization’) and load required packages. Then, 

please check required files whether existed. 

# load packages 

library(MetDNA2Vis) 

library(CHNOSZ) 

library(dplyr) 

# check required files 

checkFiles4Vis() 

## Check required files ... 

## Check required files: done! 

 

2.3 Reconstruct and export global multi-layer networks. 

2.3.1 Network 1 

The network 1 is the knowledge-guided metabolic reaction network. For knowns, the KEGG reaction 

pair network is directly used. For unknowns, an extended KEGG reaction pair network is used. The 

network expansion is performed with in-silico enzymic reactions (via Biotransformer), and further 

connected with KEGG reaction pair network. The details of network construction and expansion are 

described in our KGMN manuscript. It should be note that the KEGG reaction pair network and 

extended network are built in advance. 

To export the network 1, it is easily to run reconstructNetwork1 function as below: 
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# export network 1 for visualization 

reconstructNetwork1(is_unknown_annotation = TRUE) 

 

 The networks files will be exported in ‘00_network1’ folder. It contains two files, including 

“edge_table.tsv” and “node_table.tsv” (Figure 2.3.1). These tables can be import into Cytoscape 

software for visualization. 

 

 

2.3.2 Network 2 

The network 2 is a knowledge-guided MS/MS network. Although it calls MS/MS network, differing to 

MS/MS network (mainly based on MS2), the linkage (edge) of network2 has a prerequisite. It requires 

a reasonable reaction relationship and definitive structure candidate first. As a result, their retention 

time can also be predicted. In other words, two linked nodes indicate 4 messages. Their candidates 

of these nodes have (1) reasonable reaction relationships, (2) low m/z errors, (3) low RT error against 

with predicted RT values, and (4) MS/MS similarity. It should be note that optimized network2 required 

to be reconstructed from KGMN exported results, because the global peak correlation network 

remove and collapse some error nodes and edges in prior analysis. This process usually requires 10-

20 min to complete. 

To export the network 2, it is easily to run reconstructNetwork2 function as below: 

# Modify format of KGMN result 

annotation_table <- reformatTable1() 

 

# Export global network2 files 

reconstructNetwork2(annotation_table = annotation_table,  

  is_unknown_annotation = TRUE) 
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The networks files will be exported in ‘01_network2’ folder. The “edge_table.tsv” and 

“node_table.tsv” in this folder can be imported to Cytoscape. 

 

 

2.3.3 Network 3 

The network 3 is the global peak correlation network. This network recognized different ion form peaks 

derived from peaks from network 2, including adducts, isotopes, neutral losses, and in-source 

fragments (ISF). The network 3 is used to optimize the annotation and linkage of network 2. The 

optimization has been completed in KGMN analysis. The details of network 3 construction and 

optimization can be found in our manuscript. 

To export the network 3, it is easily to run reconstructNetwork3 function as below: 

# export network3 

reconstructNetwork3() 

 

The networks files will be exported in ‘02_files_network3’ folder. The “edge_table.tsv” and 

“node_table.tsv” in this folder can be imported to Cytoscape for visualization. 
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2.4 Visualize global networks with Cytoscape 

Above networks (Network 1-3) can be imported to Cytoscape software tool for visualization. The 

process of network visualization is generally similar. Here, we use the above network 1 as a 

demonstration. The version of Cytoscape used here is 3.8.2.  

Below is the step-by-step instruction:  

1. Import edge file. Select the “edge_table.tsv” file and open it in the box.   

 
 

2. Assign column attributes. Click the ‘from’ column and select it as “source node”. Similarly, 

click the “to” column and select it as “target node”. After assigning attributes, click OK to 

construct a network.   
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3. Import node file. Select the “node_table.tsv” file and open it in the box.   

 

 

4. Select the “name” column as a key. Then, click the OK button. 
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5. Modify the style for visualization. Click the Style type, you can adjust node shapes and 

colors, edge types and colors.   

 

To help users reproduce our plot quickly, users can directly import our style file. The styles of 

different networks are provided here 

(https://mega.nz/file/tnp1nKjT#LS1oPzcFzw6bbdsLSqGoW4Qggrl_lM2LsPgsyZXilzQ).   

https://mega.nz/file/tnp1nKjT#LS1oPzcFzw6bbdsLSqGoW4Qggrl_lM2LsPgsyZXilzQ
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2.5 Select and export interesting subnetwork 

Through above procedures, users can easily visualize global network 1-3. With such global networks, 

users can find interesting subnetworks in Cytoscape. The Cytoscape supports interactively 

investigation. It should be note that the targeted subnetwork selection is customized. Users can 

directly find interesting nodes from KGMN annotation results, or considering more information, like in-

silico MS/MS, chemical structure and/or statistics analysis. For example, in KGMN manuscript, we 

combined MASST to select an unknown subnetwork of M262T526 (Figure 5e in manuscript). This 

unknown peak was putatively annotated as O-sulfotyrosine, and this annotation was from M182T541-

Tyrosine. This subnetwork consisted of 2 peaks and 2 metabolites. Here, we mainly introduce how to 

export and visualize this subnetwork. First, export network 1 of this subnetwork. Note: the export and 

visualization require intermediate results from global networks. Therefore, please run global peaks 

export first. To export the subnetwork 1, please directly run retrieveSubNetwork1 function as below. 

# network 1 of unknown peak subnetwork 

# Note: the folder_output should keep same among different layer subnetworks 

retrieveSubNetwork1(centric_met = c('C00082', 'KeggExd000923'),  

  is_unknown_annotation = TRUE,  

  folder_output = c('M182T541_M262T526')) 
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The networks files will be exported in ‘03_subnetworks/your_defined_folder/network 1’ folder. Here, 

the exported folder is “M182T541_M262T526”. The “edge_table.tsv” and “node_table.tsv” in this 

folder can be imported to Cytoscape for visualization. Note: if you run in RStudio, the preview plot of 

subnetwork 1 will be directly shown in the plot panel. 

Similarly, export network 2 and network 3 of this subnetwork can be completed through running 

retrieveSubNetwork2 and retrieveSubNetwork3 functions, respectively. The preview plots of 

subnetwork 2 and subnetwork 3 will be shown in the plot panel if you run in RStudio. 

# network 2 of unknown peak subnetwork 

retrieveSubNetwork2(from_peak = 'M182T541',  

  end_peak = 'M262T526',  

  folder_output = c('M182T541_M262T526')) 

## Using `sugiyama` as default layout 
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# network 3 of unknown peak subnetwork 

retrieveSubNetwork3(base_peaks = c('M182T541', 'M262T526'), 

  base_adducts = c('[M+H]+', '[M+H]+'), 

  folder_output = c('M182T541_M262T526')) 

## Using `stress` as default layout 
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The network 2 and network 3 of the subnetwork can be further merged through running 

mergeSubnetwork function. The ‘network_merge’ folder contains node table and edge table for 

reproduce the merged network. 

# merge subnetwork 

mergeSubnetwork(from_peak = 'M182T541',  

  end_peak = 'M262T526',  

  folder_output = 'M182T541_M262T526') 

## Using `stress` as default layout 

 

 

Finally, the folder of subnetwork is organized like below. Each folder contains related files of each 

network for further visualization in other tools (e.g. Cytoscape).   
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3. The script for visualization 

Here is a script which contains above codes to help to reproduce above analysis quickly. 

# load packages 

library(CHNOSZ) 

library(dplyr) 

library(MetDNA2Vis) 

 

# set working directory 

setwd('D:/project/00_zhulab/01_metdna2/00_data/20220602_visualization_kgmn/Demo_MetDNA2_

NIST_urine_pos/06_visualization/') 

 

# Export global networks  

# construct network 1 

reconstructNetwork1(is_unknown_annotation = TRUE) 

 

# construct network 2 

annotation_table <- reformatTable1() 

reconstructNetwork2(annotation_table = annotation_table) 

 

# construct network 3 

reconstructNetwork3() 
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# Export subnetworks ----------------------------------------------------------- 

# network 1 of unknown peak subnetwork 

# Note: the folder_output should keep same among different layer subnetworks 

retrieveSubNetwork1(centric_met = c('C00082', 'KeggExd000923'),  

  is_unknown_annotation = TRUE,  

  folder_output = c('M182T541_M262T526')) 

 

 

# network 2 of unknown peak subnetwork 

retrieveSubNetwork2(from_peak = 'M182T541',  

  end_peak = 'M262T526',  

  folder_output = c('M182T541_M262T526')) 

 

# network 3 of unknown peak subnetwork 

retrieveSubNetwork3(base_peaks = c('M182T541', 'M262T526'), 

  base_adducts = c('[M+H]+', '[M+H]+'), 

  folder_output = c('M182T541_M262T526')) 

 

 

# merge subnetwork 

mergeSubnetwork(from_peak = 'M182T541',  

  end_peak = 'M262T526',  

  folder_output = 'M182T541_M262T526') 
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Supplementary Note 2.  

Tutorial of validating KGMN unknowns with repository mining 

Zhiwei Zhou 

2022-06-13 

 

This tutorial aims to help users to select and validate their interesting unknown peaks from KGMN 

through repository mining. In the manuscript, we mainly used MASST to perform repository mining. 

The MASST1 is a tool to query spectrum in context of where it occurs against all GNPS data sets. In 

this tutorial, we focus on demonstrating how to combine KGMN results and MASST. The detail 

instructions of MASST can be found in GNPS document (https://ccms-

ucsd.github.io/GNPSDocumentation/masst/). 

 

The step-by-step instruction has been provided below. 

 

1. Data preparing. 

In this workflow, the data files require KGMN (MetDNA2) processed firstly. Here, we utilized NIST 

human urine data set as example. The data set has been analyzed with KGMN (v1.0.4), and the 

results can be downloaded here 

(https://mega.nz/file/8v50iL6T#oILf8wlVJU_iqTfjcOtH1TRHhnP1GGbvG_ZNb1xniGc).  

 

The folders should look like as below： 

 

https://ccms-ucsd.github.io/GNPSDocumentation/masst/
https://mega.nz/file/8v50iL6T#oILf8wlVJU_iqTfjcOtH1TRHhnP1GGbvG_ZNb1xniGc
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The users can browser and select interesting known/unknown peaks in the annotation table 

“table1_identification.csv” in the “00_annotation_table” folder. It should be note that the selection 

of targeted peak is customized.  

 

For demonstration, we utilized the unknown peak M262T526 as an example (Figure 5d in manuscript).  

The MS/MS spectrum of this peak can be found in the “ms2_data.msp” in “06_visualization” folder. 

You can open it with text tool (e.g. Notepad++). 

 

 

 

 

2. Upload and analysis in MASST.  

Users can upload this file to MASST (https://gnps.ucsd.edu/ProteoSAFe/static/gnps-

splash.jsp?redirect=auth) to perform repository mining. The users need to login first. Then, click the 

“query spectrum” button in MASST panel to start the analysis. Copy related texts from MSP file to 

“title”, “precursor m/z”, “spectrum input” panel in the web server, respectively.   
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Modify the search parameters and click “submit” button. The used parameters in KGMN manuscript 

have been provided below. 

 

 

When the job finished, you will receive an email with a link. You can view and download results in the 

webserver. 

• Matched data set: Dataset Matches → View File Matches → Download 

 

 

 

 

• Matched files: Dataset Matches → View File Matches → Download 
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3. Result interpretation and visualization. 

The downloaded results include 2 ZIP files, “view_all_datasets_matched.zip” and 

“view_all_file_datasets_matched.zip”. The files in packages can be further opened with Microsoft 

Office Excel or other program tools (e.g. R, Python). 

 

 The table of “view_all_datasets_matched” contains meta information of appeared data sets, like 

“dataset description”, “dataset id”, “dataset organisms” and “files count”. 

Furthermore, we can conclude the species and sample information based on the dataset 

description. For our examples, it was appeared in 7 datasets, and 3 organisms (where genipapo is 

from human urine actually according to the data set description). 

 

 

 The table of “view_all_file_datasets_matched” contains names of matched files. Each file 

can be viewed online through the filename in GNPS dashboard (https://gnps-lcms.ucsd.edu/), 

while the files and dataset can be accessed in GNPS datasets 

(https://gnps.ucsd.edu/ProteoSAFe/datasets.jsp).  

https://gnps-lcms.ucsd.edu/
https://gnps.ucsd.edu/ProteoSAFe/datasets.jsp
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With above information, it would be easy to reproduce figures of repository validation. The result of 

above example can be downloaded here 

(https://mega.nz/file/R6oCiITS#L8uZQnjb4wx65IuVnWvcCKXL8ZIPLM36ExyvXR7aY3E). 

 

  

https://mega.nz/file/R6oCiITS#L8uZQnjb4wx65IuVnWvcCKXL8ZIPLM36ExyvXR7aY3E
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Supplementary Note 3.  

Tutorial of integrating KGMN results with other in-silico 

MS/MS workflows 

Zhiwei Zhou 

2022-06-10 

Introduction 

Knowledge-guided multi-layer network (KGMN) is a new approach leveraging knowledge-guided 

multi-layer networks to annotate known and unknown metabolites in untargeted metabolomics data. 

Although KGMN is an independent software tool, it can further integrate with other workflows to help 

users discover and validate metabolites. This tutorial aims to provide an easy instruction to integrated 

KGMN results with 3 common in-silico MS/MS tools (MetFrag, CFM-ID, MS-FINDER). 

Here, we mainly focus on providing ways to help users linking KGMN with other tools. It should be 

note that the parameters need to be adjusted according to their instrument settings and experimental 

designs. The detailed usage please refer their own tutorials.  

 

Tutorials: 

• MetFrag: https://ipb-halle.github.io/MetFrag/ 

• CFM-ID: https://cfmid.wishartlab.com/ 

• MSFINDER: https://mtbinfo-team.github.io/mtbinfo.github.io/MS-FINDER/tutorial.html 

 

Demo datasets: 

• NIST urine set (Positive mode, processed by KGMN): Download 

(https://mega.nz/file/w7ZnjLAa#u4Dj5lhkYyEhOZHH4BX_HUHvGMkjZ_ti5bn986tgyrY) 

 

If you use these tools, please cite their papers (MetFrag2, CFM-ID3, MSFINDER4). 

 

https://ipb-halle.github.io/MetFrag/
https://cfmid.wishartlab.com/
https://mtbinfo-team.github.io/mtbinfo.github.io/MS-FINDER/tutorial.html
https://mega.nz/file/w7ZnjLAa#u4Dj5lhkYyEhOZHH4BX_HUHvGMkjZ_ti5bn986tgyrY
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1. Installation. 

This integration of KGMN and in-silico MS/MS tools is mainly performed by R package 

“MetDNA2InSilicoTool”. It can be downloaded as below:  

# Install required packages 

if(!require(devtools)){ 

install.packages("devtools") 

} 

 

if(!require(BiocManager)){ 

install.packages("BiocManager") 

} 

 

# Install CRAN/Bioconductor packages 

required_pkgs <- c("dplyr","tidyr","readr","stringr","rcdk") 

list_installed <- installed.packages() 

 

new_pkgs <- required_pkgs[!(required_pkgs %in% list_installed[,'Package'])] 

if (length(new_pkgs) > 0) { 

  BiocManager::install(new_pkgs) 

} else { 

  cat('Required CRAN/Bioconductor packages installed\n') 

} 

 

 

# Install GitHub packages - call MetFrag 

devtools::install_github("schymane/ReSOLUTION") 

 

# Install GitHub packages 

devtools::install_github("ZhuMetLab/MetDNA2InSilicoTool") 

 

2. MetFrag 

MetFrag is a common in-silico MS/MS tool developed by Dr. Sebastian Wolf and Dr. Christoph 

Ruttkies. It provides multiple ways to use it, including web server (MetFragWeb), MetFrag 
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commandline tool (MetFragCL) and R package (MetFragR). In this workflow, we mainly use 

MetFragCL (version 2.4.5) to demonstrate the connection between KGMN and MetFrag. 

 

2.1 Download MetFragCL program. 

MetFragCL is a Java Archive File. It can be downloaded from GitHub. https://github.com/ipb-

halle/MetFragRelaunched/releases/tag/v2.4.8  

 

Note: The MetFragCL program is depended on Java. Please install java and set environment variable 

first. 

 

2.2 Load required packages, and setting the working directory. 

We use MetDNA2InSilicoTool to call MetFragCL. Please set the working directory at 

07_insilico_msms, which is localized at KGMN result folder. Then, load some required packages. 

# set working directory 

setwd('G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_in

silico_msms/') 

 

# load packages 

library(dplyr) 

library(MetDNA2InSilicoTool) 

 

# reformat identification_table 

reformatTable1(dir_path = 

'G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_insilico_

msms/') 

 

It looks like as below:  

https://github.com/ipb-halle/MetFragRelaunched/releases/tag/v2.4.8
https://github.com/ipb-halle/MetFragRelaunched/releases/tag/v2.4.8
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2.3 Generate input files for your interested peak. 

In this workflow, users need generate necessary files for different in-silico tools. Here, we use an 

interesting peak M196T420 as example (Figure 4c). This peak is annotated as an unknown peak in 

KGMN, while it has 6 possible metabolite candidates.  

First, generate necessary file for M196T420. 

# generate files for in-silico MS/MS match 

# peak 'M196T420' as example 

generateFiles4InsilicoMsMs(peak_id = 'M196T420',  

                           dir_path = 

'G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_insilico_

msms/') 

 A folder “M196T420” will be created as blow:  

 

It contains two files, candidate_list and MS/MS file. The candidate list is a list of chemical structures 

for in-silico MS/MS tool validation. The MS/MS file is a experimental spectrum of the targeted peak. 

The MS/MS file can be used for other in-silico tools if needed. 
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2.4 Run MetFrag. 

We provide a R function (runMetFragMatch) to call MetFragCL. Here, the path of MetFragCL should 

be given. Other parameters can be adjusted. In MetDNA2InSilicoTool package, we only open limited 

parameters. For advanced users, the parameters can be adjusted according to MetFragCL tutorial. 

# run MetFrag 

 

# parameters 

# peak_id: name of interested peak 

# metfrag_path: path of metfrag program 

# ppm: relative error of precursor MS1. 25 ppm 

# mzabs: absolute error or MS1. 0.01 Da 

# frag_ppm: relative error of precursor MS1. 25 ppm 

 

runMetFragMatch(peak_id = 'M196T420',  

                dir_path = 

'G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_insilico_

msms/', 

                metfrag_path = 'F:/software/metfrag/MetFrag2.4.5-CL.jar',  

                ppm = 25,  

                mzabs = 0.01,  

                frag_ppm = 25) 

 

2.5 Output of MetFrag. 

A folder “01_metfrag” is created in the “M196T420” folder. It contains results of MetFrag. For 

candidate with different adducts, they are divided into different folders. The rank results localize at the 

subfolder “results”. 

https://ipb-halle.github.io/MetFrag/
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3. CFM-ID 

CFM-ID is a machine-learning based MS/MS prediction tool, which developed by Prof. David S 

Wishart Lab. It provides several access ways, including web server and command lines. In this 

workflow, we mainly use CFM-ID (version 2.4) to demonstrate the connection between KGMN and 

CFM-ID 

. 

3.1 Download and Set CFM-ID program. 

Here, we utilize CFM-ID (v2.4). The program can be downloaded at here 

(https://sourceforge.net/projects/cfm-id/files/). The new docker image of CFM-ID4 is available at 

here (https://bitbucket.org/wishartlab/cfm-id-code/src/master/). 

 

https://sourceforge.net/projects/cfm-id/files/
https://bitbucket.org/wishartlab/cfm-id-code/src/master/
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Note:  

• The prediction model is required for CFM-ID. Users can train their own model or directly use 

the pre-trained model. The predicted model can be downloaded at here 

(https://sourceforge.net/p/cfm-

id/code/HEAD/tree/supplementary_material/trained_models/esi_msms_models/). 

 

3.2 Load required packages, and setting the working directory. 

Similar with MetFrag, we use MetDNA2InSilicoTool to call CFM-ID. Please set the working directory 

at 07_insilico_msms, which is localized at KGMN result folder. Then, load some required packages. 

# set working directory 

setwd('G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_in

silico_msms/') 

 

# load packages 

library(dplyr) 

library(MetDNA2InSilicoTool) 

 

# reformat identification_table 

reformatTable1(dir_path = 

'G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_insilico_

msms/') 

 

3.2 Generate input files for your interested peak. 

This step is consistent with MetFrag. We use an interesting peak M196T420 as example. 

# generate files for in-silico MS/MS match 

# peak 'M196T420' as example 

generateFiles4InsilicoMsMs(peak_id = 'M196T420',  

                           dir_path = 

'G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_insilico_

msms/') 

https://sourceforge.net/p/cfm-id/code/HEAD/tree/supplementary_material/trained_models/esi_msms_models/
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3.3 Run CFM-ID. 

# run CFM-ID 

 

# parameters 

# cfmid_path: path of cfm-id 

# config_file: config file of prediction model. It should be selected according to ionzation polairty. 

Pos: metab_se_cfm/param_config.txt; Neg: negative_metab_se_cfm/param_config.txt 

# param_file: parameter file of prediction model. It should be selected according to ionzation 

polairty. Pos: metab_se_cfm/param_output0.log; Neg: negative_metab_se_cfm/param_output0.log  

# score_type: rank score of CFM-ID. Default: 'jaccard' 

# ppm: relative mz tolerance 

# mzabs: absolute mz tolerance 

 

runCfmIdMatch(peak_id = 'M196T420', 

              dir_path = 

'G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_insilico_

msms/', 

              cfmid_path = 'F:/software/cfm_id/cfm-id.exe', 

              config_file = 'F:/software/cfm_id/metab_se_cfm/param_config.txt', 

              param_file = 'F:/software/cfm_id/metab_se_cfm/param_output0.log', 

              score_type = 'Jaccard', 

              ppm = 25, 

              mzabs = 0.01) 

 

3.4 Output of CFM-ID. 

A folder “02_cfmid” will be created in the “M196T420” folder. It contains results of CFM-ID. The 

“cfmid_result.txt” is the CFM-ID rank result. The “cfmid_pred_spec.msp” is the predicted MS/MS 

spectra of candidates. 
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4. MS-FINDER 

MS-FINDER is a rule-based fragmentation tool, which developed by Prof. Hiroshi Tsugawa and 

Prof. Masanori Arita Lab. It usually is combined with MS-DIAL. In this tutorial, we mainly used it 

command tool (version 3.2.4) to evaluate KGMN metabolites. 

 

4.1 Download MS-FINDER program. 

We used the MS-FINDER v3.24. The newest version can be downloaded from here. 

Note: The instruction of MetDNA2InSilicoTool is only supported and tested in Windows System. 

http://prime.psc.riken.jp/compms/msfinder/main.html
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4.2 Load required packages, and setting the working directory. 

Repeat procedures in MetFrag and CFIM-ID. Set the working directory at 07_insilico_msms, which 

is localized at KGMN result folder. Then, load some required packages. 

# set working directory 

setwd('G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_in

silico_msms/') 

 

# load packages 

library(dplyr) 

library(MetDNA2InSilicoTool) 

 

# reformat identification_table 

reformatTable1(dir_path = 

'G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_insilico_

msms/') 
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4.3 Generate input files for your interested peak. 

Consist with MetFrag and CFM-ID, generate related files for targeted peaks. The example M196T420 

is here. 

# generate files for in-silico MS/MS match 

# peak 'M196T420' as example 

generateFiles4InsilicoMsMs(peak_id = 'M196T420',  

                           dir_path = 

'G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_insilico_

msms/') 

 

4.4 Run MS-FINDER 

We provided a R function (runMsFinderMatch) to call MS-FINDER. Here, we use the command tool 

of MS-FINDER (MsfinderConsoleApp.exe). The path of MS-FINDER should be given. 

# run MS-FINDER 

 

# parameters 

#  

runMsFinderMatch(peak_id = 'M196T420', 

                 dir_path = 

'G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_insilico_

msms', 

                 msfinder_path = 

'F:/software/MSFINDER/MSFINDER_ver_3.24/MsfinderConsoleApp.exe') 

 

4.5 Output of MS-FINDER. 

A folder “03_msfinder” will be created in the “M196T420” folder. It contains results of MS-FINDER. 

The result of MS-FINDER is organized as adduct types. The rank result will be 03_msfinder -> 

[M+H]+ -> result -> Structure result-2055.txt. 
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Note: 

• The parameter file of MS-FINDER is in ‘/03_msfinder/[M+H]+/MsfinderConsoleApp-

param.txt’. Advanced users can adjust this file, and rerun MS-FINDER. 
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5. The script for connection KGMN and in-silico MS/MS tools 

Here is a script contains above codes to help to connect KGMN and in-silico MS/MS tools quickly. 

# set working directory 

setwd('G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/') 

 

# load packages 

library(dplyr) 

library(MetDNA2InSilicoTool) 

 

# copy files 

copyFiles4InsilicoTool(dir_path = '.') 

 

# set working directory 

setwd('G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_in

silico_msms/') 

 

# reformat identification_table 

reformatTable1(dir_path = '.') 

 

 

# generate files for in-silico MS/MS match 

# peak 'M196T420' as example 

generateFiles4InsilicoMsMs(peak_id = 'M196T420') 

 

# run MetFrag 

runMetFragMatch(peak_id = 'M196T420',  

                metfrag_path = 'F:/software/metfrag/MetFrag2.4.5-CL.jar',  

                ppm = 25,  

                mzabs = 0.01,  

                frag_ppm = 25) 

 

 

# run CFM-ID 

runCfmIdMatch(peak_id = 'M196T420', 

              cfmid_path = 'F:/software/cfm_id/cfm-id.exe', 
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              config_file = 'F:/software/cfm_id/metab_se_cfm/param_config.txt', 

              param_file = 'F:/software/cfm_id/metab_se_cfm/param_output0.log', 

              score_type = 'Jaccard', 

              ppm = 25, 

              mzabs = 0.01) 

 

# run MS-FINDER 

# note: the dir_path must be given  

runMsFinderMatch(peak_id = 'M196T420', 

                 dir_path = 

'G:/00_projects/03_MetDNA2/00_data/20220609_insilico_ms2_demo/NIST_urine_pos/07_insilico_

msms', 

                 msfinder_path = 

'F:/software/MSFINDER/MSFINDER_ver_3.24/MsfinderConsoleApp.exe') 
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