Nature communications Supplementary Information

<u>Article title</u>: High resolution ancient sedimentary DNA shows that alpine plant diversity is associated with human land use and climate change

<u>Authors</u>: Sandra Garcés-Pastor*, Eric Coissac, Sébastien Lavergne, Christoph Schwörer, Jean-Paul Theurillat, Peter D. Heintzman, Owen S. Wangensteen, Willy Tinner, Fabian Rey, Martina Heer, Astrid Rutzer, Kevin Walsh, Youri Lammers, Antony G. Brown, Tomasz Goslar, Dilli P. Rijal, Dirk N. Karger, Loïc Pellissier, PhyloAlps Consortium, Oliver Heiri#, Inger Greve Alsos#

Supplementary Tables

į
ļ
ŀ
4
5
5
6
7 3
3 4 H 4 2 2 C 1 2

Supplementary Figures

Figure 1: Core correlation of SUL A-B-C	9
Figure 2. Age-depth model of the composite core	10
Figure 3: Chironomid record from Sulsseewli	11
Figure 4: Proportion of weighted PCR replicates of plant sedaDNA	12
Figure 5: Pollen diagram of Sulsseewli	16
Figure 6: Summary of the indicators for human activities in the Sulsseewli sediments	17
Figure 7: Percentages of functional groups inferred by <i>sed</i> aDNA and pollen	18
Figure 8: Richness of sedaDNA within different plant functional groups	19
Figure 9: All retained animal sedaDNA detections	20
Figure 10: Correlations between total taxonomic richness and time against six measures of plant	
<i>sed</i> aDNA data quality	21
Figure 11: Proportion of all reads before and after the plant metabarcoding data quality control	22
Figure 12: Redundancy analysis (RDA) of the plant species composition and elevational	
vegetation belts from sedaDNA across the record constrained by 12 explanatory variables	23
Figure 13: Piecewise redundancy analysis	24
Figure 14: Distribution of residuals before and after the removal of the outlier from	
generalised additive models (GAMs)	25
Figure 15: Full model used for structural equation model analysis	26

Supplementary Table 1. Radiocarbon dates of Sulseewlii according to depths of the compound core. Macroremains were dated in Poznan (Poz) and Bern (BE) laboratories.

Lab. code	Depth [cm]	Material	Core	14C age [BP]	Median calibrated
			segment		age [cal BP]
BE-12772.1.1	102-106	Betula fruit, Picea abies twig	A (0-1 m)	560 ± 20	556
BE-12773.1.1	148-152	Dryas octopetala leaf fragments	A (1-2 m)	1000 ± 30	913
Poz-111382	197-198	Needle	C (2,4-3 m)	1380 ± 50	1297
BE-9756.1.1	239-241	Twig	B (2-3 m)	1940 ± 20	1863
Poz-123903	296-297	Needle	C (3-4 m)	2600 ± 80	2699
Poz-123857	305-306	Branch	C (3-4 m)	2825 ± 30	2926
BE-10808.1.1	307-309	Picea abies needles	B (3-4 m)	2830 ± 20	2929
Poz-111381	318-319	Branch	C (3-4 m)	2945 ± 35	3103
Poz-123856	323-324	Needle	C (3-4 m)	3045 ± 35	3255
Poz-111380	331-332	Branch	C (3-4 m)	3085 ± 35	3292
BE-9755.1.1	365.5-367.5	Picea abies needle, Picea abies seeds, Pinus cembra needle	A (4-5 m)	3625 ± 20	3934
BE-10809.1.1	412.5-414.5	Picea abies needle, Picea abies seeds, coniferous bud scale	A (4-5 m)	4135 ± 20	4681
Poz-111508	427-428	Wood	C (4-5 m)	4085 ± 30	4580
BE-12775.1.1	445-447	Pinus cembra needles, Pinus cembra seed	A (5-6 m)	4690 ± 25	5387
Poz-111507	452-453	Wood	C (4-5 m)	4885 ± 35	5623
BE-9754.1.1	477-479	Bark	A (5-6 m)	5590 ± 20	6354
BE-12776.1.1	493-495	Bark	A (5-6 m)	6470 ± 25	7368
BE-12777.1.1	509-511	Betula fruit scale, Pinus cembra needles	A (5-6 m)	7325 ± 25	8101
BE-10810.1.1	521.5-523.5	Twig	A (5-6 m)	8220 ± 25	9188

BE-12778.1.1	533-535	<i>Betula</i> fruit scale, cone scale	A (5-6 m)	8625 ± 40	9588
BE-9753.1.1	555-557	Bud scale, short shoot, twigs	A (6-7 m)	9315 ± 25	10527
BE-12779.1.1	568-572	Dryas octopetala leaf fragments, fruit stand	A (6-7 m)	9650 ± 60	11003
Poz-138479	608.5-609.5	Terrestrial plant remains	C (6-7 m)	10590 ± 250	12432

Supplementary Table 2. *Sed*aDNA sequences used to infer vegetation belts (87 out of 366) and the equivalent pollen taxa found within the Sulsseewli sediments. Taxa identified as colline, warm colline and very warm colline based on Flora Indicativa were pooled in the category colline. See Methods section for details on this approach.

Vegetation	Number	DNA Taxa	Equivalent pollen taxa in the Sulsseewli
belt	of taxa		record
Alpine	9	Achillea atrata, Bryaceae, Carex parviflora, Crepis rhaetica, Dicranidae, Leucanthemopsis alpina, Ranunculus glacialis, Sibbaldia procumbens, Silene acaulis	Chicorioideae, Rosaceae, Silene
Subalpine-	14	Androsace chamaejasme, Arctostaphylos alpina, Astragalus alpinus, Bartsia alpina,	Androsace, Bartsia-type, Cyperaceae,
alpine		Carex frigida, Dryas octopetala, Gentiana clusii, Hedysarum hedysaroides, Hieraciinae, Pedicularis oederi, Pedicularis verticillata, Saussurea	Dryas octopetala, Fabaceae indet
Subalpine	12	Achillea macrophylla, Allium victorialis, Arctostaphylos uva-ursi, Athamanta cretensis, Athyrium distentifolium, Botrychium, Chaerophyllum, Crepis bocconi, Delphinium elatum, Pinguicula alpina, Rhododendron, Viola biflora	Achillea-type, Allium-type, Athyrium filix- femina, Botrychium, Chaerophyllum-type, Cichorioideae, Rhododendron
Montane- subalpine	22	Asplenium, Calluna vulgaris, Carum carvi, Erica carnea, Erinus alpinus, Geranium sylvaticum, Globularia cordifolia, Lonicera alpigena, Lonicera nigra, Melampyrum sylvaticum, Meum athamanticum, Nardus stricta, Picea abies, Polystichum lonchitis, Ranunculus, Rumex scutatus, Saxifraga rotundifolia, Stellaria nemorum, Tozzia alpina, Trollius europaeus, Vicia sylvatica	Calluna vulgaris, Lonicera alpigena, Melampyrum, Picea abies, Ranunculus acris-type, Rumex acetosa-type, Saxifraga aizoides-type, Saxifraga granulata, Trollius
Montane	8	Abies alba, Chaerophyllum aureum, Chamaenerion angustifolium, Chrysosplenium alternifolium, Crepis paludosa, Ophioglossum vulgatum, Pteridium aquilinum, Saxifraga rosacea	Abies alba, Chaerophyllum-type, Cichorioideae, Pteridium aquilinum, Saxifraga aizoides-type
"Colline- montane"	10	Asplenium trichomanes, Asplenium trichomanes, Dactylorhiza incarnata, Lathyrus pratensis, Myosotis arvensis, Plantago media, Potamogeton, Sanicula, Veronica serpyllifolia	Cirsium, Lathyrus-type, Plantago media, Veronica-type
Colline	5	Acer, Cuscuta europaea, Hypochaeris maculata, Juglans regia, Tilia	Acer, Juglans regia, Tilia
Warm Colline	5	Castanea sativa, Fabeae, Jurinea, Lithospermeae, Orobanche	Castanea sativa, Fabaceae indet
Very warm Colline	5	Myrtus communis, Parentucellia latifolia, Quercus, Ranunculus parviflorus, Veronica cymbalaria	Quercus robur-pubescens-type, Ranunculus acris-type, Veronica-type

Database	Proportion of sequences assigned to vascular plants	Proportion of vascular plants with a 100% match	Taxonomic assignment to genus or below	Identifications used in the final taxonomic assignment
PhyloAlps	368/375 = 98.1 %	292/368 = 79.3 %	248/292 = 84.9 %	326/375 = 86.9 %
EMBL	352/375 = 93.9 %	327/352 = 92.9 %	189/327 = 57.8 %	45/375 = 12 %
PhyloNorway	364/375 = 97 %	199/364 = 54.7 %	166/199 = 83.4 %	4/375 = 1 %
ArctBorBryo	353/375 = 94.1 %	181/353 = 51.3 %	154/181 = 85 %	-

Supplementary Table 3. Plant sedaDNA sequences identified with each database

Supplementary Table 4. Suitable indicator taxa identified by each database in order of priority

Database	Identified taxa
PhyloAlps	84
PhyloNorway	2
ArctBorBryo	1
EMBL	1

Supplementary Table 5. Taxa identified with PhyloAlps that are present in other databases

Only present in PhyloAlps	31
Present in 1 more database	30
Present in 2 more databases	14
Present in all databases	9

Supplementary Table 6. *Sed*aDNA used to infer pastoral activities and equivalent pollen taxa in the Sulsseewli sediments

	Equivalent pollen taxa in the Sulsseewli
DNA Taxa	record
Calluna vulgaris	
Carum carvi	
Cirsium arvense	Calluna vulgaris
Plantago major	
Plantago media	
Pteridium aquilinum	Plantago major
Rhinanthus alectorolophus subsp. freynii	Plantago media
Urtica dioica	Pteridium aquilinum

Supplementary Table 7. Summary of the plant sedaDNA results.

Raw paired-end plant DNA sequences	20,517,660 sequences
After filtering and identification	7,395,214 sequences
Total samples	80
Low quality samples - relaxed	6
Low quality samples - strict	24
Total plant sequences	366
Contaminants	14 (see Supplementary Data 8)

Life-form categories and ranks assigned with plant sedaDNA

Life-form categories assigned with pollen

Supplementary Table 8. Summary of the mammal sedaDNA results.

Raw paired-end mammal DNA sequences	17.5 million sequences
After filtering and identification	1,794,975 sequences
Total samples	80
Contaminants	human

Supplementary Table 9. Correlations between samples passing relaxed/strict QC and richness/time for six measures of *sed*aDNA data quality, based on a one-sided Spearman's rank correlation tests without adjustment for multiple comparisons. Tests were calculated using the cor.test function in R. Exact p-values are provided when p>2.2E-16.

	Relaxed QC filtering						Strict QC filtering					
	Richness			Time		Richness			Time			
Measure	rho	S	р	rho	S	р	rho	S	р	rho	S	р
MTQ score	0.6766602	21834	3.65E-11	-0.3505613	91197	0.002198	0.3319399	19547	0.012440	-0.03347899	30240	0.806500
MAQ score	0.7907073	14132	<2.2e-16	-0.426756	96342	0.000150	0.5988539	11738	0.000001	-0.1708108	34258	0.208100
							-					
Count of raw reads	-0.0671135	72057	0.569900	0.1288856	58822	0.273800	0.08236461	31670	0.546200	0.1483937	24918	0.275100
Mean barcode length	0.1310508	58676	0.265700	-0.1003636	74302	0.394900	0.1938936	23587	0.152200	0.01086808	28942	0.936600
Mean wtRep	0.8703425	8755.1	<2.2e-16	-0.6315735	110172	1.61E-09	0.7849768	6291.6	8.04E-13	-0.5032126	43984	0.000077
Prop. reads identified												
as terrestrial plants	0.4069617	40045	0.000320	-0.2718549	85882	0.019130	0.1518053	24818	0.264000	-0.06903623	31280	0.613200

Seven samples were removed due to low DNA quality, which had metabarcoding technical quality scores of <0.45 and/or metabarcoding analytical quality scores of <0.175, and were based on comparison to the controls (listed in Supplementary Dataset S3. These samples were L715, L724, L742, L751, L760 and L769.

Supplementary Table 10. Summary statistics for generalised additive models (GAMs) fitted after outlier removal. Taxonomic richness was treated as the response variable. Deviance explained and adjusted R square values for the full and reduced models were 80.1 and 76.7%, and 0.67 and 0.66 respectively. Data analyses performed on the strict dataset (n=56 samples, see methods).

Models	Explanatory variables	Effective degrees of freedom (edf)	Chi square value	p-value
Full	Temperature	2.1	2.6	0.4796
	Precipitation	6.5	57.2	<0.0001
	Coprophilous fungi	2.1	5.6	0.0722
	Bos taurus	1	3.3	0.0704
	Capra hircus	4.7	17.7	0.006
	Ovis aries	4.4	50.4	<0.0001
Reduced	Precipitation	6.5	59.6	<0.0001
	Capra hircus	5.6	22.6	0.002
	Ovis aries	4.1	58.4	<0.0001

Supplementary Table 11. Complete outcomes of the fitted model tested in the Piecewise structural equation model (SEM) showing the standardised coefficients of the precipitation, the wild grazing mammals and domesticates on richness. Significant paths (P < 0.05) are denoted in bold. Significance codes: "***" 0.001, "**" 0.01, "*" 0.05.

Response	Predictor	Estimate	Std. Error	DF	Crit. Value	P. Value	Std. Estimate	Significance
Richness	Precipitation	9 935	3 718	56	26722	102	3 318	*
Richness	Cow	3 375	1 078	56	31317	29	3 363	**
Richness	lbex	3 179	2 379	56	13362	1 876	1 516	
Richness	Sheep	923	979	56	9 421	3 508	1 151	
Richness	Chamois	4 782	0,24	56	19927	519	2 257	
Richness	Charcoal	9	3	56	31894	25	3 747	**
Cow	Precipitation	1 157	4 057	56	2 852	7 766	388	
lbex	Precipitation	-4 381	1 849	56	-23690	214	-3 068	*
Sheep	Precipitation	9 821	4 594	56	21378	372	263	*
Sheep	Charcoal	11	4	56	29000	54	3 568	**
Charcoal	Precipitation	2722377	1599539	56	17020	945	2 256	
Charcoal	Precipitation	-4 348	1 829	56	-23768	21	-3 077	2 256

Fisher's C = 6.259 with P-value = 0.995 and on 18 degrees of freedom

Response	method	R squared
Richness	none	0.45
Cow	none	0
lbex	none	0.09
Sheep	none	0.24
Charcoal	none	0.05
Chamois	none	0.09

AIC	BIC
54.259	102.867

Supplementary Figure 1. Core correlation of SUL A-B-C. The composite core has three sedimentary units: unit A is composed of clay (716-645 cm), unit B of organic silt with clay (645-530 cm) and unit C of brown gyttja with silt laminations (530-0 cm). Red lines show the correlation points used to tie the master core and blue lines link the same lithostratigraphical features. Note: Colour differences between SULB and C versus SULC are because these have been photographed by different photographic equipment (SULB and C in Institute of Plant Sciences (University of Bern) and SUL C in UiT (Tromsø)) and the opened cores were at different states of oxidation.

Supplementary Figure 2. Age-depth model of the composite core.

Supplementary Figure 3. Chironomid record from Sulsseewli. Chironomid taxa are plotted as percentages.

Supplementary Figure 4. Proportion of weighted PCR replicates of plant *sed*aDNA plotted against age with CONISS statistical zonations.

Supplementary Figure 5. Pollen diagram of Sulsseewli based on cores SUL-A and SULB. Age scale and influx are based on the 14C ages from these two cores. Pollen is presented as percentages of terrestrial pollen sum. Microcharcoal and fungi spores are presented as influx values (cm⁻² year⁻¹). LPAZ are the statistically significant zones determined with partitioning using optimal sum of squares and the broken stick method. Rarefaction based pollen diversity is standardized to a count sum of 382.

Supplementary Figure 6. Summary of the indicators for human activities in the Sulsseewli sediments. Cerealia pollen sum and pollen types (with 10x exaggeration line), arable *sed*aDNA indicators, charcoal, coprophilous fungi spores sum and pastoral *sed*aDNA indicators. Zones based on CONISS analysis of the *sed*aDNA data are marked in grey and white. Pollen are represented as percentage of terrestrial pollen, spores and charcoal as influx (particles cm-2 year-1) and *sed*aDNA as relative abundance index (RAI)

Supplementary Figure 7. Percentages of functional groups inferred by *sed*aDNA (relative abundance index, RAI) and pollen (% of terrestrial pollen). Zones are based on CONISS analysis of the *sed*aDNA data (see Methods section for details)

Supplementary Figure 8. Richness of sedaDNA within different plant functional groups with the relaxed (A) or strict (B) quality filter.

Supplementary Figure 9. All retained animal *sed*aDNA detections. Domesticated taxa are orange (pig (Sus scrofa), which was excluded from analysis, is in grey), wild mammals are in green, non mammal *sed*aDNA records are in brown (invertebrates) and blue (amphibians). *Sed*aDNA is plotted as proportion of weighted PCR replicates.

Supplementary Figure 10. Correlations between total taxonomic richness (left) and time (right) against six measures of plant *sed*aDNA data quality: (A) metabarcoding technical quality (MTQ) score, (B) metabarcoding analytical quality (MAQ) score, (C) total raw read count, (D) mean barcode length (base pairs), (E) mean proportion of weighted PCR replicates, (F) proportion of reads identified as terrestrial plant taxa. Data in: black, samples that passed strict quality control; orange, samples that passed relaxed quality control only; blue, samples that failed quality control; red, negative controls. In (A), (B), (D), and (E), points are mean values and bars one standard deviation derived from technical PCR replicates (n=8). Fitted Loess-smoothed lines with 95% confidence intervals are shown for the samples that passed quality control (strict, black; relaxed, orange).

Supplementary Figure 11. Proportion of all reads prior to (upper panel) and after the plant metabarcoding data quality control with either relaxed (middle panel) or strict (lower panel) filtering.

Supplementary Figure 12. Redundancy analysis (RDA) of the plant species composition (A) and altitudinal vegetation belts (B) from *sed*aDNA across the record constrained by 12 explanatory variables representing human activities (coprophilous fungi spores, mammal DNA and microcharcoal) and climatic changes (chironomid-inferred temperatures, CHELSA-TraCE21k v1.0 model-inferred precipitation and organic matter content (LOI)).

Supplementary Figure 13. To crosscheck the robustness of the RDA analyses of the effect of the 12 explanatory variables on the species composition (Supplementary Figure 12A), we also performed the Piecewise redundancy analysis. Results of this analysis do not differ from those of the original RDA analysis. Full RDA (A) and piecewise RDA (B). Layout is different from Figure 12A due to R package used.

Supplementary Figure 14. Distribution of residuals before and after the removal of the outlier L652 from generalised additive models (GAMs)

Supplementary Figure 15. Full model used for structural equation model analysis.