
Supplementary Information : Cross-Platform Comparison
of Arbitrary Quantum States

S1 The greedy method in the regime MS � 2N

The parameters MU and MS can be optimized through minimizing the statistical error with grid

search 1, 2 or using the importance sampling with partial information on the quantum state 3. Both

approaches require prior knowledge or simulation of the target state. Here, we devise a greedy

method for sampling the unitary operation U that reduces the statistical error without prior knowl-

edge of the target state. The statistical error as a function of MU converges faster than uniformly

sampling the unitary operation when the number of shots MS � 2N , where N is the number of

qubits. Therefore, the greedy method is particularly useful for the 5- and 7-qubit experiments. In

this section, we demonstrate the comparison between the greedy method and random method for

5-qubit GHZ state.

When performing the fidelity estimation using randomized measurement, there are two major

sources of errors, the shot noise error and the error from the incomplete tomography. The shot noise

error can be suppressed when the number of shots is MS � 2N . Instead of uniformly sampling

the random unitary from a set of unitary operators U , we generate a sequence of unitary operators

while maximizing the distance between each random unitary. Specifically, we define the distance

between two unitary operators as d(ua, ub) = maxρ ||uaρu†a − ubρu
†
b||1. We sequentially generate

the MU unitary operators {ui}, where 1 ≤ i ≤ MU sequentially. For i = 1, we sample a unitary
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Figure S1: Comparison of error scaling for the fidelity of the GHZ states generated from UMD 1

vs IBM 1 with greedy or random sampling method for MU .

operator randomly from V . For i > 1, we search for a unitary operator ui that minimizes the

cost function C(ui;u1, . . . , ui−1) = −
∑i−1

j=1 d(ui, uj). In order to minimize the cost function

efficiently, we randomly generate Nsample distinct unitary operators ui,x, where 1 ≤ x ≤ Nsample

and we define ui = minui,x C(ui,x;u1, . . . , ui−1). In practice, we find thatNsample = 200 is enough

to find the minimum for N = 7 and V = Cl(2)⊗N , where Cl(2) is the single qubit Clifford group.

The greedy method is summarized in Algorithm 1.
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Algorithm 1 Greedy method for sampling random unitary
Input : Number of random unitaries MU , a set of unitary operators S

Output : MU random unitary operations for randomized measurement {ui}, where 1 ≤ i ≤MU .

1 : Sample u1 randomly from S.

2 : for i = 2 to MU do

3 : Find a unitary ui ∈ S to minimize the cost function C(ui;u1, . . . , ui−1).

4 : end for

5 : return {ui}

We compare the two different methods of sampling the random unitary U : the randomized

sampling and the greedy method. Using these two methods, we evaluate the fidelity between

the states prepared on the UMD 1 system and the IBM 1 system, by sampling subsets of various

sizes MU from the full state tomography measurements. Figure S1 shows the error of the fidelity

estimation between UMD 1 and IBM 1 as a function of MU for MS = 2000. We see that the

greedy method outperforms the random method in this regime.

To further characterize the performance of the greedy method, we perform numerical simu-

lation through Pauli basis measurements. Specifically, to generate the random Pauli measurement

using the greedy method, we define a set of unitary operators S = {H,HSH, I} to perform mea-

surement in the x, y, and z basis. Using Algorithm. 1, we can sample the greedy random unitary

operators.

We compare the measurement results for the greedy method and the random sampling method
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Figure S2: The number of Pauli-string operators that can be predicted through the set of measure-

ments (Nobs) as function of MU . In the large MU � 3N limit, the measurement is equivalent to

full state tomography and therefore, all the Pauli-string operator can be predicted (Nobs/4
N = 1).

However, in the regime MU < 3N , we show that Greedy method can predict more observables

than the random method.

in the regime MS � 2N . First, we compute the number of Pauli-string operators that can be pre-

dicted 2 through the set of measurements (Nobs). In Fig. S2, we present the Nobs as function of

MU , normalized by the total number of Pauli string operators 4N . We see that the greedy method

can predict more observables than the random method in the regime, MU < 3N . However, when

MU � 3N , both greedy and random method can predict all 4N Pauli string observables. Therefore,

the shot noise is the dominant error source.

Second, we perform the simulation for the prediction of the linear observable tr(Oρ) and
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Figure S3: The measurement error ∆ for linear observable tr(Oρ), where O =
⊗N

i=1Xi and

non-linear observable tr(ρ2). In the regime MS ∼ O(2N), the greedy and the random methods

have similar performance. However, when the number of shots MS � O(2N), the greedy method

shows better performance against the randomized measurement method.

non-linear observable tr(ρ2) 2, using both the greedy method and the random method. We first

generate a random wave function |ψ〉 = U |0〉, where U is a unitary operator sampled from a Haar

random distribution. We then generate MU unitary operators via both greedy and random methods

and simulate the measurements implied by the unitary operators with MS shots. In Fig. S3, we

present the average error ∆[O] = avg(|Omeasure−Oexact|), whereOmeasure is the expectation value

of O =
⊗N

i=1Xi using randomized measurements and Oexact is the exact expectation value. To

obtain the average performance, we perform 100 independent numerical experiments and average
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over the error from each numerical experiment.

S2 Full state tomography vs. randomized measurement for 5-qubit GHZ state

Here, we compare the cross-platform fidelity obtained from full-state tomography and that from

the randomized measurement on the 5-qubit GHZ state prepared on different platforms. We per-

form the full-state-tomography on a platform by measuring all of the 243 independent 5-qubit

Pauli operators. To do so, we first independently generate the 5-qubit GHZ state circuits on each

platform. Then we append different single-qubit rotations to the circuit to create the 243 different

circuits. Each of the circuits gives the projective measurement result of one of the 243 independent

5-qubit Pauli operators. We set MS = 2000 for all the platforms. For the randomized measure-

ment, because a random Pauli basis measurement is equivalent to a randomized measurement with

single qubit Clifford gates 2, we directly sample from the 243 Pauli basis measurements used for

the full state tomography.

We calculate the cross-platform fidelity as a function of the number of randomized measure-

ments MU . The fidelity error |Fe − F| is defined as the difference between the fidelity estimated

by the randomized measurement Fe and the fidelity calculated through full state tomography F .

The average of |Fe − F| and the standard deviation are calculated through a bootstrap resam-

pling method 4. The result (Fig. S4) shows that with only a fraction of the full state tomography

measurements, one can estimate the cross-platform fidelity accurately.
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Figure S4: Fidelity error, |Fe − F|, for six randomly selected 5-qubit GHZ state cross-platform

fidelities implemented on different platforms vs. the number of randomized measurements MU .

The number of measurement is MS = 2000 for all cases.

S3 SWAP overhead for quantum volume circuits

Two-qubit gates on non-nearest-neighbor pairs are not directly available on superconducting quan-

tum computers. To realize such non-nearest-neighbor two-qubit gates effectively, SWAP gates are

necessary. Note each SWAP gate consists of three CNOT gates. Thus, when used, non-trivial

degradation to the overall fidelity of the computational output state is incurred.

Optimizing the so-called qubit routing can effectively decrease the number of involved non-

nearest-neighbor two-qubit gates in evaluating the quantum volume circuits. As the number of

layers d increases though, the non-nearest-neighbor two-qubit gate becomes unavoidable. In Fig.
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S5 we show the mean value of two-qubit gates used to implement quantum volume circuits of d

layers on different platforms. The value grows linearly with d.

IBM_2

trapped ion

IBM_3
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Figure S5: (a) Connectivity graphs of IBM 2, IBM 3, and trapped ion (UMD 1 as an example) (b)

Average number of two-qubit (entangling) gates used to implement quantum volume circuits with

d layers, on different quantum computers. The trapped ion quantum computers have an all-to-all

connectivity.

S4 Quantum systems

In this section we detail the quantum systems used in this study.

IBM Quantum Experience

We use IBM Quantum Experience service to access several of their superconducting quantum

computers 5. The ones we used are ibmq belem (IBM 1), ibmq casablanca (IBM 2), ibmq melbourne

(IBM 3), ibmq quito (IBM 4), and ibmq rome (IBM 5). All the IBM systems we used use super-

conducting transmon qubits. Their gate set is made of arbitrary single-qubit rotations on every
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qubit and two-qubit CNOT gates over qubit pairs that are connected according to their respec-

tive connectivity graphs. The size of of single-qubit gate errors in the IBM systems ranges from

3.32 × 10−4 to 5.03 × 10−2, and the size of two-qubit gate errors ranges from 7.47 × 10−3 to

1.07×10−1. Detailed specifications of each quantum device including qubit-connectivity diagrams

can be found on (https://quantum-computing.ibm.com/). We used QISKit open-source software 6

for the circuit synthesis and optimization for all of our experiments conducted on the IBM systems.

TI EURIQA (UMD 1)

Error-corrected Universal Reconfigurable Ion-trap Quantum Archetype (EURIQA) is a trapped-

ion quantum computer currently located at the University of Maryland. This quantum computer

supports up to 13 qubits in a single chain of 15 trapped 171Yb+ ions in a microfabricated chip

trap 7. The system achieves native single-qubit gate fidelities of 99.96% and two-qubit XX gate

fidelities of 98.5-99.3%8. On this platform, we compile the circuits to its native gate set through

KAK decomposition. We optimize the qubit assignment through exhaustive search to minimize

the anticipated noise of entangling gates. No SPAM correction was applied in post-processing.

TI UMD (UMD 2)

The second trapped-ion quantum computer system at Maryland is part of the TIQC (Trapped

Ion Quantum Computation) team. This quantum computer supports up to nine qubits made of a

single chain of 171Yb+ ions trapped in a linear Paul trap with blade electrodes 9. Typical single- and

two-qubit gate fidelities are 99.5(2)% and 98−99%, respectively. On this platform, we compile the
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quantum volume to its native gate set through KAK decomposition. We apply SPAM correction to

mitigate the detection noise assuming that the preparation noise is negligible.

IonQ (IonQ 1 and IonQ 2)

The commercial trapped-ion quantum systems used by IonQ contain eleven fully connected

qubits in a single chain of 171Yb+ ions trapped in a linear Paul trap with surface electrodes 9. The

single-qubit fidelities are 99.7% for both systems at the time of measurement, while two-qubit

fidelities are 95 − 96% and 96 − 97% for IonQ 1 and IonQ 2 respectively. On this platform, we

apply the technique described in Ref. 10 to optimize the circuit. No SPAM correction was applied

in post-processing.

S5 Intra-Technology Similarity through Principal component analysis

We consider quantum states reconstructed from the shadow tomography measurement

ρ =
1

T

∑
U,b

ρ̂U,b, (S1)

where ρ̂ =
⊗n

i=1(3Ui|b〉〈b|U
†
i − I) and T is the number of classical shadows. After averaging

over T classical shadows, we decompose the density matrix defined in Eq. (S1) as a linear com-

bination of Pauli string operators, ρ =
∑4n−1

k=0 vkPk, where Pk is the Pauli string operator and

vk = 1
2n
tr(ρPk). Therefore, a density matrix ρ can be represented by a 4n-dimensional vector

~v =
∑4n−1

k=0 vkêk. We define the vector ~v as the feature vector for the principal component analysis.

In the noiseless limit, the vector that represents the target state |ψ〉 is ~vt =
∑4n−1

k=0 〈ψ|Pk|ψ〉êk.
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However, in the presence of noise, the vector can deviate from ~vt. Specifically, there are two main

sources of noise: the noise from the finite sampling of the classical shadow and the noise from

the imperfections in the quantum devices such as coherent and incoherent errors. The first type of

noise gives a random fluctuation of the feature vector, which scales as O( 1√
T

). The second type

of noise is highly platform specific. We conjecture the intra-technology similarity, i.e. quantum

states prepared on similar quantum devices suffer from similar noise: The feature vectors prepared

on similar devices cluster together in the 4n- dimensional space.

In order to observe the intra-technology similarity, we prepare the feature vectors ~v of all the

platforms, for the 7-qubit QV states with d = 2 and d = 3. For each platform and each QV state,

we independently sample Nsample feature vectors. We define a Nsample × 4n data matrix M . Each

row of M contains a feature vector ~v. We perform the principal component analysis to project the

data matrix M onto a lower dimensional space in order to reduce the dimensionality of the feature

vector space while preserving as much of the variation of the data as possible. The implementation

of principal component analysis is based on scikit-learn. Each low-dimensional vector corresponds

to a state reconstructed from the classical shadow. In the main text Figure 3(c), we can see that the

low-dimensional feature vectors cluster by platform. In addition, we also perform PCA analysis

for 5-qubit GHZ states. The projection result to first two principal components is shown in Fig.

S6. We observe the intra-technology similarity since the data generated from similar platforms are

clustered together.
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Figure S6: The projection of randomized measurement dataset of the GHZ state onto the first two

principal axes, PC1 and PC2.

IBM 2 7q 2l IBM 2 7q 2l IBM 2 7q 3l IBM 2 7q 3l

(no calibrated) (calibrated) (no calibrated) (calibrated)

IBM 3 0.53(1) 0.542(7) 0.294(9) 0.30(4)

UMD 1 0.45(1) 0.461(8) 0.157(6) 0.159(5)

UMD 2 0.50(1) 0.511(5) N/A N/A

IonQ 1 0.42(1) 0.425(2) N/A N/A

IonQ 2 N/A N/A 0.156(7) 0.161(4)

simulation 0.41(1) 0.418(6) 0.143(6) 0.150(5)

Table S1: The cross-platform fidelity between the platform IBM 2 and other platforms for

the result with and without measurement error calibration.
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Figure S7: (a) The measurement error matrix for platform IBM 2. (b) The single-qubit measure-

ment error for xth qubit.
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S6 Measurement error mitigation

In this section, we introduce the measurement error of and the error mitigation technique used

for the IBM superconducting qubits. Measurement error is one of the dominant errors in the

superconducting qubit devices. A measurement error manifests itself as either a |0〉 state being

read as a |1〉 state or vice versa. For a quantum computer with n qubits, the measurement error

can be fully described by a 2n × 2n measurement error matrix M . The matrix element M [s, s′] is

the probability of measuring outcome s′ when the quantum computer is in state |s〉. Therefore, if

we take the probability vector Pideal describing the ideal measurement results for a given circuit,

applying the measurement matrix M gives a good approximation of the results when measurement

noise is present. In particular,

Pnoisy = MPideal. (S2)

In order to approximate the Pideal, we perform an optimization to minimize the cost function

||Pnoisy −MPideal||22, (S3)

subject to constraints 0 ≤ Pideal(s) ≤ 1 and
∑

s Pideal(s) = 1.

For the devices IBM 2 and IBM 3 with seven qubits, we measure the measurement error

matrix M by initializing the qubits in all the 27 possible bit strings and measure each state with

2048 shots. The measurement error matrix for IBM 2 is shown in Fig. S7(a). The dominant

measurement error is the single qubit flip. In particular, the error rate for measuring |1〉 when the

state is |0〉 ranges from 1% to 8%. The error rate for measuring |0〉 if the state is |1〉 ranges from
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0.1% to 2%, as shown in Fig. S7(b). We present the calibrated cross-platform fidelity between

the platform IBM 2 and other platforms in Table S1. The calibrated result are close to the result

without calibration up to the error bar.
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