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Supplementary Information Text 
 
Supplementary Methods 
 
Emergent. The model, implemented in the Emergent framework (1), consists of units with rate 
code activations (using the NXX1 sigmoidal activation function, which approximates average 
firing rate in neuronal populations as a function of excitatory input), organized into layers and 
connected by learnable weights. Feedforward feedback (FFFB) inhibition simulates inhibitory 
network dynamics as implemented by inhibitory interneurons in biological neural networks (2). 
These are Emergent defaults. 
 
Model architecture. The model architecture for both simulations consisted of the four C-HORSE 
hidden layers representing the DG, CA3, pCA1, and dCA1 subfields of the hippocampus (3), and 
one neocortical hidden layer (see Supplementary Material for parameter details). Previously C-
HORSE has been employed to simulate hippocampal contributions to statistical learning, 
associative inference, and category learning (3–5) and comes from a lineage of hippocampal 
models of episodic memory (6–8). We adopted the version from Zhou et al. (3), which divides 
CA1 into proximal and distal components. Input/output layers in Simulation 1 consisted of seven 
feature layers, each corresponding to a satellite feature’s high level visual and verbal 
representation in Entorhinal Cortex (EC). Simulation 2 had a separate input and output layer, 
corresponding to superficial and deep EC layers (3, 4). 
 
Training for Simulation 1. Each satellite consisted of seven features (five visual parts, a class 
name, and a code name) of which some were shared across exemplars from a category and 
others were unique to each exemplar. Satellites were chosen randomly in each training trial and 
one feature was held out. Features were presented as one-hot inputs on the corresponding 
input/output feature layer and were held out at a ratio of unique:shared = 99:1 (to better match 
unique and shared learning speed, unique features need to be queried the vast majority of the 
time). Each training trial consisted of a minus and plus phase. In the minus phase the satellite 
was presented to the model with a feature held out and the model generated a prediction for the 
identity of the feature. In the plus phase, the full satellite was presented to the model. The model 
was trained to a criterion of 66% feature completion performance for shared and for unique 
features. 
 
Training for Simulation 2. Each training trial minus phase involved clamping an Env 1 or Env 2 
item on the input layer and requiring the model to reproduce that item on the output layer. Each 
environment had 10 items and each item consisted of seven units. Env 1 and Env 2 item units 
were chosen such that there was a 2/7 unit overlap between corresponding items from Env 1 and 
Env 2 (between Item 1 from Env 1 and Item 1 from Env 2, Item 2 from Env 1 and Item 2 from Env 
2, and so on). There was no overlap between items from the same environment. The same set of 
items were used across all initializations of the model. In the plus phase, the item was clamped 
onto both the input and output layer. 
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Fig S1. Simulation 1 was run with a simple Hebbian learning rule (weights were updated based 
on plus phase coactivity exclusively) during sleep instead of Contrastive Hebbian Learning. The 
learning rate for the Hebbian simulations was lowered such that the average weight change 
magnitude per sleep trial was approximately matched between the two conditions. We found that 
the Hebbian learning rule results in substantial forgetting of unique information and less robust 
increases in shared feature memory. 
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Fig S2. We ran a blocked NREM/REM schedule (5 epochs of NREM followed by 5 epochs of 
REM) to test whether REM can protect Env 1 memories without sleep stage alternations. This 
condition resulted in catastrophic forgetting of Env 1, indicating that REM cannot repair Env 1 
memories after extensive damage and that the alternating schedule is necessary for Env 1 
protection. 
  



 
 

5 
 

 

Fig S3. We ran each of the three Simulation 2 conditions (NREM only, Alternating NREM/REM, 
and REM only) without oscillating inhibition. The REM only, oscillations off condition is plotted on 
top of the REM only condition. Both the NREM only, oscillations off and Alternating NREM/REM, 
oscillations off conditions are substantially worse at improving Env 2 performance relative to their 
counterparts with oscillations, indicating that oscillations play an important role in NREM learning. 
They also lead to substantially more damage to Env 1 performance relative to their counterparts 
with oscillations. The REM only and REM only, oscillations off conditions are nearly identical and 
cause neither Env 1 damage nor Env 2 improvement. 
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Fig S4. The Alternating NREM/REM condition was run with oscillating inhibition selectively turned 
off in either REM or NREM epochs to further clarify the stage-specific contributions of oscillating 
inhibition to performance under alternating stages. Both conditions cause more damage to Env 1 
performance relative to the alternating condition with oscillations. When NREM oscillations are 
turned off, there is substantially less Env 2 performance improvement. These simulations reveal 
that oscillations in both sleep stages facilitate better protection of Env 1, while oscillations in 
NREM facilitate better Env 2 learning (consistent with Fig. S3 results). 
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Table S1. Layer Parameters (Simulation 1) 
 

Layer Parameter Value 

pCA1 # Units 50 

Inhibition FFFB (Gi = 2.2) 

dCA1 # Units 50 

Inhibition FFFB (Gi = 2.2) 

DG # Units 225 

Inhibition FFFB Gi = 2.8 

CA3 # Units 100 

Inhibition FFFB Gi = 5 

Feature Layers # Units 6/3/90 (Visual/Classname/Codename) 

Inhibition FFFB Gi = 2.1/1.6/2.6 
(Visual/Classname/Codename) 

Neocortex # Units 400 

Inhibition FFFB Gi = 2.4 
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Table S2. Projection Parameters (Simulation 1) 
 

Projection Parameter Value 

Default Weight Init Distribution 0.25 - 0.75 

Default Connectivity Full 

Default Learning rate 0.05 

Feature Layers -> DG Learning rate 0.1 

Feature Layers -> DG Connectivity Sparsity 0.6 

Feature Layers -> CA3 Learning rate 0.1 

Feature Layers -> CA3 Connectivity Sparsity 0.1 

DG -> CA3 Learning rate 0 

DG -> CA3 Connectivity Sparsity 0.1 

DG -> CA3 Weight Init Distribution 0.89 - 0.91 

CA3 -> CA3 Learning rate 0.1 

CA3 -> CA3 Weight Init Distribution 0 - 0.6 

Feature Layers <-> Neocortex Learning rate 0.0001 
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Table S3. Sleep Parameters (Simulation 1) 

 

Projection Parameter Value 

Feature Layers <-> Neocortex Learning rate 0.01 

Feature Layers -> DG Learning rate 0 

Feature Layers -> CA3 Learning rate 0 

CA3 ->  pCA1 Learning rate 0 

 pCA1 -> Feature Layers Learning rate 0 

Feature Layers <->  dCA1 Learning rate 0 

Synaptic Depression Inc 0.00035 

 
Dec 0.00025 
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Table S4. Layer Parameters (Simulation 2) 

 

Layer Parameter Value 

pCA1 # Units 50 

Inhibition FFFB (Gi = 2.2) 

dCA1 # Units 50 

Inhibition FFFB (Gi = 2.2) 

DG # Units 225 

Inhibition FFFB Gi = 2.8 

CA3 # Units 100 

Inhibition FFFB Gi = 5 

Input/Output # Units 120 

Inhibition FFFB Gi = 3.2/2.8 (Input/Output) 

Neocortex # Units 400 

Inhibition FFFB Gi = 2.4 
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Table S5. Projection Parameters (Simulation 2) 
 

Projection Parameter Value 

Default Weight Init Distribution 0.25 - 0.75 

Default Connectivity Full 

Default Learning rate 0.05 

Input -> DG Learning rate 0.1 

Input -> DG Connectivity 0.6 

Input -> CA3 Learning rate 0.1 

DG -> CA3 Learning rate 0 

DG -> CA3 Connectivity Sparsity 0.1 

DG -> CA3 Weight Init Distribution 0.89 - 0.91 

CA3 -> CA3 Learning rate 0.1 

CA3 -> CA3 Weight Init Distribution 0 - 0.6 

Input -> Neocortex Learning rate 0.0001 

Neocortex -> Output Learning rate 0.0001 
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Table S6. Sleep Parameters (Simulation 2) 

 

Projection Parameter Value 

Input <-> Neocortex Learning rate 0.01 

Neocortex -> Output Learning rate 0.01 

 pCA1 -> Neocortex Learning rate 0 

 dCA1 -> Neocortex Learning rate 0 

Feature Layers -> DG Learning rate 0 

Feature Layers -> CA3 Learning rate 0 

CA3 ->  pCA1 Learning rate 0 

 pCA1 -> Ouput Learning rate 0 

Input <->  dCA1 Learning rate 0 

Synaptic Depression Inc 0.0006 

 
Dec 0.0003 

 
  



 
 

13 
 

 
 
SI References 
 

1. B. Aisa, B. Mingus, R. O’Reilly, The Emergent neural modeling system. Neural Netw. 21, 
1146–1152 (2008). 

2. R. C. O’Reilly, Y. Munakata, M. J. Frank, T. E. Hazy, Contributors, Computational 
Cognitive Neuroscience, 4th Ed. (2020). 

3. Z. Zhou, D. Singh, M. C. Tandoc, A. C. Schapiro, Distributed representations for human 
inference. bioRxiv (2021). https:/doi.org/10.1101/2021.07.29.454337. 

4. A. C. Schapiro, N. B. Turk-Browne, M. M. Botvinick, K. A. Norman, Complementary 
learning systems within the hippocampus: a neural network modelling approach to 
reconciling episodic memory with statistical learning. Philos. Trans. R. Soc. B Biol. Sci. 
372, 20160049 (2017). 

5. J. Sučević, A. C. Schapiro, A neural network model of hippocampal contributions to 
category learning. bioRxiv (2022). https:/doi.org/10.1101/2022.01.12.476051. 

6. N. Ketz, S. G. Morkonda, R. C. O’Reilly, Theta Coordinated Error-Driven Learning in the 
Hippocampus. PLoS Comput. Biol. 9, e1003067 (2013). 

7. K. A. Norman, R. C. O’Reilly, Modeling hippocampal and neocortical contributions to 
recognition memory: A complementary-learning-systems approach. Psychol. Rev. 110, 
611–646 (2003). 

8. R. C. O’Reilly, K. A. Norman, J. L. McClelland, “A Hippocampal Model of Recognition 
Memory” in Advances in Neural Information Processing Systems, M. Jordan, M. Kearns, 
S. Solla, Eds. (MIT Press, Cambridge, MA, 1997), pp. 73-79. 


