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Supporting Information Text13

S1. Sensitivity analyses comparing three approaches. In addition to the base case for the three approaches, we also perform14

extensive sensitivity analyses.15

To compare the “location” and “sector” approaches we (a) considered relative inequality rather than absolute inequality16

(Fig. S1); (b) used two alternative reduction scenarios (only reducing 50% or 90% of each emission location or sector, such17

that emissions are not completely eliminated; Fig. S2); (c) optimized to reduce inequality in each geographic region or in18

each Urban Area instead of nationally (Fig. S3); (d) reduced inequality for HV instead of racial-ethnic groups (Fig. S4); (e)19

considered urban disparities instead of national disparities (Fig. S5); (f) optimized to reduce average concentrations rather than20

concentration-disparities (Fig. S6); and (g) optimized location-sectors and sector-regions (i.e., modified the “sector” approach21

to make it more similar to the “location” approach; Fig. S7).22

For sensitivity analysis [b] (i.e., only partial emission-reductions), we apply 90% (in another case, 50%) emission reductions23

for each location-pollutant or sector-pollutant parings. In these two scenarios, the emission reductions end once 10% (or,24

50%) of the original total concentrations and concentration inequalities has been reached, respectively. If no further emission25

reduction could reduce the disparity (i.e., if the marginal concentration differences become negative for all the rest of parings),26

one could decide to halt the optimization at that point. (Further emission-reductions beyond that point will increase racial-27

ethnic disparities; the reason is that further emission-reductions reduce concentrations more for less-exposed groups than28

for more-exposed group.) However, to shed additional light on these scenarios, our optimization algorithm instead continues29

its simulation: it simulates the local optimum to keep the disparity low and non-negative (see green lines for 50% reduction30

scenario in Fig. S2: the line slopes upward after 5 MT/y emission reduction). Compared with the main approach, partial31

emission-reductions require more emission reduction amounts to reach the same disparity reductions.32

For sensitivity analysis [c] (optimize regionally and locally instead of nationally), we reduce the emissions within each33

EPA region or Urban Area, separately. For the regional optimization, the median emission reductions to reduce 90% (from34

1.5 to 0.15 µg/m3) of the median regional disparity are 0.03 and 0.8 MT/y (a 27-fold difference) for “location” and “sector”35

approaches, respectively. For the local optimization, the median disparity is 0.4 µg/m3; to reduce 90% of the disparity, the36

required emission reductions for the two approached are 0.001 and 0.01 MT/y (a 11-fold difference), for “location” and “sector”37

approaches, respectively. Considering large, medium, and small urban areas (UAs) separately for the local optimization, the38

median disparities are 1.0, 0.6, and 0.2 µg/m3 (relative disparities: 11%, 9%, and 3%), respectively. (Large/medium/small39

UAs are defined following (1), as population tertiles: n=10 large UAs, population >4m; n=44 medium UAs, population 728k40

– 4m; n=177 small UAs, population <728k; restricted to UAs with >20 ISRM grid cells.) To reduce 90% of the disparity,41

the required emission reductions for “location” and “sector” approaches are 0.003 and 0.06 MT/y (a 17-fold difference) for42

large urban areas, 0.002 and 0.03 MT/y (a 14-fold difference) for medium urban areas, and 0.0003 and 0.003 MT/y (a 12-fold43

difference) for small urban areas. Thus, our findings (the greater efficiency of the “location” approach relative to the “sector”44

approach) are consistent across large, medium, and small urban areas.45

For sensitivity analysis [d] (social vulnerability), the population-average modeled PM2.5 concentration is 7.9 µg/m3 for46

HV locations and 6.9 µg/m3 for non-HV locations (using our main definition for HV: 10% of CDC’s SVI). The estimated47

disparity for HV is 0.9 µg/m3 (13%) (i.e., the average PM2.5 level for HV locations versus the population average). Using48

two alternative definitions for HV locations (20% of CDC’s SVI; 10% PM2.5 EJ index in EJScreen), the disparities for HV49

are 0.8 µg/m3 (11%) and 1.8 µg/m3 (25%), respectively. The overall reduction efficiency for HV is higher compared with the50

racial-ethnic disparities, using all three HV definitions. For all the three HV definition, “location” approach is much more51

efficient than “sector” approach in reducing the disparity for HV locations. Both approaches (i.e., “location” and “sector”)52

reduce disparities by 90% or more, at less than 1.5 MT/y emission-reduction. In summary, the optimization can dramatically53

reduce disparities at far less emission-reduction for HV than by race-ethnicity; in all sensitivity analyses (as is also true for the54

main case), the “location” approach is more efficient than “sector” approach at reducing disparities.55

For sensitivity analysis [e] (i.e., urban disparities), we explore the within-CBSA disparity changes for the baseline national56

optimizations. The results indicate that “location” approach is slightly more efficient than “sector” approach at most of the57

emission reduction levels, and the required emission reductions to reduce 50% (from 0.83 to 0.41 µg/m3) of the within-urban58

disparities are 0.7 MT/y and 1.3 MT/y for “location” and “sector” approaches, separately.59

For sensitivity analysis [f], we adjust the optimization metric in “location” and “sector” approaches to reduce average60

concentrations rather than concentration-disparities (Fig. S6). The goal of this alternative optimization changes from61

addressing/minimizing exposure disparity to maximize the health benefit for the total population. Results from [f] also indicate62

“location” approach is more efficient (here, at reducing population-average exposure concentrations) than “sector” approach.63

For sensitivity analysis [g], we explore two alternative emission reduction steps: sector & region & pollutant combinations64

(the “sector and geographic region” approach) and sector & location combinations (the “sector and location” approach). The65

“sector and geographic region” approach adds EPA region of the emission sources as a further dimension in the reduction steps66

compared with the “sector” approach, and has 595 combinations (i.e., 14 sectors; 5 pollutants; 10 EPA regions; of the 70067

maximum possible sector-pollutant-region pairings, 105 have zero emissions and so are not considered here as an opportunity68

for emission-reduction.) in total; the “sector and location” approach changes the pollutant type to source sector compared with69

the “location” approach, and has 509,128 combinations (i.e., 14 sectors; 52,411 locations; of the 733,754 maximum possible70

sector-location parings, 172,215 have zero emissions.) in total. Results from [g] (Fig. S7) indicate that adding additional71

dimension of geographic region improve the efficiency of “sector” approach; the efficiency of the approach combining sector and72

location (i.e., “sector” approach modified to be similar to “location” approach) is almost the same as “location” approach.73
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This finding reflects that this sensitivity analysis modifies the “sector” approach by adding information on location (the EPA74

region), i.e., it is partially a “sector” - “location” hybrid method.75

To examine the NAAQS-like scenario, we varied the NAAQS-like concentration standard (specifically 5, 6, 7, 8, 9, and76

10 µg/m3; Fig. S8) and, as a sensitivity analysis, considered urban and regional disparities rather than national disparities77

(Fig. S8, middle and bottom rows). None of the NAAQS-like scenarios explored eliminate the national, regional, and urban78

disparities.79

S2. Relationship between reduction priority for the “location” approach and grid cell characteristics. To determine the80

relationships between grid cell characteristics and emission reduction priority for the “location” approach, we employ both81

unadjusted (univariate) and adjusted (multivariate) analyses. The grid cell characteristics included in the analysis are racial-82

ethnic composition, median household income, population density, pollution emission density, and racial segregation index.83

Racial-ethnic segregation is represented by dissimilarity index at each location (grid cell), which measures the percentage of the84

White population in an ISRM grid which would have to change census block to equalize the racial distribution between White85

and non-White (or a specified non-White, e.g., Hispanic) population groups across all blocks in the grid cell. The formula86

of segregation index is: Di = 0.5
∑n

j=1

∣∣ wi,j

Wi
− ni,j

Ni

∣∣ , where Di is the dissimilarity index in ith ISRM grid; Wi is the total87

White population in ISRM grid i; Ni is the total non-White population in ISRM grid i; wi,j represents the White population88

in jth census block that within the boundary of ISRM grid i; ni,j represents the non-White population in jth census block89

that within the boundary of ISRM grid i.90

For the unadjusted (univariate) analyses (Fig. S9), White percentage, Asian percentage, and median household income91

are negatively related with reduction priority and statistically significant (p<0.05). Black percentage, population density,92

emission density, and segregation index have positive relationships with reduction priority and statistically significant (p<0.05).93

Hispanic percentage is positively related with emission reduction priority, but the relationship is not statistically significant94

(p = 0.32). This result implies that, in general and averaged across the country, to optimally reduce disparities one would95

target emission-reductions in locations that have higher values for Black percentage, population density, emission density, and96

segregation. (An analogous result holds for Hispanic percentage, but the relationship is “noisier” (has more scatter).)97

For the adjusted (multivariate) analyses, we employ four groups of multiple linear regression models (Table S1; 13 models98

in total). The first group (model 1) has three independent variables: income, population density, and emission density (the99

“baseline” variables). The second group (models 2-5) has the three “baseline” variables, plus racial-ethnic compositions. The100

third group (models 6-9) has the second-group variables, plus segregation indexes. The fourth group (models 10-13) has the101

third-group variables, plus an interaction term between racial-ethnic composition and segregation index. The second, third,102

and fourth groups each contain four regression models: one for the combined non-White population and one for each of the103

three specified groups (Black, Hispanic, Asian).104

In all of the regression models (and, consistent with the univariate analyses), population density and emission density have105

positive slopes (p<0.001) and median household income has negative slopes (p<0.001).106

The slopes (i.e., the beta coefficients in the regression models) of racial-ethnic composition and segregation index have107

different patterns across racial-ethnic groups (non-White; Black; Hispanic; Asian). For the non-White group, both non-White108

percentage and segregation index have positive slopes in all the models (models 2, 6, and 10 for non-White percentage; models109

6 and 10 for non-White/White segregation index). The interaction term between non-White percentage and segregation110

index (model 10) has a slight positive value, which indicates that with an increase of segregation level, the positive slope for111

non-White percentage becomes slightly steeper. The patterns (models 3, 7, and 11) for Black population are generally the112

same as combined non-White group. The only difference is that the interaction term of Black percentage and segregation113

index is negative (model 11), which indicates that with an increase of segregation level, the positive slope for Black percentage114

become less steep. Regression models for Hispanic (models 4, 8, and 12) and Asian (models 5, 9, and 13) groups have similar115

patterns, which are different from the non-White group and the Black group. In the regression models without interactions116

(models 4, 5, 8, and 9), Hispanic & Asian percentages have negative coefficients; segregation indexes have positive coefficients.117

However, in the models with interaction terms (models 12 and 13), the slopes of Hispanic & Asian percentages become positive,118

and the interaction terms are negative. The results for Hispanic and Asian population indicate that at a zero segregation levels,119

Hispanic and Asian percentages both have positive slopes. With an increase of segregation levels, the positive slopes become120

less steep, which eventually flip to be negative; at the average segregation levels, the slopes for Hispanic and Asian percentages121

are both negative (model 8 and 9). The p values for all the slopes in all 13 models are less than 0.001.122

S3. Comparing five species for the “sector” approach. Comparing the five types of emissions that contribute to PM2.5 –123

“primary” (directly-emitted) PM2.5, and four precursor species that can form secondary PM2.5 – primary PM2.5 and NH3 have124

the highest reduction priorities for all sectors. Reduction of primary PM2.5 emissions causes the largest inequality reduction for125

most of the sectors (account for 57% of the total disparity). For addressing PM2.5 disparities, the precursors VOC and NOx126

have the lowest reduction priorities for all sectors.127
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Fig. S1. Relative PM2.5 exposure disparity changes with emission reduction and concentration reduction.
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Fig. S2. PM2.5 exposure disparity and concentration reduction curves for the alternative conditions of (90% and 50%) emission reduction. Where a line trends upward (i.e.,
has a positive slope), any emission reduction would increase the exposure disparity (between the most-exposed racial-ethnic groups and the population average); here, the
optimization procedure priorities emission-reductions with the lowest marginal increase in the exposure disparity.
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Fig. S3. PM2.5 exposure disparity and concentration reduction curves. Top row: within-region results, reflecting each region’s emission-reductions to optimally reduce
disparities in that region. Each light-color line reflects one US EPA region (n=10); median and interquartile range (IQR) are dark-color lines. Bottom row: within-urban results,
reflecting each Urban Area’s emission-reductions to optimally reduce disparities in that Urban Area [UA]. Each light-color line reflects one UA (n=171); median and IQR are
dark-color lines. Some panels display zoom-in results in a sub-panel. For both rows, the location-based approach eliminates racial-ethnic disparities in exposure well before the
source-based approach (i.e., the green line is below the blue line). For example, at the regionally level the location-based approach rapidly reduces disparities to zero; the
source-based approach does not.
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Fig. S4. Distribution map of “high vulnerability” locations, and PM2.5 exposure disparity and concentration reduction curves for HV locations.
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Fig. S5. Urban disparity reduction curves for the two optimization approaches.
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Fig. S6. PM2.5 exposure disparity and concentration reduction curves reflecting optimization to reduce average exposure concentration.
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Fig. S7. PM2.5 exposure disparity and concentration reduction curves, comparing four approaches to emission-reduction: optimization by sector (blue line, same as Fig. 1),
optimization by sector and geographic regions (blue dash line), optimization by location (green line, same as Fig. 1), and optimization by sector and location (green dash line).
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Fig. S8. PM2.5 exposure disparity and concentration reduction curves for “NAAQS-like” approach. Rows and columns are analogous to Fig. 1. Here, each CBSA reduces
emissions inside that CBSA to meet the concentration target (5, 6, 7, 8, 9, or 10 µg/m3); the figure shows the resulting disparities and concentrations (top row: nationally;
middle row: by regional; bottom row: by CBSA). None of the scenarios investigated here result in disparities reaching zero.
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Fig. S9. Scatter plots with best fit line (blue lines) and spline smoothing line (orange lines; order = 3) of reduction priority versus racial-ethnic composition, household income,
population density, emission density, and racial segregation index in the location (grid cell). Reduction priority is converted to 0–100 scale: 100 represents highest priority, 0
represents lowest priority. Points, best-fit lines, and regression R-squares are for the 1% random sub-sample of all the locations with none missing value, non-zero emissions,
and non-zero populations (n = 398). Population density and emission density are at log-scale. The unit of population density is log of persons per square kilometer; the unit of
emission density is log of tonnes per square kilometer.

12 of 22 Yuzhou Wang, Josh S. Apte, Jason D. Hill, Cesunica E. Ivey, Regan F. Patterson, Allen L. Robinson,
Christopher W. Tessum and Julian D. Marshall



Fig. S10. Reduction priority maps for optimization by location methods for 44 medium Urban Areas.
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Fig. S11. Reduction priority maps for optimization by location methods for 70 (out of 381) small Urban Areas.
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Fig. S12. Reduction priority maps for urban-level optimization by location methods for 10 large Urban Areas.
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Fig. S13. Reduction priority maps for urban-level optimization by location methods for 44 medium Urban Areas.
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Fig. S14. Reduction priority maps for urban-level optimization by location methods for 70 (out of 381) small Urban Areas.
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Fig. S15. Emission reduction priority for optimization by sector method. The plot is an alternative version of Fig. 2b-left, where the icons are equally size (so they are more
easily visible) instead of sized proportionately to emissions.
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Fig. S16. Disparity reduction for optimization by sector method. The icons sizes are proportionately to emissions.
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Fig. S17. Emission reduction priority, emission reduced and disparity reduced for optimization by sector method. This figure is an alternative version of Fig. 2b.
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