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Supporting Information Text

S1. Sensitivity analyses comparing three approaches. In addition to the base case for the three approaches, we also perform
extensive sensitivity analyses.

To compare the “location” and “sector” approaches we (a) considered relative inequality rather than absolute inequality
(Fig. S1); (b) used two alternative reduction scenarios (only reducing 50% or 90% of each emission location or sector, such
that emissions are not completely eliminated; Fig. S2); (¢) optimized to reduce inequality in each geographic region or in
each Urban Area instead of nationally (Fig. S3); (d) reduced inequality for HV instead of racial-ethnic groups (Fig. S4); (e)
considered urban disparities instead of national disparities (Fig. S5); (f) optimized to reduce average concentrations rather than
concentration-disparities (Fig. S6); and (g) optimized location-sectors and sector-regions (i.e., modified the “sector” approach
to make it more similar to the “location” approach; Fig. S7).

For sensitivity analysis [b] (i.e., only partial emission-reductions), we apply 90% (in another case, 50%) emission reductions
for each location-pollutant or sector-pollutant parings. In these two scenarios, the emission reductions end once 10% (or,
50%) of the original total concentrations and concentration inequalities has been reached, respectively. If no further emission
reduction could reduce the disparity (i.e., if the marginal concentration differences become negative for all the rest of parings),
one could decide to halt the optimization at that point. (Further emission-reductions beyond that point will increase racial-
ethnic disparities; the reason is that further emission-reductions reduce concentrations more for less-exposed groups than
for more-exposed group.) However, to shed additional light on these scenarios, our optimization algorithm instead continues
its simulation: it simulates the local optimum to keep the disparity low and non-negative (see green lines for 50% reduction
scenario in Fig. S2: the line slopes upward after 5 MT/y emission reduction). Compared with the main approach, partial
emission-reductions require more emission reduction amounts to reach the same disparity reductions.

For sensitivity analysis [c] (optimize regionally and locally instead of nationally), we reduce the emissions within each
EPA region or Urban Area, separately. For the regional optimization, the median emission reductions to reduce 90% (from
1.5 to 0.15 pg/m®) of the median regional disparity are 0.03 and 0.8 MT/y (a 27-fold difference) for “location” and “sector”
approaches, respectively. For the local optimization, the median disparity is 0.4 ug/mg; to reduce 90% of the disparity, the
required emission reductions for the two approached are 0.001 and 0.01 MT/y (a 11-fold difference), for “location” and “sector’
approaches, respectively. Considering large, medium, and small urban areas (UAs) separately for the local optimization, the
median disparities are 1.0, 0.6, and 0.2 ug/m? (relative disparities: 11%, 9%, and 3%), respectively. (Large/medium /small
UAs are defined following (1), as population tertiles: n=10 large UAs, population >4m; n=44 medium UAs, population 728k
— 4m; n=177 small UAs, population <728k; restricted to UAs with >20 ISRM grid cells.) To reduce 90% of the disparity,
the required emission reductions for “location” and “sector” approaches are 0.003 and 0.06 MT/y (a 17-fold difference) for
large urban areas, 0.002 and 0.03 MT/y (a 14-fold difference) for medium urban areas, and 0.0003 and 0.003 MT/y (a 12-fold
difference) for small urban areas. Thus, our findings (the greater efficiency of the “location” approach relative to the “sector”
approach) are consistent across large, medium, and small urban areas.

For sensitivity analysis [d] (social vulnerability), the population-average modeled PMz 5 concentration is 7.9 ug/m? for
HV locations and 6.9 ug/m?® for non-HV locations (using our main definition for HV: 10% of CDC’s SVI). The estimated
disparity for HV is 0.9 pg/m3 (13%) (i.e., the average PMa 5 level for HV locations versus the population average). Using
two alternative definitions for HV locations (20% of CDC’s SVI; 10% PMs 5 EJ index in EJScreen), the disparities for HV
are 0.8 ug/m3 (11%) and 1.8 ,ug/m3 (25%), respectively. The overall reduction efficiency for HV is higher compared with the
racial-ethnic disparities, using all three HV definitions. For all the three HV definition, “location” approach is much more
efficient than “sector” approach in reducing the disparity for HV locations. Both approaches (i.e., “location” and “sector”)
reduce disparities by 90% or more, at less than 1.5 MT/y emission-reduction. In summary, the optimization can dramatically
reduce disparities at far less emission-reduction for HV than by race-ethnicity; in all sensitivity analyses (as is also true for the
main case), the “location” approach is more efficient than “sector” approach at reducing disparities.

For sensitivity analysis [e] (i.e., urban disparities), we explore the within-CBSA disparity changes for the baseline national
optimizations. The results indicate that “location” approach is slightly more efficient than “sector” approach at most of the
emission reduction levels, and the required emission reductions to reduce 50% (from 0.83 to 0.41 pug/m?®) of the within-urban
disparities are 0.7 MT/y and 1.3 MT/y for “location” and “sector” approaches, separately.

For sensitivity analysis [f], we adjust the optimization metric in “location” and “sector” approaches to reduce average
concentrations rather than concentration-disparities (Fig. S6). The goal of this alternative optimization changes from
addressing/minimizing exposure disparity to maximize the health benefit for the total population. Results from [f] also indicate
“location” approach is more efficient (here, at reducing population-average exposure concentrations) than “sector” approach.

i

For sensitivity analysis [g], we explore two alternative emission reduction steps: sector & region & pollutant combinations
(the “sector and geographic region” approach) and sector & location combinations (the “sector and location” approach). The
“sector and geographic region” approach adds EPA region of the emission sources as a further dimension in the reduction steps
compared with the “sector” approach, and has 595 combinations (i.e., 14 sectors; 5 pollutants; 10 EPA regions; of the 700
maximum possible sector-pollutant-region pairings, 105 have zero emissions and so are not considered here as an opportunity
for emission-reduction.) in total; the “sector and location” approach changes the pollutant type to source sector compared with
the “location” approach, and has 509,128 combinations (i.e., 14 sectors; 52,411 locations; of the 733,754 maximum possible
sector-location parings, 172,215 have zero emissions.) in total. Results from [g] (Fig. S7) indicate that adding additional
dimension of geographic region improve the efficiency of “sector” approach; the efficiency of the approach combining sector and
location (i.e., “sector” approach modified to be similar to “location” approach) is almost the same as “location” approach.
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This finding reflects that this sensitivity analysis modifies the “sector” approach by adding information on location (the EPA
region), i.e., it is partially a “sector” - “location” hybrid method.

To examine the NAAQS-like scenario, we varied the NAAQS-like concentration standard (specifically 5, 6, 7, 8, 9, and
10 pg/ m?; Fig. S8) and, as a sensitivity analysis, considered urban and regional disparities rather than national disparities
(Fig. S8, middle and bottom rows). None of the NAAQS-like scenarios explored eliminate the national, regional, and urban
disparities.

S2. Relationship between reduction priority for the “location” approach and grid cell characteristics. To determine the
relationships between grid cell characteristics and emission reduction priority for the “location” approach, we employ both
unadjusted (univariate) and adjusted (multivariate) analyses. The grid cell characteristics included in the analysis are racial-
ethnic composition, median household income, population density, pollution emission density, and racial segregation index.
Racial-ethnic segregation is represented by dissimilarity index at each location (grid cell), which measures the percentage of the
White population in an ISRM grid which would have to change census block to equalize the racial distribution between White
and non-White (or a specified non-White, e.g., Hispanic) population groups across all blocks in the grid cell. The formula
of segregation index is: D; = 0.5 Z;;l H,;/’J - "1(,1’ ‘ , where D; is the dissimilarity index in ith ISRM grid; W; is the total
White population in ISRM grid i; N; is the total non-White population in ISRM grid ; w; ; represents the White population
in jth census block that within the boundary of ISRM grid ¢; n; ; represents the non-White population in jth census block
that within the boundary of ISRM grid i.

For the unadjusted (univariate) analyses (Fig. S9), White percentage, Asian percentage, and median household income
are negatively related with reduction priority and statistically significant (p<0.05). Black percentage, population density,
emission density, and segregation index have positive relationships with reduction priority and statistically significant (p<0.05).
Hispanic percentage is positively related with emission reduction priority, but the relationship is not statistically significant
(p = 0.32). This result implies that, in general and averaged across the country, to optimally reduce disparities one would
target emission-reductions in locations that have higher values for Black percentage, population density, emission density, and
segregation. (An analogous result holds for Hispanic percentage, but the relationship is “noisier” (has more scatter).)

For the adjusted (multivariate) analyses, we employ four groups of multiple linear regression models (Table S1; 13 models
in total). The first group (model 1) has three independent variables: income, population density, and emission density (the
“baseline” variables). The second group (models 2-5) has the three “baseline” variables, plus racial-ethnic compositions. The
third group (models 6-9) has the second-group variables, plus segregation indexes. The fourth group (models 10-13) has the
third-group variables, plus an interaction term between racial-ethnic composition and segregation index. The second, third,
and fourth groups each contain four regression models: one for the combined non-White population and one for each of the
three specified groups (Black, Hispanic, Asian).

In all of the regression models (and, consistent with the univariate analyses), population density and emission density have
positive slopes (p<0.001) and median household income has negative slopes (p<0.001).

The slopes (i.e., the beta coefficients in the regression models) of racial-ethnic composition and segregation index have
different patterns across racial-ethnic groups (non-White; Black; Hispanic; Asian). For the non-White group, both non-White
percentage and segregation index have positive slopes in all the models (models 2, 6, and 10 for non-White percentage; models
6 and 10 for non-White/White segregation index). The interaction term between non-White percentage and segregation
index (model 10) has a slight positive value, which indicates that with an increase of segregation level, the positive slope for
non-White percentage becomes slightly steeper. The patterns (models 3, 7, and 11) for Black population are generally the
same as combined non-White group. The only difference is that the interaction term of Black percentage and segregation
index is negative (model 11), which indicates that with an increase of segregation level, the positive slope for Black percentage
become less steep. Regression models for Hispanic (models 4, 8, and 12) and Asian (models 5, 9, and 13) groups have similar
patterns, which are different from the non-White group and the Black group. In the regression models without interactions
(models 4, 5, 8, and 9), Hispanic & Asian percentages have negative coefficients; segregation indexes have positive coefficients.
However, in the models with interaction terms (models 12 and 13), the slopes of Hispanic & Asian percentages become positive,
and the interaction terms are negative. The results for Hispanic and Asian population indicate that at a zero segregation levels,
Hispanic and Asian percentages both have positive slopes. With an increase of segregation levels, the positive slopes become
less steep, which eventually flip to be negative; at the average segregation levels, the slopes for Hispanic and Asian percentages
are both negative (model 8 and 9). The p values for all the slopes in all 13 models are less than 0.001.

S3. Comparing five species for the “sector” approach. Comparing the five types of emissions that contribute to PMsy5 —
“primary” (directly-emitted) PMa2 5, and four precursor species that can form secondary PMs 5 — primary PMs. 5 and NHjs have
the highest reduction priorities for all sectors. Reduction of primary PMs 5 emissions causes the largest inequality reduction for
most of the sectors (account for 57% of the total disparity). For addressing PMs 5 disparities, the precursors VOC and NO,,
have the lowest reduction priorities for all sectors.
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optimization procedure priorities emission-reductions with the lowest marginal increase in the exposure disparity.
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Fig. S11. Reduction priority maps for optimization by location methods for 70 (out of 381) small Urban Areas.
14 of 22 Yuzhou Wang, Josh S. Apte, Jason D. Hill, Cesunica E. lvey, Regan F. Patterson, Allen L. Robinson,

Christopher W. Tessum and Julian D. Marshall



New York Los Angeles Chicago Miami Philadelphia

High

kr 43‘

=

o

—_

o

c

e

S

Atlanta S

°

&

Low
Fig. S12. Reduction priority maps for urban-level optimization by location methods for 10 large Urban Areas.
Yuzhou Wang, Josh S. Apte, Jason D. Hill, Cesunica E. Ivey, Regan F. Patterson, Allen L. Robinson, 15 of 22

Christopher W. Tessum and Julian D. Marshall



San Francisco-- Minneapolis--St. Paul, Tampa--St. Petersburg,
Detroit, M| Phoenix--Mesa, AZ Oakland, CA Seattle, WA San Diego, CA M 1 FL

=3
ki ="

Riverside--San
Bernardino, CA

Las Vegas--Henderson,
NV

Baltimore, MD Portland, OR--WA Cleveland, OH

Kansas City, MO--KS Orlando, FL

High
z
s
s
c
=]
[&)
Virginia Beach, VA Milwaukee, WI Austin, TX Charlotte, NC--SC Providence, RI--MA 3
s g &

Low

Salt Lake City--West
Memphis, TN--MS--AR Valley City, UT
Hartford, CT Raleigh, NC
=4
oir
N
Fig. S13. Reduction priority maps for urban-level optimization by location methods for 44 medium Urban Areas.
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Fig. S15. Emission reduction priority for optimization by sector method. The plot is an alternative version of Fig. 2b-left, where the icons are equally size (so they are more
easily visible) instead of sized proportionately to emissions.
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