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Fig. S1. Cleavage proportion of cfDNA molecules depending on CpG methylation status (whole genome 

sequencing data). (A) and (B) Cleavage profiles in windows each containing two tandem CpG dinucleotides 

spanning positions of 0, 1, 2, and 3 (i.e., CGCG subsequence) in the pool of cfDNA samples from 8 healthy 

controls. Red, dark blue, yellow, and light blue lines correspond to the cleavage profiles with different 

methylation configurations of two immediately adjacent CpG sites, namely MM, UU, MU, and UM where 

‘M’ and ‘U’ represent the hypermethylated and hypomethylated state, respectively. 
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Fig. S2. CGN/NCG motif ratio analysis. (A) Boxplot of CGN/NCG motif ratio between hypermethylated 

and hypomethylated CpGs from plasma DNA of 8 healthy control samples (whole genome non-bisulfite 

sequencing data). (B) CGN/NCG motif ratios of the whole genome, Alu regions, and CpG islands, 

respectively (whole genome sequencing data). (C) The correlation between the CGN/NCG motif ratio 

calculated based on the whole genome non-bisulfite sequencing data and the whole genome bisulfite 

sequencing data from 8 healthy control plasma DNA samples for the whole genome, Alu regions and CpG 

islands, respectively. (D) The methylation status of sequenced fragments mapped to an imprinting region 

(MEST gene, located at chr7:130,132,754-130,132,884). Each row with the black (methylated) and white 

(unmethylated) dots represents one plasma DNA molecule. Each dot represents one CpG site. Two groups 

of sequenced fragments carried A alleles and G alleles, respectively, at a SNP (rs2301335). The frequencies 

of CGN and NCG motifs related to the imprinting region are shown in the left panel. The right panel shows 

that cfDNA molecules carrying A alleles and  G-alleles exhibit distinct methylation patterns. (E) and (F) 

Impact of methylation patterns with multiple adjacent CpGs on CGN/NCG motif ratio. Adjacent CpGs were 

defined as those CpG sites located within a range of 75 bp in size but not in tandem. CGN/NCG motif ratios 

across different combinations of methylation states for those molecules with 2 and 3 adjacent CpG sites were 

analyzed. For cfDNA molecules with 2 adjacent CpGs, there were a total of 4 combinations of methylation 

states. One combination could be the situation where the methylated CpG at 5’ end was followed by a 

methylated CpG (denoted by “M-M”, where ‘M’ represents the methylated CpG and ‘-’ represents any one 

or more nucleotides). The other combinations could be “M-U”, “U-M”, “U-U”, where ‘U’ represents the 

unmethylated CpG). For cfDNA molecules with 3 CpGs, there were a total of 8 combinations of methylation 

states, namely, “M-M-M”, “M-M-U”, “M-U-M”, “M-U-U”, “U-M-M”, “U-M-U”, “U-U-M”, and “U-U-U”. 

(G) The CGN/NCG motif ratios from fetal-specific cfDNA in maternal plasma DNA (3rd trimester) correlated 

with the methylation levels in the paired placenta tissue. CpGs were grouped into ten groups according to the 

methylation levels from paired placenta tissue. The y-axis represents the CGN/NCG motif ratio of fetal-

specific cfDNA, and the graded colors in the bars represent the methylation density of fetal-specific cfDNA. 
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Fig. S3. (A) Comparison of methylation analyses based on cfDNA fragmentomics and bisulfite sequencing 

in pregnant women. The Y-axis represents the Pearson’s correlation coefficient between the metric 

[CGN/NCG end motif (blue; the absolute difference between the CGN/NCG motif ratio from placenta-

specific hypermethylated and hypomethylated CpGs)) or placental DNA contribution by methylation-based 

plasma DNA tissue mapping (yellow)] and fetal DNA fraction deduced by SNP-based approach. The X-axis 

represents different sequencing depths. (B) Impact of the number of sequenced cfDNA molecules and 

fractional concentration of target tissue DNA in plasma on the detection power of tissue-specific cleavage 

signal based on the computer simulation. 
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Fig. S4. (A) The correlation between the motif diversity score (MDS) and tumor DNA fraction calculated 

based on copy number aberrations in HCC cases. (B) The CGN/NCG motif ratio concerning HCC-specific 

hypermethylated CpGs in plasma DNA among non-HCC cases (healthy controls and HBV carriers), HCC 

cases with early (eHCC), intermediate (iHCC), and advanced (aHCC) stages. 
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Fig. S5. CGN/NCG motif ratio used for NPC screening. (A) The classification cutoffs of EBV DNA 

proportion and EBV DNA size ratio used in a previous study (1). (B) Data points used in the training set 

(upper panel) and testing set (bottom panel). (C) The adjusted CGN/NCG motif ratios of informative CpGs 

in the EBV genome between non-NPC and NPC individuals (training set). (D) The methylation index of 

informative CpGs measured by bisulfite sequencing between non-NPC and NPC cases. 
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Sample 
names 

Status BCLC stage Tumor DNA 
fraction 
estimated by 
ichorCNA (%)  

TBR1015 eHCC BCLC A 3.40 
TBR1373 eHCC BCLC 0 0.00 
TBR1388 eHCC BCLC A 4.58 
TBR1586 eHCC BCLC A 0.00 
TBR1644 eHCC BCLC A 13.85 
TBR1662 eHCC BCLC A 4.35 
TBR1676 eHCC BCLC 0 0.00 
TBR1677 eHCC BCLC 0 0.00 
TBR1772 eHCC BCLC A 0.00 
TBR1774 eHCC BCLC 0 0.00 
TBR1828 eHCC BCLC A 0.00 
TBR1850 eHCC BCLC A 6.45 
TBR1886 eHCC BCLC A 0.00 
TBR1899 eHCC BCLC A 6.44 
TBR1916 eHCC BCLC A 0.00 
TBR1920 eHCC BCLC 0 0.00 
TBR1932 eHCC BCLC A 0.00 
TBR2038 eHCC BCLC A 3.60 
TBR2080 eHCC BCLC A 5.90 
TBR931 eHCC BCLC 0 0.00 
TBR1555 iHCC BCLC B 5.74 
TBR1723 iHCC BCLC B 0.00 
TBR846 iHCC BCLC B 0.00 
TBR852 iHCC BCLC B 20.91 
TBR858 iHCC BCLC B 9.84 
TBR874 iHCC BCLC B 8.47 
TBR964 iHCC BCLC B 19.27 
TBR1757 aHCC BCLC C 22.59 
TBR1838 aHCC BCLC C 31.09 
TBR1861 aHCC BCLC C 43.37 
TBR2000 aHCC BCLC C 26.31 
TBR2083 aHCC BCLC C 22.71 
TBR853 aHCC BCLC C 20.37 
TBR855 aHCC BCLC C 41.96 

 

Table S1. Cancer staging information and tumor DNA fraction estimated by ichorCNA for all HCC 

cases. 
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Plasma 
DNA 

Sample 
types 

Sequencing 
methods 

sample sizes Clinical information Reference 

Healthy 
controls 

WGBS 8 Healthy Control (2) 
WGS 38 

HBV 
carriers 

WGS 13 HBV+, without cirrhosis 
4 HBV+, with cirrhosis 

HCC 
patients 

WGS 20 HCC, early-stage 
7 HCC, intermediate-stage 
7 HCC, advanced-stage 

Pregnant 
women 

WGBS 10 1st trimester 
WGBS 10 2nd trimester 
WGBS 10 3rd trimester 

Liver 
transplant 
samples 

WGS 14 Liver Transplantation (3) 

Pregnant 
women 

WGBS 1 1st trimester (4) 
WGBS 1 3rd trimester 

Patients with 
DNASE1L3 
deficiency 

WGBS 4 Patients carrying DNASE1L3 
homozygous mutation 

(5) 

non-NPC 
individuals 
(n=272) 

WGS 179 Transiently positive EBV (1) 
WGS 93 Persistently positive EBV 

NPC 
patients 
(n=65) 

WGS 34 NPC, screening cohort 
WGS 31 NPC, external cohort 

non-NPC 
(n=160) 

WGBS 110 Transiently positive EBV (6) 
WGBS 50 Persistently positive EBV 

NPC (n=47) WGBS 33 NPC, screening cohort 
WGBS 14 NPC, external cohort 

Tissue 
DNA 

Placenta WGBS 1 Pool of 4 samples (4, 7) 
Buffy coat WGBS 1 Pool of 6 samples (4, 7) 
Liver WGBS 1 

 
(8) 

Lung WGBS 1 
 

Colon WGBS 1 
 

HCC WGBS 1 Pool of 13 samples (9) 

 

Table S2. Summary for the datasets used in this study. WGBS: whole genome bisulfite sequencing; 

WGS: whole genome sequencing. 
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Materials and Methods 

Identification of tissue-specific reads and calculation of tissue-specific DNA fraction 

The genotypes regarding the maternal buffy coat and placenta/chorionic villus tissue samples were obtained 

using microarray-based genotyping technology (HumanOmni2.5 genotyping array Illumina), and 

informative SNPs were identified from sites where the mother was homozygous (denoted as AA genotype) 

and the fetus was heterozygous (denoted as AB genotype). Fetal-specific DNA fragments were identified 

according to the DNA fragments carrying fetal-specific alleles at informative SNP sites. In this scenario, the 

B allele was fetal-specific, and the DNA fragments carrying the B allele were deduced to be originated from 

the placenta. ‘A’ alleles were deemed shared alleles. The number of fetal-specific molecules (p) carrying the 

fetal-specific alleles (B) was determined. The number of molecules (q) carrying the shared alleles (A) was 

determined. The fetal DNA fraction across all cell-free DNA samples would be calculated by 2p/(p+q)*100%.  

To obtain maternal-specific DNA molecules, the other set of informative SNPs were identified from sites 

where the mother was heterozygous (denoted as AB genotype), and the fetus was homozygous (denoted as 

AA genotype). Maternal-specific DNA fragments were identified according to the DNA fragments carrying 

maternal-specific alleles at informative SNP sites. In this scenario, the B allele was maternal-specific, and 

the DNA fragments carrying the B allele were deduced to be originated from maternal alone. A similar data 

processing was applied to the identification of donor-derived DNA. Informative SNPs were identified from 

sites where the donor was heterozygous (denoted as AB genotype), and the recipient was homozygous 

(denoted as AA genotype). cfDNA fragments carrying the B allele were deduced to be originated from the 

donor. The number of DNA molecules carrying the donor-specific alleles (p) and carrying the shared alleles 

(q) was determined. The donor DNA fraction was calculated by 2p/(p+q)*100% for each sample with liver 

transplantation. 

 

Identification of tissue-specific hypermethylated and hypomethylated CpGs 

For tissue-specific DNA fraction estimation with CGN/NCG motif ratios, the tissue-specific hypermethylated 

CpGs referred to CpGs with a methylation density of over 70% in the target tissue and below 30% in the 

buffy coat, and hypomethylated CpGs referred to CpGs with a methylation density of below 30% in the target 

tissue and over 70% in the buffy coat. The same criterion was used to determine the HCC-specific 

hypermethylated and hypomethylated CpGs.  

 

Computer simulation 

To investigate the sensitivity of methylation detection by fragmentomics analysis, we performed  computer 

simulation analysis to study how the sequencing depth would affect the detection of target molecules. We 

assumed that the plasma DNA contains the cfDNA molecules derived from the target tissue (e.g. the liver) 

with a fractional concentration f and the background DNA mainly of hematopoietic with a fractional 



 
 

11 
 

concentration (1-f). CGN and NCG end motif frequencies were assumed to be a linear combination of the 

target tissue and background DNA end motif distributions which were weighted by their corresponding 

fractional concentrations. 

CGN and NCG end motif occurrences derived from the target tissue (i.e., O(CGN)target tissue and O(NCG)target 

tissue) are assumed to follow the binomial distributions, being governed by a fractional concentration f, the 

probability of methylation p, the sequencing depth d, as well as cleavage rate r, as shown below:  

𝑶(𝑪𝑮𝑵)𝒕𝒂𝒓𝒈𝒆𝒕	𝒕𝒊𝒔𝒔𝒖𝒆	~	𝑩𝒊𝒏𝒐𝒎.𝒅 × 𝒇 × 𝒑, 𝒓(𝑪𝑮𝑵)5, (1) 

𝑶(𝑵𝑪𝑮)𝒕𝒂𝒓𝒈𝒆𝒕	𝒕𝒊𝒔𝒔𝒖𝒆	~	𝑩𝒊𝒏𝒐𝒎.𝒅 × 𝒇 × 𝒑, 𝒓(𝑵𝑪𝑮)5, (2) 

where “Binom” represented the binomial distribution. Similarly, we could model CGN and NCG end motif 

occurrences derived from the background DNA (i.e., O(CGN)background and O(NCG)background), based on the 

assumption of the binomial distributions. 

We simulated f with the values of 10%, 20%, 50%, and 100%, respectively. For the methylated CpG sites, 

the probability of methylation p was assumed to be 0.95 whereas the unmethylated CpG sites were assumed 

to be 0.05. The cleavage rates (r) from methylated and unmethylated CpG sites were deduced from healthy 

control samples. In this simulation, the values of r(CGN) in methylated and unmethylated CpG sites were 

0.067 and 0.029, respectively. The values of r(NCG) in methylated and unmethylated CpG sites were 0.0147 

and 0.0269, respectively. We simulated CGN and NCG end motifs according to the binomial distributions 

mentioned above by varying the sequencing depth from 10X to 3000X. Hence, the CGN/NCG motif ratios 

could be calculated for those cfDNA molecules derived from the simulated tissue-specific methylated CpG 

sites and background unmethylated CpG sites, respectively. We further determined the area under the 

receiver operating characteristic curve (AUC) in the detection of tissue-specific cleavage signals related to 

the CpG methylation.  

 

SVM model 

The SVM model built with the frequency of each 5' CG-containing end motif (i.e., ACG, CCG, GCG, TCG, 

CGA, CGC, CGG, and CGT) was based on the leave-one-out strategy using R package (e1071). A 10-fold 

cross-validation was used to determine the best parameters used in the model.  

 

NPC screening 

272 and 65 EBV DNA positive individuals without NPC (non-NPC) and with NPC obtained from a previous 

report were divided into the training and testing sets (SI Appendix, Fig. S5A and B). In the training set, 31 
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NPC patients and 230 non-NPC individuals were classified by the previous method (1) based on EBV DNA 

proportion and EBV DNA size ratio (SI Appendix, Fig. S5B). In the testing set, 34 NPC cases and 42 non-

NPC cases were not able to be differentiated according to the previous method based on EBV DNA 

proportion and EBV DNA size ratio (SI Appendix, Fig. S5B). In the training set, we pooled together all 

sequenced reads of EBV DNA in plasma DNA from non-NPC individuals and NPC patients into dataset A 

and dataset B, respectively. Based on these two datasets, the adjusted CGN/NCG motif ratio was calculated 

for each CpG site as follows: 

𝐀𝐝𝐣𝐮𝐬𝐭𝐞𝐝	𝐂𝐆𝐍/𝐍𝐂𝐆	𝐦𝐨𝐭𝐢𝐟	𝐫𝐚𝐭𝐢𝐨 =
𝐍𝐨. 𝐨𝐟	𝟓’	𝐂𝐆𝐍	𝐞𝐧𝐝	𝐦𝐨𝐭𝐢𝐟

𝐍𝐨. 𝐨𝐟	𝟓’	𝐂𝐆𝐍	𝐞𝐧𝐝	𝐦𝐨𝐭𝐢𝐟 + 𝐍𝐨.		𝐨𝐟	𝟓’	𝐍𝐂𝐆	𝐞𝐧𝐝	𝐦𝐨𝐭𝐢𝐟 

1,425 CpG sites in the EBV genome were identified based on their adjusted CGN/NCG motif ratios fulfilling 

the criterion where the CGN/NCG motif ratios in dataset B were at least 20% higher than dataset A in the 

training set. The adjusted CGN/NCG motif ratio from those selected CpGs was calculated for each individual 

in the training dataset, and a cut-off was determined by using the lowest value of NPC cases in this dataset 

(SI Appendix, Fig. S5C). For the testing dataset comprising 42 non-NPC individuals and 34 NPC cases which 

were indistinguishable based on the previous method (1), the use of adjusted CGN/NCG motif ratio allowed 

additional 14 non-NPC cases to be excluded from the diagnostic conclusion of NPC, leading to an improved 

positive predictive value (i.e., 26.8%). 

 

CNN model 

The optimal parameters of the CNN model were determined when the overall prediction error between the 

output scores calculated by the sigmoid function and desired target output (binary values: 0 or 1) reached a 

minimum by iteratively updating model parameters. The overall prediction error was measured by the 

sigmoid cross-entropy loss function in the deep learning algorithm (https://pytorch.org/). 

The CNN model used in this study made use of two one-dimensional (1D)-convolutional layers, each having 

64 filters with a kernel size of 4. The activation function of the rectified linear unit (ReLU) was used for those 

convolutional layers. A batch normalization layer was applied subsequently, followed by a dropout layer 

with a dropout rate of 0.5. A flattened layer was further added, followed by a fully connected layer comprising 

128 neurons with the use of the ReLU activation function. The output layer with one neuron was finally 

applied with a sigmoid activation function to yield the probabilistic score for a CpG site of being methylated 

(i.e., methylation score). The batch size was set to 64. The program for the CNN model was implemented 

based on the PyTorch machine learning framework (https://pytorch.org/). The model parameters learned from 

the training datasets were used to analyze the testing dataset to output a probabilistic score (i.e., the 

methylation score), indicating the likelihood of a CpG site being hypermethylated or hypomethylated. 

The CpG sites used in the CNN modeling analysis were required to fulfill two criteria as below: (1) a CpG 

site needed to be covered by at least 50 sequenced molecules; (2) among DNA fragments mapped to the 
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cleavage measurement window, there were at least 10 molecules ending with CGN or NCG motifs. Only the 

CpGs with their methylation index over 70% or below 30% were included for testing the feasibility of CNN 

model based methylation analysis at single CpG resolution. We randomly selected 91,212 CpGs, consisting 

of 45,606 hypermethylated and 45,606 hypomethylated CpGs, respectively. We used 70% and 15% of the 

prepared dataset to train and validate the model during the determination of model parameters. The remaining 

data (15%) which was not touched in the training process was used to test the model performance during 

generalization. 
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