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Supplementary Information Text 
Note 1. Derivation of the expression for the complex Poynting vector of the focused cylindrical vector 
(CV) field. 
The focusing geometry is illustrated in Fig. 1a in the main text. An input CV field,  
 ( )0 0( , ) cos sin ( )ϕϕ α α ϑ= +A e e  , [S1.1] 
is focused by a high numerical aperture (NA) objective lens. Upon apodization, the field takes on a spherical 
wave front of radius f (the focal length of the objective lens) with amplitude  
 ( )1 0( , ) cos cos sin ( )p sϑ ϕ ϑ α α ϑ= +A e e   [S1.2] 
where es = eφ and ep is obtained by deflecting eϱ by ϑ, the angle between the deflected light ray and the z-
axis. In terms of Cartesian coordinate basis (ex, ey, ez), the unit vectors ep and es are  
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and the unit propagation vector 
  sin cos sin sin cosp s x y zk ϑ ϕ ϑ ϕ ϑ= × = − − +k e e e e e . [S1.4] 

By the Richards-Wolf integral, the focused electric and magnetic fields in the vicinity of the focus then 
reads (S1, S2) 
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where ˆk=k k  and x is the position vector of observation point that has components (ρ, ϕ, z) in the cylindrical 
coordinate system holding the focus. 

On substitution of [S1.2] – [S1.4] into [S1.5] and making change of integration variables φ ⟶ φ + π, we 
have for the focused electric field 
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where the propagation vector k is 
 ( )sin cos sin sin cosx y zk ϑ ϕ ϑ ϕ ϑ= + +k e e e . [S1.7] 

The basis vectors (eρ, eϕ, ez) for cylindrical coordinates are related to Cartesian coordinate basis vectors 
by the transformations 
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with ez vector unchanged. Thus, the dot product of k and the position vector x is  
 sin cos( ) cosk kzρ ϑ φ ϕ ϑ⋅ = − +k x .  

Note that the basis vectors, eρ and eφ, are independent of the integration variables ϑ and φ. In changing to 
the cylindrical coordinate basis, Eq. [S1.6] becomes 

 

00

2

0

( ) cos ( )sin
2

[cos cos cos( ) sin sin( )]
[cos cos sin( ) sin cos( )] .

cos sin

i

z

ikf d

e d

Θ

ρ
π

φ

ϑ ϑ ϑ ϑ
π

α ϑ φ ϕ α φ ϕ
α ϑ φ ϕ α φ ϕ ϕ

α ϑ

⋅

=

− + − 
 × − − − − 
 − 

∫

∫ k x

E x

e
e

e



 [S1.9] 

Applying the integral representation for cylindrical Bessel functions  
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the integration over ϕ in [S1.9] can be analytically carried out, yielding 
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Letting 
 cos

0 10
( , ) cos ( ) ( sin ) sinikzU z kf J k e d

Θ ϑρ ϑ ϑ ρ ϑ ϑ ϑ= − ∫  , [S1.11] 

the electric field E can be written in a concise form as Eq. [2] in the main text: 

 cos cos 1( ) ( , ) ( , )sin ( , )z zi U z U z i U z
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ρ
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In passing from [S1.10] to [S1.11], we have made use of the following recurrence relation 
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From Eq. [S1.5], we see that the scaled magnetic field µcH can be obtained from the E-field merely by a 
replacement: α ⟶ α + π/2; we thus have  

 sin sin 1( ) ( , ) cos ( , ) ( , )z zc i U z U z i U z
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ρ
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With Eqs. [S1.12] and [S1.14], direct calculation of the complex Poynting momentum  𝚷𝚷 = (E* × H)/2 
results in 

 
( )

( ) ( ) ( )

2 2
* *

2 * 2 *
*

2

1 cos sin ( )
2

cos sinsin 2 Im .z z
z

i U U U U
c k k

U U U UUi U i
z kk

ρ

φ

α αρ ρ
µ ρ ρ ρ ρ

α αα ρ
ρ ρ

  ∂ ∂= −  ∂ ∂  
∂ − ∂ ∂ ∂ + +  ∂ ∂  

e

e e

Π

 [S1.15] 

whose imaginary part evaluated at the focal plane (z = 0) gives Eq. [4] in the main text. 
 
Note 2. Analysis on photophoretic effects calculations. 
The photophoretic force arises from the light-induced uneven temperature increase on the particle’s surface. 
Figures S1a and b show the simulated field distribution around the particle for IRT and ORT, respectively. 
The nonuniform field leads to inhomogeneous temperature increase ∆T = T − T0, which is shown in Figs. 
S1c and d. Here, T0 = 298 K is the room temperature and T is calculated by solving the steady-state heat 
transfer equation (S3): 

 ( )2 21 Im | |
2 gTκ ω ε− ∇ = E , [S2.1] 

where ω is the angular frequency of the field, εg the permittivity of gold, and C is the space-dependent thermal 
conductivity of material (κ = κg = 317 Wm-1K-1 for the gold particle and κ = κw = 0.6 Wm-1K-1 for water). 
In the calculations, we have assumed T = T0 (room temperature) at infinity and used continuous conditions 
at the particle-water interface: 
  and g g w w g wT T T Tκ κ⋅∇ = ⋅∇ =n n . [S2.2] 
where Tg and Tw represent the temperature of particle and water. Eventually, the photophoretic force in the 
azimuthal direction is evaluated using the formula (S4): ph 15 / (64 2) / /B cs vF k dT dy Sσ α= − ⋅ ⋅ ⋅ , where kB 
is the Boltzmann's constant, σcs = π × (0.4 nm)2 = 5.0 × 10-19 m2, and a = 0.8  is the thermal accommodation 
at T0. We assume the active thermal creep flow region to be the particle’s diameter: L = 1.5 µm. For the IRT 
and ORT, the photophoretic forces are calculated respectively to be Fph = 1.4 and −0.5 pN/W, which are 
much smaller than the optical force F. Moreover, Fph acts in the opposite direction to F. 
 
Note 3. Shaping the IPM vortex by modulating the input CV field 
From the expression [S1.15] for the complex Poynting vector Π, we see that its azimuthal component Πφ is 
purely imaginary throughout the focal region, regardless of the concrete form of the input amplitude 0(ϑ) 
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at the entrance pupil. Furthermore, because Πφ is φ-independent, the focused field can have the azimuthal 
IPM at every azimuthal position, that is, an imaginary Poynting momentum vortex (IPMV). A simple scheme 
to detect such IPMV is to place a particle probe in the focused field and to observe the particle’s orbital 
rotation.  

To excite the high-order IPM force, the particles in our experiment are chosen as gold spheres of average 
radius of ~0.75 μm (1.5 μm in diameter). With such particle size, the particles can be easily imaged using 
conventional imaging system. However, the detection of particle’s orbital motion with a standard CV input 
amplitude (S5) is not easy, because such input field will lead to a focusing spot of very small size, as shown 
in Fig. S2a. We see that the intensity pattern in the focal plane for each polarization parameter (α = 0, −22.5 
or −45o) is of spot-like shape with size ∼λ. Also, the IPM flow (Fig. S2b) is shown to be concentrated to this 
region. Given that the gold spheres used in our experiment have an average diameter of 1.5 μm, the center of 
the particle being trapped will almost coincide with the beam axis, so that it is difficult to distinguish the 
particle’s orbital motion in experiments. 

A solution to this problem is to create an annular focusing pattern with the ring radius much larger than 
that of the particle. The generation of the annular pattern with tunable radius can be achieved by the so-called 
perfect vortex technique, the underlying idea of which is to introduce a non-constant phase modulation 
function. In our work, we take the phase modulation function shown in Eq. [8] to yield a higher power 
utilization, and put the modulation factor ρ0 = 5.5 µm. Consequently, we can obtain an annular intensity 
pattern in the focal plane of radius ∼ρ0, as shown in Fig. S2c. Such focusing property can be understood by 
noting that the focused field in the focal plane is the inverse Fourier transform of the input field (see Eq. 
[S1.5]); the Fourier transform of J0(kρ0sinϑ) is just a ring of radius ∼ρ0. Additionally, we see that the 
azimuthal IPM now is far away from the beam axis (Fig. S2d). The field thus permit the clear observation of 
the particle’s rotational behavior due to the IPM vortex (see Figs. 3b and 4). 
 
Note 4. Expressing optical forces in terms of flows via the multipole expansion technique 
The time-averaged optical force on a homogenous, isotropic spherical particle can be calculated in a rigorous 
way by combining the Mie theory with the Maxwell stress tensor method. In the Mie theory, the incident and 
scattered fields are expanded in terms of vector spherical wave functions (VSWFs) (S6): 
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where RgM l,m and RgN l,m are the first kind of VSWFs with respect to which the incident field are expanded 
with coefficients al,m and bl,m; M l,m and N l,m are the third kind of VSWFs with pl,m and ql,m denoting the 
corresponding expansion coefficients for scattered field. The scattering coefficients are related to the incident 
coefficients through the Mie coefficients (Al, Bl): 
 , , , ,,   l m l l m l m l l mp B a q A b= − = − .   

The first kind of VSWFs RgM l,m and RgN l,m, in spherical coordinates (r, θ, φ), are given by 
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where jl(∙) is the first kind of spherical Bessel function of order l and  
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with ( )m
lP ⋅  referring to associated Legendre functions. The third kind of VSWFs M l,m(kx) and N l,m(kx) are 

defined in the same way as [S4.2] with hl(kr) in place of jl(kr). 
Usually the incident coefficients are known, from which the scattering coefficients are calculated and so 

are the scattered fields. Having obtained the scattered fields by the Mie theory, the time-averaged optical 
force F on the particle can be computed by integrating the Maxwell stress tensor (MST) T(2) (Minkowski 
form) over a closed surface enclosing the particle (S7):  
 (2)

S
dS

∞

= ⋅∫F T n . [S4.4] 

Upon substitution of the VSWFs expansion [S4.1] in [S4.4] and integrating over a spherical surface at 
infinity, we may obtain, from the orthogonality of spherical harmonics, the force as a series over the incident 
and scattering coefficients (S8). This series allows us to evaluate the force components arising from 
multipoles of arbitrary order, but it fails to establish an explicit connection between the force and the 
illuminating field vectors. To establish such a relation, Cartesian multipole moment tensors, instead of the 
VSWFs, are introduced to represent the fields (S9, S10). 

The Cartesian electric and magnetic multipole moments ( )
elec 
l  and ( )

mag 
l  of order l are defined by (S9) 
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where x gives the greatest integer not larger than x and 
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represent the electric and magnetic 2l-polar polarizabilities, respectively; The notation   denotes the 
symmetrization operator and 
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with Γ(∙) being the Gamma function. Equation [S4.7] can be inverted to yield an expression for the fields as 
a sum over l of ( )

elec 
l ( ( )

mag 
l ) contracted with some properly chosen tensors. Substituting the resulting 

expressions into the integrand in [S4.4], one may obtain, after lengthy algebra, an expression for F in terms 
of incident field moments given by Eq. [9] in the main text, or Eq. [16] in Ref. (S10). 

We have shown in our Eq. [16] that ( )
em
nS  represents the moment of complex Poynting vector, so the force 

terms associated with its imaginary part constitutes the IPM force. Based on Eqs. [18] and [21] in Ref. (S10), 
it is readily to obtain the IPM force derived from all the possible interactions of multipoles with order l ≤ N: 
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To know the force contribution from the field moment of each order, we may recast Eqs. [S4.9]-[S4.11], 
with the index substitution method, into 
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Ultimately, it is straightforward to express the IPM force as  

 ( )( ) e m x ( )
IPM , , , em

1
Im

N
N l

N l N l N l
l

A A A
=

= + +∑F S . [S4.16] 

where e
,N lA , m

,N lA , x
,N lA  are respectively the prefactors in Eqs. [S4.13]-[S4.15] and they are given by Eq. [19] 

in the main text. In the same manner one may work out the coefficients, , ,~N l N lB F , for the gradient force, 
radiation pressure and canonical radiation pressure.  
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Figures S3a-c show the electric, magnetic and hybrid components of the IPM force, calculated with Eqs. 
[S4.13-4.15] for the particle in Fig. 2c. Note that all the components are in the azimuthal direction (as they 
should). The electric and magnetic components are always zero for N = 1, because the generation of IPM 
force requires the interaction between different multipoles. At both trapping positions, the electric component 
F e(N) 

IPM  is significant only for N = 7, while the magnetic one F m(N) 
IPM  is always small, although the latter can reach 

a remarkable magnitude up to 26.4 pN/W at ρ = 4.8 µm, when all multipoles are included. The hybrid 
component F x(N) 

IPM  is nonzero for N = 1, and it can be significant for N > 4 at the trapping positions. Summing 
over these lines, we obtain the total IPM force for each N (Fig. S3d). We see that the results are totally 
consistent with Fig. 2c, verifying our argument that the azimuthal force in Fig. 2c is attributed to the IPM 
optomechanics. It also validates our Eqs. [S4.13-15] or Eq. [20] in the manuscript. 
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Fig. S1. a,b, Field distribution around the particle for IRT (a) and ORT (b). Arrows indicate the 
direction of the optical force F acting on the particle. c,d, Induced temperature increase ∆T for IRT 
(c) and ORT (d). Arrows showing the azimuthal photophoretic force Fph. 
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Fig. S2. Comparison of focused field distributions without and with phase modulation. a,b, Focused 
field intensity (a) and imaginary Poynting vector (b) as a function of the radial position for a standard 
CV beam input. c,d, Similar plots for a CV beam input with a phase modulation factor ρ0 = 5.5 µm. 
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Fig. S3. Calculated electric (a), magnetic (b) and hybrid (c) components of the IPM force versus 
the radial position of the particle in Fig. 2. The total IPM force (d) is obtained by summing over its 
components in (a-c) for each N, which reproduces the azimuthal force results in Fig. 2c. The vertical 
dashed line marks the trapping positions I and II determined from Fig. 2a. 
 
 

Movie S1 (separate file). Simultaneous rotation of two Au particles separately trapped at inner 
and outer radial equilibrium positions in the focused IPM vortex with polarization parameter α = 
−45°. 
 

Movie S2 (separate file). Rotation of the Au particle trapped at inner radial equilibrium position in 
the focused IPM vortex as a function of polarization parameter α. 
 

Movie S3 (separate file). Rotation of the Au particle trapped at outer radial equilibrium position in 
the focused IPM vortex as a function of polarization parameter α. 
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