Chromosome-level genome assembly of bunching onion illuminates genome evolution and flavor formation in Allium

crops

Liao *et al*.

Libraries	Insert size	Total data (G)	Read length (bp)	Sequence coverage (X)
Illumina reads	350bp	1389.89	150	116.29
PacBio reads		1649.82		138.04
Bionano		1020.22		85.36
HiC		1136.41		95.08
Total		5196.34		434.77

Supplementary Table 1. Summary of the sequencing data for *A. fistulosum* genome assembly.

Depth	Number of <i>k-mer</i>	Genome size(M)	Revised genome size(M)	Heterozygous rate(%)	Repeat rate(%)
87	1,041,421,564,963	11,970.36	11,951.73	0.64	89.89

Supplementary Table 2. Estimated genome statistics using *k*-mer analysis (k = 17).

	Pacbio+illumina+illumin a-pilish+pacbio_polish	Pacbio+illum pilish+pacbio_	ina+illumina- polish+bionano	Pacbio+illumina+illumina- pilish+pacbio_polish+bionano+hic		
	contig	contig	scaffold	contig	scaffold	
Total_length	11,273,877,593	11,273,877,473	11,293,432,26	11,273,877,473	11,293,897,766	
Total_number	7,619	8,126	7,352	8,278	2,855	
Max_length	87,932,624	83,135,306	90,340,743	83,135,306	1,725,086,671	
N50	8,417,756	7,415,081	8,980,620	7,345,229	1,386,005,700	
N60	6,233,651	5,235,816	6,549,398	5,176,956	1,327,381,468	
N70	4,302,056	3,625,928	4,427,297	3,565,919	1,223,795,258	
N80	4,302,056	2,221,495	2,740,631	2,197,287	1,131,948,510	
N90	4,302,056	1,061,145	1,307,006	1,055,328	1,109,041,757	

Supplementary Table 3. Summary of the genome assembles for A. fistulosum.

Sequeues ID	Cluster number	Sequeues length
Chr1	654	1,641,299,136
Chr2	713	1,725,086,671
Chr3	553	1,223,795,258
Chr4	555	1,109,041,757
Chr5	470	1,131,948,510
Chr6	603	1,386,005,700
Chr7	570	1,603,727,048
Chr8	545	1,327,381,468

Supplementary Table 4. Summary of the genome characteristics of assemble using HiC data.

Placed 8 11,148,285,548 98.71%
Unplaced 2,847 145,612,218 1.29%
Total 2,855 11,293,897,766 100%

Supplementary Table 5. Summary of Hi-C mapping.

Supplementary Table 6. Assembly assessments by BUSCO.

	С	S	D	F	м
Pacbio+illumina+illumina-pilish+pacbio_polish	91.90%	84.00%	7.90%	2.30%	5.80%
Pacbio+illumina+illumina-pilish+pacbio_polish+bionano	91.70%	84.00%	7.70%	2.50%	5.80%
Pacbio+illumina+illumina-pilish+pacbio_polish+bionano+hic	91.00%	88.00%	3.00%	2.90%	6.10%
Annotated_genes	93.80%	84.10%	9.70%	3.20%	3.00%

#C: Complete Single-Copy BUSCOs; S : Complete and single-copy BUSCOs; D: Complete Duplicated BUSCOs; F: Fragmented BUSCOs; M: Missing BUSCOs; n: Total BUSCO groups searched

Supplementary Table 7. Assembly assessments using GEGMA.							
cios		Complete	Complete + Partial				
	# Prots	%Completeness	# Prots	%Completeness			
Pacbio+illumina+illumina-pilish+pacbio_polish	221	89.11	232	93.55			
Pacbio+illumina+illumina-pilish+pacbio_polish+bionano	220	88.71	231	93.15			
Pacbio+illumina+illumina-pilish+pacbio_polish+bionano+hic	222	89.52	234	94.35			

Version	Mapping rate (%)	Average sequencing depth	Coverage (%)	Coverage at least 4X (%)	Coverage at least 10X (%)	Coverage at least 20X (%)	SNP percentage (%)	Heterozygosis SNP (%)	Homology SNP (%)
Pacbio+illumina+illumina-pilish +pacbio_polish	99.65	95.48	99.34	99.26	99.17	99.06	0.2222	0.2213	0.0009
Pacbio+illumina+illumina-pilish +pacbio_polish+bionano	99.65	95.48	99.34	99.26	99.17	99.06	0.1912	0.190571	0.0629
Pacbio+illumina+illumina-pilish +pacbio_polish+bionano+hic	99.65	95.09	99.34	99.25	99.17	99.06	0.0064	0.0063	0.0001

Supplementary Table 8. Assembly assessments by Illumina read mapping.

Supplementary Table 3. Summary of repeated sequence identifications.							
Туре	Repeat size (bp)	Percentgage of genome (%)					
TRF	540,922,313	4.79					
Repeatmasker	7,409,524,033	65.61					
Proteinmask	1,932,359,143	17.11					
Total	7,884,598,942	69.81					

Supplementary [*]	Table 9.	Summary of	f repeated	sequence	identifications.
----------------------------	----------	------------	------------	----------	------------------

	<i>De nov</i> o+Repbase length(bp)	Percentgage of genome (%)	TE proteins length(bp)	Percentgage of genome (%)	Combined TEs length(bp)	Percentgage of genome (%)
DNA	333,089,856	3	109,476,349	1	414,256,264	4
LINE	122,505,505	1	142,173,362	1	235,142,630	2
SINE	715,356	0	0	0	715,356	0
LTR	6,830,517,902	60	1,684,737,702	15	7,021,961,730	62
Unknown	42,374,783	0	0	0	42,374,783	0
Total	7,409,524,033	66	1,932,359,143	17	7,747,379,863	69

Supplementary Table 10. Summary of repeated sequence annotations.

			Average	Average	Average	Average	Average
	Gene set	Number	transcript length	CDS length	exons	exon	intron length
			(bp)	(bp)	per gene	length (bp)	(bp)
De novo	Augustus	272,843	3,004.71	555.83	2.42	229.7	1,724.76
	GlimmerHMM	671,869	15,283.96	326.89	2.72	120.32	8,712.55
	SNAP	546,223	27,726.64	562.93	4.92	114.43	6,930.70
	Geneid	695,655	3,971.93	358.51	2.6	137.72	2,253.83
	Genscan	472,751	13,987.22	589.45	3.97	148.54	4,513.72
Homolog	Allium_sativum	303,554	1,271.83	550.69	1.85	297.33	846.3
	Ananas_comosus	182,490	1,449.00	639.29	1.93	331.92	874.38
	Apostasia_shenzhenica	351,899	1,874.93	1,119.76	1.73	647.24	1,034.38
	Arabidopsis_thaliana	187,355	1,209.95	600.08	1.68	357.53	898.98
	Musa_schizocarpa	371,952	1,040.64	558.86	1.6	348.29	796.9
	Oryza_sativa	286,142	1,582.11	920.34	1.65	557.25	1,015.66
	Zea_mays	172,758	2,096.13	1,131.14	2.02	560.96	949.39
RNAseq	PASA	83,977	5,702.02	892.38	4.29	207.92	1,461.01
	Cufflinks	105,751	8,228.11	1,834.73	4.5	407.39	1,824.81
EVM		309,634	2,813.85	548.57	2.37	231.34	1,651.94
Pasa-update*		309,388	2,818.94	548.81	2.37	231.75	1,659.27
Final set*		62,255	5,000.13	820.11	3.93	208.47	1,424.73

Supplementary Table 11. Summary of gene prediction of *A. fistulosum*.

Species	Number	Average transcript length (bp)	Average CDS length (bp)	Average exons per gene	Average exon length (bp)	Average intron length (bp)
Allium_fistulosum	62,255	5,000.13	820.11	3.93	208.47	1,424.73
Allium_sativum	57,561	5,202.81	797.13	3.64	218.96	1,668.52
Musa_schizocarpa	32,809	4,040.61	1,126.84	5.08	222.02	714.97
Ananas_comosus	27,024	4,341.80	1,171.28	5.53	211.68	699.41
Arabidopsis_thaliana	27,302	1,888.02	1,230.07	5.16	238.38	158.15
Apostasia_shenzhenica	21,743	6,147.71	1,099.28	4.5	244.13	1,441.26
Zea_mays	39,188	3,472.15	1,179.62	4.93	239.33	583.5
Oryza_sativa	42,355	2,198.36	992.95	3.9	254.47	415.36

Supplementary Table 12. Characterization of genes of *A. fistulosum*.

	Number	Percent (%)
Total	62,255	-
Swissprot	38,081	61.2
Nr	50,431	81
KEGG	37,702	60.6
InterPro	60,484	97.2
GO	53,819	86.4
Pfam	36,406	58.5
Annotated	61,218	98.3
Unannotated	1,037	1.7

Supplementary Table 13. Summary of gene annotations using different databases.

	Type	Сору	Average	Total length	Percentgage of
		(w*)	length (bp)	(bp)	genome (%)
miRNA		1,361	106.02	144,289	0.001278
tRNA		4,365	74.58	325,561	0.002883
rRNA	rRNA	1,416	186.77	264,462	0.002342
	18S	219	581.37	127,319	0.001127
	28S	219	138.71	30,378	0.000269
	5.8S	94	96.54	9,075	0.00008
	5S	884	110.51	97,690	0.000865
snRNA	snRNA	1,723	114.33	196,988	0.001744
	CD-box	992	105.95	105,107	0.000931
	HACA-box	203	134.83	27,370	0.000242
	splicing	526	121.81	64,073	0.000567

Supplementary Table 14, Summary of	of non-coding RNA predication.
------------------------------------	--------------------------------

Supplementary Fig. 1. *k-mer* **based genome survey of** *A. fistulosum.* The frequency plots of *k-mer* number (**a**) and *k-mer* types (**b**), as well as depth given that *k-mer* (k=17).

Supplementary Fig. 2. The collinearity between genetic map and *A. fistulosum* genome assembly. The blue columns indicated the chromosomes of assembled genomes, while the red columns indicated linkage groups (LG) of genetic map ²¹ and green lines indicated the collinearity relationships by SSR-markers anchoring.

Supplementary Fig. 3. LTR contributions to the genome enlargement of *A. fistulosum.* **a**, Kimura substitution level (%) for each copy against its consensus sequence used as proxy for expansion history of the transposable elements. LINE, long interspersed nuclear elements; LTR, long terminal repeat; SINE, short interspersed nuclear element. **b**, Numbers of genes inserted by LTR retrotransposons. Blue column (I) indicates the number of genes whose promoter region was inserted by LTR; Orange column (II) indicates the number of genes whose 3'-terminus region was inserted by LTR; Yellow column (III) indicates the number of genes whose the number of genes that located within the LTR, and purple column (V) indicates the number of genes with sequences that partially overlap with the LTR.

Supplementary Fig. 4. WGD events estimated from the *Ks* value of homologues pairs in syntenic regions of *A. fistulosum* and *A. stavium*. The histplot (blue bars) exhibited the distribution of the *Ks* values and the lines indicated the density estimation of the *Ks* values distributions.

Supplementary Fig. 5. Distribution of blocks of three *Allium* crops against each other.

Supplementary Fig. 6. High genomic collinearity among three Allium crops.

Supplementary Fig. 7. Average age of individual LTR families in *A. fistulosum* and *A. sativum*. Source data are provided as a Source Data file.

Supplementary Fig. 8. Phylogenetic relationships of *Copia* LTR-retrotransposons identified in *A. fistulosum* and *A. sativum* genomes.

Supplementary Fig. 9. DSD genes contribute to gene expansions. Source data are provided as a Source Data file.

Supplementary Fig. 10. Phylogenetic tree of *ALLs* **from eight genomes.** The outer rings highlight the genes from *A. fistulosum* (red color), *A. cepa* (blue color), and *A. sativum* (green color), The heatmap exhibited the gene expressions in different tissues: R, roots; L, leaves; B, bulbs; PS, pseudo-stems; FS, floral stalks; F, flowers. Source data are provided as a Source Data file.

Supplementary Fig. 11. Contributions of LTRs to the expansion of LFS genes.

Supplementary Fig. 12. The harsh habitat of *A. altaicum* **in Altaicum moutain.** The picture was taken in Altaicum Moutain, Xinjiang, China (89.44E, 47.05N).

Supplementary Fig. 13. Phenotypes of the partial re-sequenced Allium accessions. From left to right, bunching onion, Welsh onion, storey onion, shallot, Chinese red onion.

Supplementary Fig. 14. Cross-validation plot demonstrating the effect of different *K*-values on the cross-validation error. Source data are provided as a Source Data file.

Supplementary Fig. 15. Genome-wide average LD decay estimated from five subgroups.

Supplementary Fig. 16. Gene flows of different *A. fistulosum* **subgroups. a**, Trees inferred by TreeMix. **b**, Residual fit, Plotted is the residual fit from the maximum likelihood tree.

	The aliphatic ق pathway												The indolic and benzenic pathways									Co-substrate pathways									
	BCAT4	BAT5	MAM1;MAM3	IPMI LSU1	IPMI SSU2; IPMI SSU	IPMDH1;IPMDH3	BCAT3	CYP79F1;CYP79F2	CYP83A1	GSTF11	GSTU20	GGP1	SUR1	UGT74C1	SOT17; SOT18	FMO	АРО	GS-OH	CYP79A2;B2;B3	CYP83B1	GSTF9;GSTF10	GGP1	SUR1	37-UGT74B1	S0T17; S0T16	CYP81F2	APK1;APK2	GSH1_PAD2	CHY1	AA04	BZ01
Arabidopsis thaliana	6	2	4	1	3	3	6	2	2	2	10	5	8	4	3	13	2	16	4	2	2	5	8	1	3	15	4	1	3	4	6
Allium sativum	5	1	2	2	0	3	5	0	0	0	9	2	6	0	0	1	0	4	0	0	0	2	6	0	0	3	2	4	5	2	2
Allíum fistulosum	6	1	1	1	1	1	6	0	0	0	6	2	6	0	0	3	0	7	0	0	0	2	6	0	0	1	2	6	6	2	1
Allium cepa	5	1	1	1	1	1	5	0	0	0	7	2	6	0	0	3	0	5	0	0	0	2	6	0	0	1	3	5	5	2	1
Asparagus officinalis	3	1	0	1	0	1	3	0	0	0	3	3	3	0	0	2	0	4	0	0	0	3	3	0	0	0	2	1	3	0	0
Asparagus setaceus	4	1	3	4	1	1	4	0	0	0	6	3	2	0	0	2	0	7	0	0	0	3	2	0	0	1	2	1	3	2	2
Phalaenopsis equestris	3	1	2	1	1	1	3	0	0	0	8	1	0	0	0	3	0	4	0	0	0	1	0	0	0	4	3	1	1	0	1
Dendrobium officinale	6	2	4	1	2	1	6	0	0	0	5	1	1	0	0	2	0	2	0	0	0	1	1	0	0	2	9	3	2	1	1
Apostasia shenzhenica	3	1	2	1	1	1	3	0	0	0	2	1	0	0	0	1	0	1	0	0	0	1	0	0	0	0	2	1	1	0	1
Ananas comosus	3	1	1	2	1	1	3	0	0	0	3	2	1	0	0	1	0	7	0	0	0	2	1	0	0	1	3	1	1	3	2
Oryza sativa	5	1	2	1	1	1	5	0	0	0	0	1	5	2	0	1	0	3	1	0	0	1	5	0	0	1	3	2	1	7	2
Phoenix dactylifera	2	1	1	2	2	1	2	0	0	0	7	3	1	1	1	3	0	2	1	0	0	3	1	0	1	11	4	2	1	2	6
Musa schizocarpa	4	1	1	1	1	1	4	0	0	2	4	2	2	1	0	1	0	0	0	0	2	2	2	0	0	1	4	2	3	1	4
Amborella trichopoda	3	1	1	2	1	1	3	0	0	1	3	0	1	0	0	2	0	0	0	0	1	0	1	0	0	0	1	2	2	5	2

Supplementary Fig. 17. The number of each glucosinolates-related gene in 14 genomes.

Supplementary Fig. 18. PCA analysis of 135 *Allium* accessions.