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Supplementary Note 1. Difference between Embedding transformer and Pairwise
interaction transformer

The reason why we decided to give these two substructures (Embedding and Pairwise Interaction
transformers) separate names can be explained by the following two aspects of differences between
them: (1) Difference in the type of attention operation used, and (2) difference in learning semantics.

Difference in the type of attention operation

The critical difference between Embedding and Pairwise Interaction transformers is that the former is
essentially based on self-attention operation, and the latter is based on encoder-decoder attention. Here,
we explain the differences between those two variants of attention operations to emphasize the
difference between Embedding and Pairwise Interaction transformers. The core operation for all the
three types of transformers in Chromoformer is the Query-Key-Value attention (denoted as red boxes
labeled with ‘Multi-Head Attention’ in Figure lc-e in the main text). Briefly, Query-Key-Value
attention produces the updated version of query embeddings as the weighted sum of Value embeddings.
Here, the weights are determined through the computation of affinities between Query and Key
embeddings. The critical difference between self-attention and encoder-decoder attention is that self-
attention generates both Query and Key embeddings from a single sequence (or set of vectors), while
encoder-decoder attention generates Query and Key embeddings separately from two different
sequences. Therefore, self-attention measures the ‘affinities’ between two positions within a single
sequence, while encoder-decoder attention measures the affinities between two positions from two
independent sequences. This apparently small difference results in a crucial difference in the semantics
of Chromoformer learning, which is discussed in the following.

Semantic difference

Since the core operation within the Embedding transformer and Pairwise Interaction transformer is
different, what they are designed to learn is also different. An Embedding transformer only takes a core
promoter feature as an input, and is trained to capture the intra-dependencies of HM configurations at
different positions within the given core promoter. On the other hand, a Pairwise Interaction
transformer takes a pair of a core promoter and a corresponding pCRE as input, and learns the pairwise
dependencies between the two positions in the core promoter and the pCRE.



Supplementary Method 1. Computation of normalized interaction frequencies

In this study, normalized interaction frequencies were used instead of raw interaction frequencies
because there are some technical biases in raw interaction frequencies that hampers the direct
interpretation of those values. First, due to the regional preference of a sequencing experiment,
restriction and alignment methods, the coverage or mappability of Hi-C sequencing reads throughout
the genome is not uniform. This is exacerbated in pcHi-C experiments since the fragment containing
the promoter is significantly high due to promoter-enrichment procedure (For example, the raw
coverage of promoter fragment is about 14.4 times higher than non-promoter fragments for H1 pcHi-
C data used in this study). Thus, the frequencies of promoter-promoter interactions would be more
exaggerated than the true amount of interactions between them. Next, the random Brownian motion of
DNA polymer results in higher frequency of non-biological interactions between the two fragments at
closer linear distance along the genome. This distance bias should be corrected because otherwise the
results would erroneously favor interactions at close distances and ignore long-range biological
contacts such as promoter-enhancer interactions.

Regarding the two aforementioned biases, normalized interaction frequencies were obtained by
statistically correcting them. We note that the formulation of normalization procedure described below
is adopted from the R package covNorm v1.1.0!, since the pcHi-C data in 3div employs it. First, the
coverage bias is corrected by fitting a negative binomial regression model for raw ligation frequencies
between two fragments using individual coverage values. Formally, the raw interaction frequency (i.e.,
read ligation frequencies) between two DNA fragments i and j, Y;;, is normalized using the coverages
C; and C; as follows. Using values of Y;;, the expected interaction frequency wu;; is fitted by
negative binomial regression model log(ui j) = Bo + B1C; + B2C;. Then, the normalized interaction
frequency R;; is obtained by taking residual R;; = Y;;/exp(By + B1C; + B2C)).

Subsequently, distance bias is corrected in a similar manner. Given the linear distance between two
genomic fragments 1 and j, D;;, the expected ligation frequency was fitted by negative binomial
regression model log(ui j) = Bo + B1D;j. When D;; = d, the expected ligation frequency is given by
E; = exp(By + B1d). Therefore, the distance-dependent signal can be removed by taking residual
(R;j + avg(R;j))/(E4 + avg(R;;)), where avg(R;;) is a global average value of R;j's.



Supplementary Table 1. ENCODE file accessions of PRC1 and PRC2 subunit ChIP-seq peaks.

Target ENCODE file accession

EZH2 ENCFF798ICZ, ENCFF833UQN, ENCFF414CAB, ENCFF782TOJ
SUZ12 ENCFF225AMM, ENCFF297ZWL, ENCFF521PXA

RNF2 ENCFF352IAI, ENCFF147QRM, ENCFF241 UKW

CBX8 ENCFF483UZG, ENCFF891TAW, ENCFF756MTY

Supplementary Table 2. ENCODE file accessions of raw ChIP-seq reads for ES-Bruce4 mouse embryonic

stem cell.

Target ENCODE file accession
H3K4mel ENCFFO001KEF
H3K4me3 ENCFFO001KER, ENCFFO01KEQ
H3K9me3 ENCFF001KDP, ENCFF001KDM
H3K27me3 ENCFFO001KED, ENCFF001KEC
H3K36me3 ENCFFO001KEE, ENCFF001KEI
H3K27ac ENCFF001KDQ, ENCFF001KDO

H3K9ac ENCFF001KDK, ENCFFO01KDL

Supplementary Table 3. ENCODE file accessions of raw CTCF ChIP-seq reads.

Epigenome ID Cell type description ENCODE file accession
E003 H1 cells ENCFF000ONR, ENCFFO0000OOF
E007 HI derived neuronal progenitor cultured cells | ENCFF342XVP, ENCFF997NPD, ENCFF717KPM
E114 A549 EtOH 0.02pct lung carcinoma ENCFFO00AHW, ENCFFO00AHX
El16 GM12878 lymphoblastoid ENCFF000VUW, ENCFF000VUU
E118 HepG2 hepatocellular carcinoma ENCFF186EUH, ENCFF023MCP
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Supplementary Figure 1. Input feature generation procedures. (a) Preparation of histone modification signals. (b) Generation of
core promoter features. (c) Generation of core pCRE features.
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Supplementary Figure 2. Distribution of HindIII fragment length from the pcHi-C dataset used in this study.
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Supplementary Figure 3. Cross-validation (n=4) performances of Chromoformer-clf models when different combinations of
resolutions were used. In the boxplot, the center line denotes the median, upper and lower box limits denote upper and lower quartiles,
and whiskers denote 1.5x interquartile range. Source data are provided as a Source Data file.
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Supplementary Figure 4. Chromoformer-clf

model performances when self-attention-based aggregation of regulatory

embeddings was used instead of concatenation. (a) Schematic illustration of self-attention operation proposed by Lin et al. (b)

Schematic illustraction of scaled dot-product attention

proposed by Vaswani et al. (¢c) Cross-validation (n=4) performances of

Chromoformer-clf models. In the boxplot, the center line denotes the median, upper and lower box limits denote upper and lower
quartiles, and whiskers denote 1.5% interquartile range. Source data are provided as a Source Data file.
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Supplementary Figure 5. Chromoformer-diff model architecture and performance. (a) Schematic illustration of Chromoformer-
diff model architecture. (b) Examples of Chromoformer-diff predictions for log2 (expression fold change). Note that 4-fold cross-
validation predictions were pooled into a single plot. Source data are provided as a Source Data file.
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Supplementary Figure 6. Chromoformer-clf model performance. Comparison of cross-validation (n=4) (a) average precisions and
(b) accuracies between benchmark models and Chromoformer-clf. In the boxplot, the center line denotes the median, upper and lower
box limits denote upper and lower quartiles, and whiskers denote 1.5x interquartile range. (c) The prediction probability was highly
correlated with the actual expression levels (Pearson's correlation coefficient (r) > 0.7, all p < 1073%® for correlation coefficients). AP,
average precision. Source data are provided as a Source Data file.
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Supplementary Figure 10. Histone mark ablation study. (a) Violinplot shows the decrease in validation AUC when each histone
mark was excluded from Chromoformer-clf training (n=11 cell types for each HM ablation experiment). Performance decreases were
averaged across all the 11 cell types. Error bars denote standard error of the mean. (b) Correlation between pairs of histone mark signals.
(c) Each row in the left panel shows the combination of features that were ablated simultaneously, and the corresponding row in the right
panel show the decrease in AUC. The black and green boxes highlight the impact of the ablation of H3K36me3 and enhancer marks,
respectively. (d) Emission probabilities of the seven histone marks for each of the 50 chromatin states inferred from chromHMM model.
Similar pair of histone mark combinations were matched between panels (c) and (d). Source data are provided as a Source Datafile.
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Supplementary Figure 11. Functional enrichment of highly expressed genes (i.e., expression above median) with high PCRI.
For each cell type, top 250 genes with the highest PCRI values were selected for each of the four CV folds. Bars denote -log10-
transformed Benjamini-Hochberg adjusted Fisher's exact p-values for the functional enrichment of the resulting 1,000 genes for each

cell type.
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Supplementary Figure 12. Distribution of normalized PCRI values.
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Supplementary Figure 13. Comparing the expression of GNA12, TRIB3, CCN2 and RBM39 in healthy liver tissue and HepG2
hepatocellular carcinoma cells. Source data are provided as a Source Data file.
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Supplementary Figure 14. Predicted effect of SUZ12-associated pCREs in cis-regulation learned by Chromoformer. (a) The
number of pCREs harboring SUZ12 binding site versus PCRI. (b) The number of pCREs harboring SUZ12 binding site versus the actual
expression level of the corresponding gene. (c) The number of non-specific pCREs versus PCRI. In the boxplot, the center line denotes
the median, upper and lower box limits denote upper and lower quartiles, and whiskers denote 1.5% interquartile range. The number of
genes having the corresponding number of pCREs are shown above the plot.
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Supplementary Figure 15. Tendency of PCRI values depending on pCREs harboring PRC2 binding sites. Relationships between
predicted cis-regulatory impact (PCRI) and the number of putative cis-regulatory elements (pCREs) with (a) EZH2 and (b) SUZ12
binding, which are subunits of polycomb repressive complex 2 (PRC2), are shown. In the boxplot, the center line denotes the median,
upper and lower box limits denote upper and lower quartiles, and whiskers denote 1.5% interquartile range. The number of genes having
the corresponding number of pCREs are shown above the plot.
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Supplementary Figure 16. Tendency of PCRI values depending on pCREs harboring PRC1 binding sites. Relationships between
predicted cis-regulatory impact (PCRI) and the number of putative cis-regulatory elements (pCREs) with (a) RNF2 and (b) CBX8
binding, which are subunits of polycomb repressive complex 1 (PRC1), are shown. In the boxplot, the center line denotes the median,
upper and lower box limits denote upper and lower quartiles, and whiskers denote 1.5% interquartile range. The number of genes having
the corresponding number of pCREs are shown above the plot.
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Supplementary Figure 17. Incorporating CTCF binding signals in Chromoformer training. (a) Average CTCF ChIP-seq read
depths around TSS. Read depth signals were grouped and averaged based on the binary gene expression states. (b) Cross-validation
(n=4) performances of Chromoformer-clf models trained with or without CTCF binding signals. (c) Cross-validation (n=4) performances
of Embedding transformer-only Chromoformer-clf models trained with or without CTCF binding signals. Values in parentheses denote
the amount of performance improvement when CTCF binding signals were used. In the boxplot, the center line denotes the median,
upper and lower box limits denote upper and lower quartiles, and whiskers denote 1.5% interquartile range. Source data are provided as

a Source Data file.
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Supplementary Figure 18. Incorporating genomic compartmentalization states in Chromoformer training. (a) Cross-validation
(n=4) performances of Chromoformer-clf models trained with the first principal component (PC1) values of the correlation matrix made
with Hi-C contact matrix. In the boxplot, the center line denotes the median, upper and lower box limits denote upper and lower quartiles,
and whiskers denote 1.5% interquartile range. (b) Pearson's correlation coefficients between gene expression and the PC1 value. P-values
for the correlation coefficients are shown. (c) Distribution of gene expression based on the compartment A/B state. P-values from two-
sided independent t-test are shown above, and the number of genes within each compartment are indicated below. In the boxes within
the violinplot, the white point denotes the median and the upper and lower box limits denote upper and lower quartiles. Source data are

provided as a Source Data file.
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