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Peer Review File

Learning the histone codes with large genomic windows and

three-dimensional chromatin interactions using transformer



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Lee et al., developed a new machine learning model, Chromoformer, to predict gene expression with 

3D epigenome information. The model utilized a transformer, a deep-learning algorithm, to reflect the 

hierarchy of 3D gene regulation in promoter context, promoter-cRE interactions, and a set of 3D 

pairwise promoter-cRE interactions. As a result, Chromoformer outperforms in terms of prediction of 

gene expression compared to other existing machine learning methods and also recapitulates well-

known gene regulation mechanisms through ‘attention’ learning. Thus, the proposed method will be 

highly valuable to elucidate the 3D gene regulation mechanisms. Several points to address my 

concerns are listed below. 

 

Major comments: 

1. The flexibility of Chromoformer: is the current version of Chromoformer applicable to other genome 

versions, species, and other cell-types? 

 

2. What is the effect of individual histone modification on model performance? The authors selected 

seven histone modification marks, where five of them were well known core histone modification 

marks. What is the effect of individual histone modification marks and what is the effect when multiple 

marks substantially overlap each other? According to the histone code theory, the combination of 

histone modifications can present various chromatin states. What if they provide chromatin states 

defined by ChromHMM where the combinatorial histone modification patterns were categorized into 

various chromatin states? 

 

3. If 3D interaction is critical in Chromoformer, what about the effect of CTCF? As multiple ENCODE 

cell lines provide CTCF ChIP-seq results, an investigation of whether the inclusion of CTCF affects 

pairwise interaction and regulation transformer is required. 

 

4. The validation AUC already reached 90-95% in the classification of high and low gene expression 

patterns for all benchmark methods. Thus, to precisely demonstrate the superior performance of 

Chromoformer, I suggest to test the prediction accuracy of change of gene expression between cell-

types. 

 

5. It is unclear whether the ‘attention’ in one cell-type is reproducible in another cell-type or cell-type 

specific. 

 

6. The switch-like suppression at PRC2-bound silencing hubs is interesting observation. However, the 

conclusion was drawn from only limited number of genes (ex, n=16, n=8. N=13, etc). How could the 

authors exclude the possibility that such a switch-like contact effect on gene expression is caused by a 

limited number of genes analyzed in this study? The authors may present that such switch-like 

contacts to PRC2-bound silencing is associated with cell-type specific gene expression. Further, PRC1 

and PRC2 may have different functions according to the cell-types. Have the authors checked PRC1-

bound silencing hubs? 

 

7. Compartmentalization of 3D genome (compartment A/B) is another critical parameter that 

modulates gene expression. Since the presence of active- and inactive-hub is tightly associated with 

genome compartmentalization, the effect of the inclusion of compartmentalization in the model is 

worth to further investigate. 

 

8. What if the authors include topologically associating domains, a well-known gene regulatory unit, in 

the current model? Since all interactions cannot be captured by the pcHi-C result, incorporation of 

TADs may compensate for such experimental limitation. 

 



 

 

Reviewer #2: 

Remarks to the Author: 

In this paper, Kim and colleagues present Chromoformer, a transformer-based deep learning model 

that predicts gene expression levels based on histone modifications at promoters as well as 3D 

genome-interacting enhancers. Transformer is an important new method, and the application of 

transformer to gene expression prediction is novel. The authors compare the chromoformer with 

previous methods. 

 

1. In the comparison with previous methods, the so-called outperformance is not very high. The 

existing methods appear to perform with approximately 92% performance, whereas Chromoformer’s 

performance is around 93-94%. This is not a big difference, and I would hesitate to say that 

Chromoformer “outperforms” on the basis of this difference. 

2. In line with my comment 1, separation of gene expression data into expressed and not expressed 

based on median gene expression levels has been done before and we know that existing gene 

expression models can do this job. However, gene expression is a very wide range, and I do not think 

most existing gene expression models can predict gene expression in a very quantitative manner. Can 

Chromoformer do this? If so, this will give more evidence that Chromoformer indeed can perform 

better in terms of gene expression prediction. 

3. While the use of transformer methods to predict gene expression is useful, I feel that the novelty of 

the biologically significant findings is not very high. We know about transcription factories and 

silencing hubs already. Does this prediction method make any novel predictions that generate novel 

testable biological hypotheses that can then be tested by the authors? 

4. Previous methods investigating 3D genome organization such as TargetFinder have encountered 

issues (discussed in Xi and Beer, PLoS Computational Biology, 2018 and Cao and Fullwood, Nature 

Genetics, 2019). As Xi and Beer say “We report an experimental design issue in recent machine 

learning formulations of the enhancer-promoter interaction problem arising from the fact that many 

enhancer-promoter pairs share features. Cross-fold validation schemes which do not correctly 

separate these feature sharing enhancer-promoter pairs into one test set report high accuracy, which 

is actually arising from high training set accuracy and a failure to properly evaluate generalization 

performance.” Have the authors evaluated their method to see if this issue is present, or not a 

problem? 

 

Minor comments 

1. Figure 2 – “CV” is not explained in the figure legend 

2. I am still not very clear about how the training dataset was prepared. The authors say “For each 

cell type, the median expression values 

across all genes were used as threshold values to assign genes with one of the two labels: highly (1) 

or lowly expressed (0).” – does this mean that if the gene expression was above the median 

expression, then it was denoted as “1”? 

 

 

 

Reviewer #3: 

Remarks to the Author: 

In this article, the authors present a transformer-based, three-dimensional (3D) chromatin 

conformation-aware deep learning architecture named Chromoformer that achieves the state-of-the-

art performance in the quantitative deciphering of the histone codes in gene regulation. The authors 

decomposed the architecture into three phrases understand the complex dynamics of cis-regulations 

involving multiple layers (1) cis-regulation by core promoters, (2) 3D pairwise interaction between a 

core promoter and a putative cis-regulatory regions (pCREs) and (3) a collective regulatory effect 

imposed by the set of 3D pairwise interactions. 

 



 

Here are my reviews for this article 

 

1. The authors developed three transformer models(Embedding transformer, pairwise transformer and 

Regulation Transformer). For each transformer model, the input features are core promoter features 

and pCRE features. It is unclear how these features were generated. Did any deep learning models 

were used to generate these features? Some details are necessary to understand this step. 

2. The architecture of “Embedding Transformer” and “Pairwise Interaction Transformer” is same. Is 

there any specific reason to give different name? It could be misleading that you have developed two 

different transformer architecture. 

3. One of the main key points of the regulation transformer is to “normalized interaction frequencies f 

between the corresponding core promoter-pCRE pair as a bias term to the self-attention matrix to 

inform the model with the relative affinities of the pairwise interactions”. What is the reason of using 

“normalized interaction frequencies”? How were normalized interaction frequencies derived? 

4. The authors used three modules (100bp, 500bp and 2000bp modules) and the outputs 

concatenated before final prediction using fully connected layers. Can self-attention based 

concatenation be applied so that the multi-scale regulatory embedding is generated with their 

attention score? As in the normal concatenation, are you giving equal weightage to all three outputs? 

5. Also, why the authors specifically consider 100bp, 500bp and 2000bp input regions? Did the 

authors check the prediction result only for two regions like 100bp and 500bp OR 500bp and 2000bp? 



Response to reviewer’s comments 
We would like to thank all the reviewers for the insightful and constructive suggestions. According to 
the comments, we tried to improve the quality of the manuscript through additional experiments and 
further discussions on model performances and biological findings. Please see below our detailed 
response to reviewers’ comments in blue. 

 

Reviewer #1 (Remarks to the Author): 
Lee et al., developed a new machine learning model, Chromoformer, to predict gene expression with 
3D epigenome information. The model utilized a transformer, a deep-learning algorithm, to reflect the 
hierarchy of 3D gene regulation in promoter context, promoter-cRE interactions, and a set of 3D 
pairwise promoter-cRE interactions. As a result, Chromoformer outperforms in terms of prediction of 
gene expression compared to other existing machine learning methods and also recapitulates well-
known gene regulation mechanisms through ‘attention’ learning. Thus, the proposed method will be 
highly valuable to elucidate the 3D gene regulation mechanisms. Several points to address my 
concerns are listed below. 

 

Major comments: 

1. The flexibility of Chromoformer: is the current version of Chromoformer applicable to other genome 
versions, species, and other cell-types?  

 

We appreciate this valuable comment. We agree that the flexibility and wide applicability of a machine 
learning model in computational biology applications are of great importance to facilitate further 
research derived from the computational model. To this end, we carried out two additional (1) inter-
species and (2) inter-cell-type validation experiments to support the flexibility of Chromoformer model 
training. 

First, we conducted an experiment to show that Chromoformer can be trained or evaluated on the 
epigenomes of species other than the human. To this end, we processed the ENCODE reference 
epigenome of ES-Bruce4 mouse embryonic stem cell (mESC) line from its raw sequencing reads. 
Also, we used the normalized interaction frequencies from publicly available Hi-C interaction matrices 
of mESC (Dixon et al., 2012) to determine the promoter-pCRE interactions that are used for 
Chromoformer training. 

As a result, we observed that Chromoformer achieves high validation AUC for mESC data (Average 
AUC of 95.30, 4-fold cross validation, Figure R1-1a), which is on par with the performances from 
models trained with human embryonic stem cell line H1 and HUES64 (Average AUC of 93.52 and 
94.28, respectively, 4-fold cross validation, Figure R1-1b). This result shows that the Chromoformer 
model can also be trained with epigenomic data from different species, and also with different versions 
of the reference genome. Having confirmed the applicability of Chromoformer to the mouse 
epigenome, we were curious to what extent is the learned grammar of the regulatory histone codes 
shared across the human and mouse epigenomes. To this end, we evaluated the performances of 
Chromoformer models trained on H1 or HUES64 for the prediction of mESC gene expression and 
vice versa. We observed that the cross-species performances were reasonable for hESC-to-mESC 
predictions (AUC of 93.87 and 93.42 from models trained with H1 and HUES64 epigenomes, 



respectively, Figure R1-1a) as well as mESC-to-hESC predictions (AUC of 92.24 and 92.90 for H1 
and HUES64 gene expressions, respectively, Figure R1-1b). These results suggest that the roles of 
individual histone mark in gene regulation is not only qualitatively conserved between mouse and 
human, but the link between the quantity of histone modifications and the amount of gene expression 
is also conserved to a reasonable extent, as exemplified in FigureR1-1c and d showing the 
quantitative similarities of histone marks for human SOX2 and mouse Sox2 gene expressed to a 
similar extent in both species. 

Next, to examine the inter-predictability of Chromoformer across human cell types, we evaluated the 
performance of a Chromoformer model trained for one cell type on the other cell types. For every cell 
type examined, the best performance was achieved by the model directly trained for that cell type 
(matched cell type model, diagonal values in Figure R1-1e). However, we observed that a 
Chromoformer model trained in one cell type was still applicable to other cell types to some degree 
(relative validation AUC >92%, off-diagonal values in Figure R1-1e). We also found that the tendency 
of cross-cell type prediction performances was concordant with the similarity of cell types. For 
example, two hESC lines (H1 and HUES64) showed highly similar performance tendencies, and 
cancer (HepG2 and A549) and immortalized (GM12878) cell lines were clustered together (Figure 
R1-1e). Altogether, these results suggest that Chromoformer trained in cell type-specific manner 
indeed learns cell type-specific features of gene regulation, but still captures the general rules that 
can be commonly applied to other cell types. Thanks to the reviewer’s comment, we added the above 
results to the Discussion (Supplementary Fig. 17 and 18) of the revised manuscript by showing the 

Figure R1-1 (Related to Supplementary Fig. 17 and 18). Inter-species and inter-cell type prediction 
performances of Chromoformer-clf models. Performances of Chromoformer-clf models, trained with ES-
Bruce4 mouse embryonic stem cells (mESC) or human embryonic stem cells (hESCs), are shown for the 
prediction of (a) mESC gene expression and (b) hESC gene expression. Log2-transformed histone modification
signals surrounding (c) human SOX2 TSS and (d) mouse Sox2 TSS. (e) Cross-cell type gene expression 
prediction performances. Colors represent the relative validation AUC compared to the matched cell type
Chromoformer-clf model (i.e., trained and evaluated for the same cell type). 



expandability of the framework. 

Meanwhile, to enhance the applicability of Chromoformer, we developed and made public an 
automated pipeline for the preparation of the input data for Chromoformer. Given the raw histone 
ChIP-seq read or alignment files, the reference genome, gene annotations and the catalog of 3D 
chromatin interactions, the pipeline aligns the read to the genome, computes the read depths and 
prepares the input matrices representing promoter/pCRE histone signals as binary files so that it can 
be readily fed to the Chromoformer model while training and evaluation. For the implementation of 
the pipeline, please refer to the github repository dedicated for this study 
(https://github.com/dohlee/chromoformer). 

 

2. What is the effect of individual histone modification on model performance? The authors selected 
seven histone modification marks, where five of them were well known core histone modification 
marks. What is the effect of individual histone modification marks and what is the effect when multiple 
marks substantially overlap each other? According to the histone code theory, the combination of 
histone modifications can present various chromatin states. What if they provide chromatin states 

Figure R1-2 (Related to Supplementary Fig. 10). Histone mark ablation study. (a) Bars show the decrease 
in validation AUC when each histone mark was excluded from Chromoformer-clf training. Performance 
decreases were averaged across all the 11 cell types. Error bars denote standard error of the mean. (b)
Correlation between pairs of histone mark signals. (c) Each row in the left panel shows the combination of
features that were ablated simultaneously, and the corresponding row in the right panel show the decrease in
AUC. The black box highlights the independent impact of H3K36me3 ablation. (d) Emission probabilities of the
seven histone marks for each of the 50 chromatin states inferred from chromHMM model. Similar pair of histone
mark combinations were matched between panels (c) and (d). 



defined by ChromHMM where the combinatorial histone modification patterns were categorized into 
various chromatin states? 

We are grateful for this suggestion. According to the suggestion, we first conducted feature ablation 
study to see the effect of individual histone marks on the model performance. We excluded one 
histone marks for each model training episode, and measured the decrease in performance compared 
to the original model trained with all the seven histone marks. By doing this, we could determine the 
contribution of each histone marks and their combinations in modeling gene regulation.  

The results of single-feature ablation experiments are shown in Figure R1-2a, and we found that the 
ablation of H3K36me3 mark led to the most dramatic decrease in performance. This can be explained 
by the observation that H3K36me3 level was the least correlated with other six marks (Figure R1-
2b), thus its ablation can hardly be compensated by the remaining marks. Next, to examine the 
combinatorial effect of histone marks on gene expression prediction, we simultaneously excluded two 
or more histone marks and measured the amount of performance degradation similarly. We observed 
that a majority of histone combinations leading to the greatest decrease in model performance 
qualitatively coincided with the combination characterizing the chromatin states previously determined 
by chromHMM (Figure R1-2c� d). Notably, the detrimental effect of H3K36me3 ablation seemed 
almost independent of those combinations, again reflecting its unique spatial distribution. This 
suggests that Chromoformer internally captures the well-known combinations of histone modifications 
for chromatin states. We added these results to the revised manuscript and strengthened the 
discussion on H3K36me3 mark. 

 

3. If 3D interaction is critical in Chromoformer, what about the effect of CTCF? As multiple ENCODE 
cell lines provide CTCF ChIP-seq results, an investigation of whether the inclusion of CTCF affects 
pairwise interaction and regulation transformer is required. 

Figure R1-3 (Related to Supplementary Fig. 19). Incorporating CTCF binding signals in Chromoformer 
training. (a) Performances of Chromoformer-clf models trained with or without CTCF binding signals. (b) 
Performances of Embedding transformer-only Chromoformer-clf models trained with or without CTCF binding 
signals. Values in parentheses denote the amount of performance improvement when CTCF binding signals 
were used. (c) Average CTCF ChIP-seq read depths around TSS. Read depth signals were grouped and 
averaged based on the binary gene expression states. 



We appreciate this insightful comment. According to the suggestion, we carried out experiments by 
training Chromoformer models with CTCF ChIP-seq signals in addition to the seven histone ChIP-
seq signals. Experiments were done using the following cell types for which the raw CTCF ChIP-seq 
data were available in ENCODE: H1 (E003), H1 derived neuronal progenitor cultured cells (E007), 
A549 EtOH 0.02pct lung carcinoma (E114), GM12878 lymphoblastoid (E116) and HepG2 
hepatocellular carcinoma (E118). 

Adding CTCF binding information resulted in moderate performance improvements in four out of five 
cell types examined (average AUC increase of 0.06~0.11 for cell types E003, E007, E114 and E116), 
although the improvement did not reach statistical significance (Figure R1-3a). In addition, following 
the reviewer’s suggestion, we examined whether the incorporation of CTCF binding information will 
compensate the absence of pairwise interaction and regulation transformers in Chromoformer training 
by indirectly providing models with the information about 3D chromatin interactions. To this end, we 
measured the performance of an ‘Embedding transformer-only’ Chromoformer variant when trained 
with CTCF ChIP-seq signals. As a result, we observed much greater performance increase (average 
AUC increase of 0.12~0.14 for cell types E003, E007, E114 and E116, Figure R1-3b), but the 
performances did not reach that of intact Chromoformer models trained without CTCF signals. 

Taken together, the increased performance, if not dramatic, suggest that incorporating CTCF binding 
signals at promoters (or 40kbp window around TSS) can provide some information that may not be 
explained by histone modification states. This is consistent with the recent discovery highlighting the 
role of promoter-proximal CTCF binding in gene activation through distal enhancer-promoter 
interaction (Naoki et al., 2021). Figure R1-3c supports that highly expressed genes (i.e., genes with 
binary label “1”) show prevalent CTCF binding near transcriptional start sites compared to lowly 
expressed genes (i.e., genes with binary label “0”). Thus, these results show the discriminative power 
of CTCF binding signals in predicting gene expression states. Meanwhile, our observation that the 
‘Embedding transformer-only’ Chromoformer trained with CTCF signals did not reach the 
performance of intact Chromoformer model demonstrates that we still need another transformers 
modeling promoter-pCRE interactions and their collective regulatory effects. We conjecture that the 
configurations of histone modification at distal pCREs deliver richer regulatory information compared 
to CTCF signal alone, which indicates E-P contacts through chromatin folding near promoters. 

Since we decided to confine our results in the main text to histone modifications, we added these 
results on CTCF in the Discussion of the revised manuscript (Supplementary Fig. 19), by emphasizing 
the expandability of Chromoformer models to incorporate any genomic signal tracks that may account 
for the unexplained portion of gene regulation, such as TF ChIP-seq signals. 

 

4. The validation AUC already reached 90-95% in the classification of high and low gene expression 
patterns for all benchmark methods. Thus, to precisely demonstrate the superior performance of 
Chromoformer, I suggest to test the prediction accuracy of change of gene expression between cell-
types. 

 

We would like to thank the reviewer for this suggestion. We agree that it is necessary to additionally 
demonstrate the performance of Chromoformer in additional tasks beyond a binary gene expression 
prediction task. Especially, predicting the relative change of gene expression between cell types 
based on histone modification states will be more challenging for computational models, because the 
model needs to precisely learn how to quantitatively translate the difference of histone codes into 
relative difference of gene expression activity. 

According to the comment, we newly designed and trained a variant of Chromoformer that predicts 



the change of gene expression between cell-types. We called the model ‘Chromoformer-diff’ to 
differentiate it from the Chromoformer model for binary gene expression classification (which we call 

Figure R1-4 (Related to Fig. 2 and Supplementary Fig. 5). Chromoformer-diff model architecture and 
performance. (a) Schematic illustration of Chromoformer-diff model architecture. (b) Performances of 
Chromoformer-diff models and other benchmark models in predicting gene expression fold-change between 
two cell types. (c) Pairwise performance comparison between DeepDiff and Chromoformer-diff. (d) Examples 
of Chromoformer-diff predictions for log2 (expression fold change). Note that 4-fold cross-validation predictions 
were pooled into a single plot. 



‘Chromoformer-clf’ in the revised manuscript). Importantly, this deep learning-based prediction of 
differential expression was first addressed by DeepDiff (Sekhon et al., 2018), and thus we 
benchmarked the performance of our Chromoformer-diff model with that of DeepDiff. 

The architecture of the Chromoformer-diff model is illustrated in Figure R1-4a. Given relevant histone 
modification contexts for a target gene in two difference cell types, a model was trained to predict log2 
fold-change of gene expression between the two cell types using two Chromoformer backbones with 
shared weights. We added the detailed description of Chromoformer-diff model architecture in the 
Results and Supplementary Fig. 5 of the revised manuscript. We trained Chromoformer-diff with 
seven cell type-pairs that have been already validated in the original DeepDiff paper (Sekhon et al., 
2018). We also measured the predictive power of the ratio of the prediction probabilities obtained from 
classifier models (Chromoformer-clf and benchmark classifiers) in predicting the log2 expression fold 
change of genes (i.e., The correlation between log2 (predicted probability of gene i in cell type A / 
predicted probability of gene i in cell B) and log2 (expression fold change)). As a result, we observed 
that Chromoformer-diff outperformed DeepDiff and the other classifier models (Figure R1-4b and c). 
The across-cell type average Pearson’s correlation coefficient between the predicted and true 
expression fold change increased from 0.577 to 0.635, when DeepDiff and Chromoformer-diff was 
compared. Qualitatively, we found that Chromoformer-diff tended to show better predictions for genes 
with extreme differences between the two cell types (Figure R1-4d). 

Meanwhile, to demonstrate the quantitative modeling performance of Chromoformer model similarly, 
we also trained a variant of Chromoformer model to directly predict the gene expression level for 
individual cell types according to the query of reviewer #2. In other words, we let Chromoformer solve 
gene expression prediction as a regression task. For the results of regression-based Chromoformer, 
please refer to our response of question #2 raised by reviewer #2 and Figure R2-2. 

 

5. It is unclear whether the ‘attention’ in one cell-type is reproducible in another cell-type or cell-type 
specific.  

 

We agree that it is necessary to show whether the findings from the learned self-attention weights of 
Embedding transformers are consistent across different cell types. According to the reviewer’s 
suggestion, we inspected the learned attention weights from each Chromoformer model trained for 
different cell types. As a result, we found that the tendency of Embedding transformers to attend to 4-
6kbp downstream regions from TSS is highly consistent throughout cell types (Figure R1-5), which 
suggest that the transcriptional elongation signal at the gene body consistently gave additional 
information to the model about the transcriptional state of genes regardless of cell type. We added 
these results in the revised manuscript (Supplementary Fig. 9). 

 

6. The switch-like suppression at PRC2-bound silencing hubs is interesting observation. However, 
the conclusion was drawn from only limited number of genes (ex, n=16, n=8. N=13, etc). How could 
the authors exclude the possibility that such a switch-like contact effect on gene expression is caused 
by a limited number of genes analyzed in this study? The authors may present that such switch-like 
contacts to PRC2-bound silencing is associated with cell-type specific gene expression. Further, 
PRC1 and PRC2 may have different functions according to the cell-types. Have the authors checked 
PRC1-bound silencing hubs? 

 

We would like to thank the reviewer for the intriguing comment. According to the comment, we further 



assessed whether the switch-like behavior of PRC2-bound silencing hubs has true biological 
significance or was an experimental artifact due to the small number of genes. 

To this end, we first examined whether we could rescue more genes that are affected by switch-like 
suppression of PRC2 by introducing additional ChIP-seq data targeting PRC2 subunits. We could 
obtain several replicates of EZH2 and SUZ12 ChIP-seq peaks from ENCODE, and we observed that 
using merged peaks rescued more genes compared to the previous analyses.  

To provide additional support for the switch-like suppression of PRC2 observed in this study, we 
investigated whether it was a common phenomenon across cell types or not. As the suppression of 
developmental genes by PRC2 is predominantly observed and studied for stem cell types (Chan and 
Morey, 2019), we expected that the sigmoidal patterns would only be exhibited in undifferentiated cell 
types (E003~E016). As expected, we observed such patterns for H1 embryonic stem cell (E003), 
mesendoderm (E004), neural progenitor cells (E007), and HUES64 embryonic stem cell (E016) for 
both EZH2 and SUZ12 binding site analyses. However, we could not observe similar results in 
trophoblast (E005) and mesenchymal stem cells (E006). Interestingly, this result is highly consistent 
with the previously demonstrated cell type hierarchy based on H3K27me3 signal in Polycomb-
associated repressive domains (Kundaje et al., 2015), in which H1 cells (E003), mesendoderm cells 
(E004), neural progenitor cells (E007) and HUES64 cells (E016) were clustered together. This 
suggests the similarities of the epigenetic regulation dynamics among those specific cell types were 

Figure R1-5 (Related to Supplementary Fig. 9). Across-cell type consistency of self-attention weights 
learned by the Embedding transformer of Chromoformer-clf. Epigenome ID denoting the corresponding cell 
type is shown above each plot. 



recapitulated by the interpretation of trained Chromoformer models. 

Finally, according to the reviewer’s comment, we conducted similar analyses for PRC1-bound 
silencing hubs. To locate PRC1 throughout the genome, we utilized ChIP-seq peaks for RNF2 and 
CBX8 subunits in ENCODE and observed similar trends of sigmoidal increase of PCRI values 
following the increasing number of pCREs with PRC1-binding sites in H1, mesendoderm, neural 
progenitor and HUES64 cells (Figure R1-6c and d). The marked similarity in the characteristic of 

Figure R1-6 (Related to Supplementary Fig. 14� 15 and 16). Tendency of PCRI values depending on
pCREs harboring PRC2 or PRC1-binding sites. Relationships between predicted cis-regulatory impact 
(PCRI) and the number of putative cis-regulatory elements (pCREs) with (a) EZH2 and (b) SUZ12 binding,
which are subunits of polycomb repressive complex 2 (PRC2), are shown. Similarly, panel (c) and (d) shows
the association between PCRI and the number of pCREs having RNF2 and CBX8 binding sites, respectively,
which are subunits of PRC1. 



PRC1 and PRC2 may be due to the interdependence of PRC1 and PRC2 for their binding to Polycomb 
response elements (Kahn et al., 2016) in those cell types. Thanks to the reviewer’s comment, we 
have improved the discussion on the switch-like suppression of Polycomb-bound bodies by adding 
the results above to the revised manuscript (Supplementary Fig. 14, 15 and 16). 

 

7. Compartmentalization of 3D genome (compartment A/B) is another critical parameter that 
modulates gene expression. Since the presence of active- and inactive-hub is tightly associated with 
genome compartmentalization, the effect of the inclusion of compartmentalization in the model is 
worth to further investigate. 

 

Figure R1-7 (Related to Supplementary Fig. 20). Incorporating genomic compartment states in 
Chromoformer training. (a) Performances of Chromoformer-clf models trained with the first principal 
component (PC1) values of the correlation matrix made with Hi-C contact matrix. (b) Correlation between gene 
expression and the PC1 value. (c) Distribution of gene expression based on the compartment A/B state. 



We agree with the reviewer’s comment in that the compartmentalization of 3D genome beyond one-
to-one contacts between genomic fragments may provide additional information on the regulation of 
gene expression. To this end, we utilized the 1Mbp-resolution compartment A/B calls from Schmitt et 
al., 2016, which covers all the cell types used in this study. 

To inform the model with compartment A/B status, we added PC1 values used in compartment calling 
as input features along with histone ChIP-seq signals and re-trained Chromoformer models. 
Unexpectedly, we observed that adding PC1 values did not give significant overall performance gain 
(Figure R1-7a). To examine the reason for this result, we tested for the association between 3D 
genome compartmentalization and gene expression values. As is widely established, we could 
observe that the state of 3D genome compartmentalization showed significant association with the 
expression level of gene in our data (Figure R1-7b� c), but the absolute level of the association 
(Pearson’s correlation coefficient 0.11~0.19) was not high enough to have reasonable predictability 
for gene expression levels. Thus, we concluded that the predictive power of compartment-level 
features did not exceed that of gene-level histone modification features. We added the results to the 
Discussion of the revised manuscript (Supplementary Fig. 20). 

 

8. What if the authors include topologically associating domains, a well-known gene regulatory unit, 
in the current model? Since all interactions cannot be captured by the pcHi-C result, incorporation of 
TADs may compensate for such experimental limitation. 

 

We thank the reviewer’s insightful comment. According to the suggestion, we investigated whether 
the inclusion of TAD information would improve model performance. We initially thought that TAD 
information may be complementarily refine pcHi-C interaction data in two ways (Figure R1-8a): (1) 

Figure R1-8 (Related to Supplementary Fig. 8). Contribution of inter- and intra-TAD chromatin 
interactions in Chromoformer training. (a) Schematic illustration of inter- and intra-TAD chromatin 
interactions. (b) Proportion of inter-TAD interactions used in Chromoformer training for each cell type. (c) 
Performance differences of Chromoformer-clf models when inter- and intra-TAD interactions were excluded 
from training. Average validation AUC scores were separately measured for genes with and without at least one 
cis-regulatory interaction. 



by rescuing false-negative interactions as the reviewer’s comment has pointed out, and (2) by 
reducing false-positive interactions, which will mainly include inter-TAD interactions. Regarding the 
former case (rescuing false-negative interactions), we agree that using TAD dramatically reduces the 
search space of plausible promoter-pCRE interactions and helps imputing the missing interactions in 
the pcHi-C data, but we thought that exploiting it directly to Chromoformer training will be hard since 
accurate de novo prediction of promoter-pCRE interactions within a TAD is still a difficult task, 
although there exist several deep learning approaches (Singh et al., 2019; Avsec et al., 2021). 
Therefore, we focused our experiments on the latter case (i.e., reducing false-positive interactions). 

We obtained 40kb-resolution TAD annotation for 11 cell types from Schmitt et al., 2016. Using the 
TAD information, we classified each promoter-pCRE interaction used for training as either of intra-
TAD or inter-TAD interaction and found about 16%~22% of interactions were inter-TAD interactions 
(Figure R1-8b). Indeed, not all of those inter-TAD interactions would be biologically irrelevant, but to 
see the effect of using a set of 3D chromatin interactions with increased signal-to-noise ratio, we just 
discarded inter-TAD interactions from Chromoformer-clf training. As a control, we also examined the 
effect of excluding intra-TAD interactions. Resultingly, we observed that the exclusion of inter-TAD 
interactions neither consistently increased nor decreased the model performance (Figure R1-8c), 
suggesting that inter-TAD interactions were already having negligible or dispensable effect to the 
model performance. On the other hand, excluding intra-TAD interactions resulted in marginal 
performance degradation in several cell types only for genes having cis-regulatory interactions, 
supporting the relative importance of intra-TAD interactions compared to inter-TAD interactions in 
Chromoformer-clf training (Figure R1-8c). Meanwhile, such marginal performance decreases imply 
there still exist meaningful regulatory information in inter-TAD interactions. 

We updated our manuscript to include these results on the contribution of inter- and intra-TAD 
interactions in Chromoformer training (Supplementary Fig. 8). 

 

Reviewer #2 (Remarks to the Author): 
 

In this paper, Kim and colleagues present Chromoformer, a transformer-based deep learning model 
that predicts gene expression levels based on histone modifications at promoters as well as 3D 
genome-interacting enhancers. Transformer is an important new method, and the application of 
transformer to gene expression prediction is novel. The authors compare the chromoformer with 
previous methods. 

 

1. In the comparison with previous methods, the so-called outperformance is not very high. The 
existing methods appear to perform with approximately 92% performance, whereas Chromoformer’s 
performance is around 93-94%. This is not a big difference, and I would hesitate to say that 
Chromoformer “outperforms” on the basis of this difference. 

 

We appreciate the reviewer for pointing this issue out. We agree that the existing models exhibit good 
performances (~92 of AUC) for the binary gene expression classification task. Thus, to show the 
outperformance of Chromoformer in more challenging tasks on gene expression prediction, we 
carried out two additional benchmark experiments.  

 



1. Predicting the values of expression levels as a regression task (Chromoformer-reg) 

To examine the capacity of the Chromoformer model for quantitative modeling of gene expression 
regulation, we formulated a regression task to predict log2-transformed expression levels of 
genes and trained Chromoformer and benchmark models. As a result, Chromoformer-reg showed 
0.667 of R2 value between true and predicted expression values, while the best competitor, 
DeepChrome, showed 0.627. For a more detailed description of Chromoformer-reg model and its 
evaluation results, please refer to our response for question #2 of reviewer #2 and Figure R2-2. 

 

2. Predicting the fold-change of expression levels between two cell types (Chromoformer-diff) 

Next, a variant of Chromoformer is trained to predict the fold-change of a gene based on histone 
modification configurations in two different cell types. This formulation of gene expression 
prediction is more challenging since the model should learn to map histone contexts of two 
different cells into a unified embedding space and at the same time learn how to quantitatively 
translate the discrepancy of embeddings into the relative difference of gene expression levels. As 
a result, the average Pearson’s correlation coefficient between the predicted and true expression 
fold-change was 0.635, while that of state-of-the-art model, DeepDiff, was 0.577. For a more 
detailed description of Chromoformer-diff model, please refer to our response for question #4 of 
reviewer #1 and Figure R1-4. 

Altogether, the consistent performance increases of Chromoformer models in various gene 
expression prediction tasks strongly underscore the contribution of additional biological features, 
namely, 3D chromatin interactions. In other words, it implies that certain portion of regulatory 
information can only be effectively explained by information embedded in cis-regulatory elements that 
is conveyed to promoters through 3D chromatin interactions, but not solely by core promoter histone 
codes. We think that suggesting a new deep learning model architecture that effectively extracts such 
information is one of the important technical novelties of this study. Thanks to the reviewer’s comment, 
we revised the manuscript accordingly to improve the discussion on performance improvement. 

 

2. In line with my comment 1, separation of gene expression data into expressed and not expressed 
based on median gene expression levels has been done before and we know that existing gene 
expression models can do this job. However, gene expression is a very wide range, and I do not think 
most existing gene expression models can predict gene expression in a very quantitative manner. 
Can Chromoformer do this? If so, this will give more evidence that Chromoformer indeed can perform 
better in terms of gene expression prediction.  

 

We agree that since gene expression values are continuous and their range varies several orders of 
magnitude in general, the binary classification formulation of gene expression prediction task may not 
be sufficient to support the quantitative predictive power of Chromoformer. To further support the 
quantitative modeling power of Chromoformer, we designed a modified version of Chromoformer as 
a regression model that predicts the exact value of gene expression instead of binary labels 
(Chromoformer-reg model, Figure R2-2a). To this end, we changed the last fully-connected layers of 
the Chromoformer to predict a single scalar value instead of binary logits. Then, Chromoformer-reg 
models were trained from scratch to predict log2-transformed expression value. All the training 
configurations were kept the same except that mean squared error was used as a loss function. By 
modifying benchmark models into corresponding regression models in a similar way, we could 
demonstrate that Chromoformer performs better not only in classification task but also in regression 



task compared to benchmark models. Specifically, Chromoformer-reg showed higher Pearson’s 
correlation coefficient and R2 score (Figure R2-2b and c). We added these results in Results and 
Supplementary Fig. 7 of the revised manuscript to support the ability of Chromoformer to predict gene 
expression in a quantitative manner. 

 

3. While the use of transformer methods to predict gene expression is useful, I feel that the novelty of 
the biologically significant findings is not very high. We know about transcription factories and 
silencing hubs already. Does this prediction method make any novel predictions that generate novel 
testable biological hypotheses that can then be tested by the authors?  

 

We would like to thank the reviewer for the valuable suggestion. We agree that the existence of 
transcription factories and silencing hubs inside the nucleus has already long been established by 
existing studies. To go beyond just demonstrating the existence of those intranuclear hubs, we thought 
that the novelty of this study can be found in that it provides a systematic way to infer the collective 

Figure R2-2 (Related to Fig. 2 and Supplementary Fig. 7). Chromoformer-reg model architecture and
performances. (a) Schematic illustration of Chromoformer-reg model architecture. (b) Performances of
Chromoformer-reg models in terms of Pearson correlation coefficient. (c) Performances of Chromoformer-reg 
models in terms of R2 value. 



  

Figure R2-3 (Related to Fig. 6). Differential cis-regulome analysis using PCRI values. (a) Hierarchical 
clustering of top 1,000 genes having highest normalized PCRI variances across cell types. Representative
GO terms enriched for the corresponding set of genes are shown on the right. (b) Histone modification
landscape around the transcription start site of CCN2 and its pCREs in Liver (E066) and HepG2 (E118) cells.
Red shades denote promoter regions and blue shades denote pCRE regions interacting with the promoter.
Red arrow represents a putative enhancer region that seems to be only active in HepG2 cells. 



effect of cis-regulatory interactions in highly quantitative manner. This can be achieved through the 
proposed value named predicted cis-regulatory impact (PCRI). In this regard as well as according to 
the reviewer’s suggestion, we conducted additional analyses to provide further biological findings 
based on PCRI values. 

We thought that the whole collection of PCRI values for each cell type can be considered as a gene-
centric representation of the cis-regulome. That is, the cis-regulation functioning in each cell type can 
be summarized as a ~20,000-dimensional vector having PCRIs as its elements. We were first curious 
whether such representation of cis-regulome can reveal similarities and differences between cell 
types. To this end, we selected 1,000 genes whose PCRIs were highly variable across cell types and 
performed hierarchical clustering based on their PCRI values. As a result, genes associated with cell 
type-specific functions had high PCRI values and were clustered together (Figure R2-3a), implying 
the coordinated cis-regulation imposed on the genes. 

Meanwhile, we discovered a small subset of genes that had high PCRIs in HepG2 hepatocellular 
carcinoma (HCC) cells, but not in healthy adult liver tissue (Figure R2-3a� black box). Interestingly, 
we could not find any biological terms significantly enriched for those genes unlike other clustered 
gene sets in the analysis. We speculated that they represent a consequence of cancer-specific 
aberrant cis-regulation occurring in a stochastic manner. Although the genes did not show collective 
functional enrichment, we could identify four individual genes (GNA12, TRIB3, CCN2 and RBM39) 
tightly implicated in HCC, which can be thought as epigenomic “hits” by aberrant cis-regulation. In 
accordance with the tendency of PCRIs, the expression of the four genes were 9.3-, 6.0-, 4.1-, and 
3.7-fold higher in HCC than in healthy liver cells, respectively. 

We further tried in interpret why did the Chromoformer predict high PCRI values for those genes by 
visualizing the histone modification landscape surrounding genes. For example, Figure R2-3b shows 
histone modification landscapes around CCN2 in healthy liver and HCC cells. Comparing two 
landscapes revealed a putative enhancer region that is only active in HCC (Figure R2-3b� red arrow), 
which may explain higher PCRI as well as higher expression of CCN2 in HCC. It highlights that the 
in-depth interpretation of Chromoformer model prediction in the form of differential cis-regulome 
analysis can reveal an epigenomic origin of malignant gene expression. As the histone modification 
profiles for more cell types become available, we expect that this data-driven approach will be more 
effective in revealing cancer-specific or condition-specific cis-regulation events on the basis of the 
promoter-pCRE interactions. Thanks to the reviewer’s comment, we improved the results on PCRI 
analysis in the revised manuscript (Figure 6). 

Besides, according to the comment of Reviewer 1, we also added further discussion on the silencing 
hubs through across-cell type analysis and PRC1-bound hubs. For the results of the analyses, please 
refer to our response of question #6 raised by reviewer #1 and Figure R1-6. 

 

4. Previous methods investigating 3D genome organization such as TargetFinder have encountered 
issues (discussed in Xi and Beer, PLoS Computational Biology, 2018 and Cao and Fullwood, Nature 
Genetics, 2019). As Xi and Beer say “We report an experimental design issue in recent machine 
learning formulations of the enhancer-promoter interaction problem arising from the fact that many 
enhancer-promoter pairs share features. Cross-fold validation schemes which do not correctly 
separate these feature sharing enhancer-promoter pairs into one test set report high accuracy, which 
is actually arising from high training set accuracy and a failure to properly evaluate generalization 
performance.” Have the authors evaluated their method to see if this issue is present, or not a problem?   

 

We thank the reviewer for pointing out this critical issue with useful references. We indeed agree that 



the evaluation of machine learning (ML) models based on genomic features should be done carefully, 
since promoters in training and validation data can share common cis-regulatory elements if we just 
split genes randomly, and thus shared features across train and validation set can result in inflated 
validation set performance in model evaluation. We carefully read through the articles provided with 
the comment, and found that both of them were concerned with the incorrect report of model 
performance due to the shared enhancer features across the train and validation set. 

In fact, we were already aware of this issue of information leak and made the evaluation of the 
Chromoformer model carefully designed to avoid the problem. We tried to prevent it by splitting genes 
into train and validation sets according to the chromosome in which each gene is located so that no 
cis-regulatory elements are shared across genes in train and validation sets. Please note that we do 
not consider any trans-interactions between regulatory elements to ensure that no information is 
allowed to be transferred across different chromosomes. 

 

Minor comments 

1. Figure 2 – “CV” is not explained in the figure legend 

 

Following this comment, we added a description in the legend of Figure 2 in the manuscript. 

 

2. I am still not very clear about how the training dataset was prepared. The authors say “For each 
cell type, the median expression values across all genes were used as threshold values to assign 
genes with one of the two labels: highly (1) or lowly expressed (0).” – does this mean that if the gene 
expression was above the median expression, then it was denoted as “1”? 

 

According to this comment, we elaborated the label assignment procedures in the Methods section 
of the revised manuscript. As the reviewer has mentioned, if a gene had expression above median 
expression in that cell type, it was assigned with label “1”, otherwise it was assigned with label “0”. 
Importantly, these labels “1” and “0” do not have any quantitative meanings (i.e., “1” does not inform 
the model that the gene is expressed as an amount of “1”). Instead, they just denote the ordinal indices 
of binary classification labels. In other words, “0” indicates that the gene is assigned to the first class, 
and “1” indicates that the gene is assigned to the second class. Therefore, we can expect that a 
Chromoformer model, which is trained to discriminate between the two distinct classes, will be trained 
exactly the same even if we swap label assignment of genes (“0” to “1” and “1” to “0”), or use labels 
“-1” and “1” instead of “0” and “1”. 

 

Reviewer #3 (Remarks to the Author): 
 

In this article, the authors present a transformer-based, three-dimensional (3D) chromatin 
conformation-aware deep learning architecture named Chromoformer that achieves the state-of-the-
art performance in the quantitative deciphering of the histone codes in gene regulation. The authors 
decomposed the architecture into three phrases understand the complex dynamics of cis-regulations 
involving multiple layers (1) cis-regulation by core promoters, (2) 3D pairwise interaction between a 
core promoter and a putative cis-regulatory regions (pCREs) and (3) a collective regulatory effect 



imposed by the set of 3D pairwise interactions.  

 

 

Here are my reviews for this article 

 

1. The authors developed three transformer models (Embedding transformer, pairwise transformer 
and Regulation Transformer). For each transformer model, the input features are core promoter 
features and pCRE features. It is unclear how these features were generated. Did any deep learning 
models were used to generate these features? Some details are necessary to understand this step.  

 

We appreciate this comment for pointing out unclear methodological descriptions in the manuscript. 
According to the reviewer’s suggestion, we elaborated the feature generation procedure in 
Supplementary Figure 1 of the revised manuscript. The input feature generation process does not 
require any deep learning models, but only utilizes a common bioinformatics pipeline for next 
generation sequencing read alignment and genomewide read depth calculation. 

Here, we illustrate the feature generation procedure in detail (Figure R3-1). As the reviewer has 
mentioned in the comment, the only input features required for the Chromoformer model are the 
abundances of seven major HMs (H3K4me1, H3K4me3, H3K9me3, H3K27me3, H3K36me3, 
H3K27ac, H3K9ac) within promoters as well as cis-regulatory elements associated with them. Most 
importantly, the abundance of a certain HM was first computed for each base pair throughout the 
genome as the number of histone ChIP-seq reads (or read depth) covering that position (Figure R3-
1a). Indeed, these 1bp-resolution HM signals can be used for input features. However, since the 
memory requirement of the self-attention operation in Chromoformer architecture scales quadratically, 
it is not feasible to use 40,000bp-long sequences directly as input features. Therefore, we instead 
used bin-level average histone modification signals so that we can deal with shorter sequences 
(sequence with 400, 80, 20 entries for 100bp, 500bp, 2,000bp bins, respectively). For core promoter 
features, bin-averaging the histone signals for the 40kbp-region centered at TSS yields (7 x 400), (7 
x 80) and (7 x 20) matrices for 100bp, 500bp and 2000bp resolutions, respectively (Figure R3-1b). 
Similarly, for each pCRE feature, we also have (7 x 400), (7 x 80) and (7 x 20) matrices (Figure R3-
1c). However, since the length of a pCRE is determined by the length of HindIII restriction fragments, 
zero-padding is needed on the left and right side of the matrices to have constant size of input matrices. 

 

2. The architecture of “Embedding Transformer” and “Pairwise Interaction Transformer” is same. Is 
there any specific reason to give different name? It could be misleading that you have developed two 
different transformer architecture. 

 

We thank the reviewer for raising important concerns about the nomenclature of model substructures. 
The reason why we decided to give those two substructures (Embedding and Pairwise Interaction 
transformers) separate names can be explained by the following two aspects of differences between 
them: (1) Difference in the type of attention operation used, and (2) difference in learning semantics.  

 

1. Difference in the type of attention operation 



The critical difference between Embedding and Pairwise Interaction transformers is that the 
former is essentially based on self-attention operation, and the latter is based on encoder-decoder 
attention. Here, we explain the differences between those two variants of attention operations to 
emphasize the difference between Embedding and Pairwise Interaction transformers. 

The core operation for all the three types of transformers in Chromoformer is the Query-Key-
Value attention (denoted as red boxes labeled with “Multi-Head Attention” in Figure 1c-e in the 
manuscript). Briefly, Query-Key-Value attention produces the updated version of query 
embeddings as the weighted sum of Value embeddings. Here, the weights are determined 
through the computation of affinities between Query and Key embeddings. The critical difference 
between self-attention and encoder-decoder attention is that self-attention generates both Query 

Figure R3-1 (Related to Supplementary Fig. 1). Input feature generation procedures. (a) Preparation of 
histone modification signals. (b) Generation of core promoter features. (c) Generation of core pCRE features. 



and Key embeddings from a single sequence (or set of vectors), while encoder-decoder attention 
generates Query and Key embeddings separately from two different sequences. Therefore, self-
attention measures the “affinities” between two positions within a single sequence, while encoder-
decoder attention measures the affinities between two positions at two independent sequences. 
This apparently small difference results in a crucial difference in the semantics of Chromoformer 
learning, which is discussed in the following. 

2. Semantic difference. 

Since the core operation within the Embedding transformer and Pairwise Interaction transformer 
is different, what they are designed to learn is also different. An Embedding transformer only takes 
a core promoter feature as an input, and is trained to capture the intra-dependencies of HM 
configurations at different positions within the given core promoter. On the other hand, a Pairwise 
Interaction transformer takes a pair of a core promoter and a corresponding pCRE as input, and 
learns the pairwise dependencies between the two positions in the core promoter and the pCRE. 

 

Nevertheless, we agree that the names we proposed might mislead the readers to expect clear 
architectural differences between the Embedding and Pairwise transformers. Therefore, we clarified 
the similarities and differences between the three types of transformers in Chromoformer (Embedding, 
Pairwise Interaction and Regulation transformers) in the Supplementary Information of the revised 
manuscript. 

 

3. One of the main key points of the regulation transformer is to “normalized interaction frequencies f 
between the corresponding core promoter-pCRE pair as a bias term to the self-attention matrix to 
inform the model with the relative affinities of the pairwise interactions”. What is the reason of using 
“normalized interaction frequencies”? How were normalized interaction frequencies derived?  

 

Given the reviewer’s comment, we noticed that the rationale and description for the normalization of 
interaction frequencies was not clear enough in the manuscript. 

We decided to use normalized interaction frequencies instead of raw interaction frequencies because 
there are some technical biases in raw interaction frequencies that hampers the direct interpretation 
of those values. First, due to the regional preference of a sequencing experiment, restriction and 
alignment methods, the coverage or mappability of Hi-C sequencing reads throughout the genome is 
not uniform. This is exacerbated in pcHi-C experiments since the fragment containing the promoter is 
significantly high due to promoter-enrichment procedure (For example, the raw coverage of promoter 
fragment is about 14.4 times higher than non-promoter fragments for H1 pcHi-C data). Thus, the 
frequencies of promoter-promoter interactions would be more exaggerated than the true amount of 
interactions between them. Next, the random Brownian motion of DNA polymer results in higher 
frequency of non-biological interactions between the two fragments at closer linear distance along the 
genome. This distance bias should be corrected because otherwise the results would erroneously 
favor interactions at close distances and ignore long-range biological contacts such as promoter-
enhancer interactions. 

Regarding the two aforementioned biases, normalized interaction frequencies were obtained by 
statistically correcting them. First, the coverage bias is corrected by fitting a negative binomial 
regression model for raw ligation frequencies between two fragments using individual coverage 
values. Formally, the raw interaction frequency (i.e., read ligation frequencies) between two DNA 
fragments ݅ and ݆, ܻ, is normalized using the coverages ܥ  and ܥ as follows. Using values of ܻ, 



the expected interaction frequency ݑ  is fitted by negative binomial regression model log൫ݑ൯ ൌߚ  ܥଵߚ  . Then, the normalized interaction frequency ܴ is obtained by taking residual Rܥଶߚ ൌೕୣ୶୮ ሺఉబାఉభାఉమೕሻ. 
Subsequently, distance bias is corrected in a similar manner. Given the linear distance between two 
genomic fragments ݅  and ݆ , ܦ , the expected ligation frequency was fitted by negative binomial 
regression model logݑ ൌ ߚ  ܦ  . Whenܦଵߚ ൌ ݀ , the expected ligation frequency is given by ܧௗ ൌ expሺߚ  ଵ݀ሻ . Therefore, the distance-dependent signal can be removed by taking residual ሺܴߚ  avg൫ܴ൯ሻ/ሺܧௗ   avg൫ܴ൯ሻ, where avgሺܴሻ is a global average value of ܴ’s. 

We added the description for the normalization of interaction frequencies in the Supplementary 
Information of the revised manuscript. Of note, the normalization procedure above is implemented in 
the R package covNorm (Kim et al., 2021). 

 

4. The authors used three modules (100bp, 500bp and 2000bp modules) and the outputs 
concatenated before final prediction using fully connected layers. Can self-attention based 
concatenation be applied so that the multi-scale regulatory embedding is generated with their 
attention score? As in the normal concatenation, are you giving equal weightage to all three outputs? 

 

We appreciate this insightful suggestion on the model architecture. We agree that there may exist 
meaningful interactions between different scales (or resolutions) of the combinations of histone 

Figure R3-4 (Related to Supplementary Fig. 4). Chromoformer-clf model performances when self-
attention-based aggregation of regulatory embeddings was used instead of concatenation. (a) 
Schematic illustration of self-attention operation proposed by Lin et al. (b) Schematic illustraction of scaled dot-
product attention proposed by Vaswani et al. (c) Performances of Chromoformer-clf models. 



modifications that contribute to gene regulation. We also thought that these interactions, if they exist, 
can be effectively captured by an attention operation between regulatory embeddings representing 
multiple scales. Therefore, we measured the model performances after substituting the concatenation 
of regulatory embeddings with two different self-attention mechanisms according to the reviewer’s 
suggestion. 

First, we adopted the self-attention mechanism proposed in Lin et al. (2017), whose formulation is 
similar to “additive” attention suggested by Luong et al. and Bahdanau et al. (Figure R3-4a). Of note, 
this attention operation is used in the benchmark model HM-CRNN (Kang et al. (2020)) in order to 
attend to relevant genomic positions in the gene expression prediction task. More formally, if we let 
256-dimensional regulatory embeddings of 100bp, 500bp and 2000bp resolution (i.e., outputs of 
100bp-, 500bp- and 2000bp-resolution modules) be x1, x2 and x3, respectively, the attention 
operation to combine the three embeddings is given as follows. First, the embeddings are first 
projected to produce attentional hidden states h୧. h୧ =  tanhሺ ଵܹݔሻ,   i = 1,2,3 

where Wଵ denote a weight matrix of size 256 × t, respectively. In this experiment, t is set to 16. 
Then attention score for i-th resolution, α, is computed as below: α =  Softmax( ଶܹℎ∑ ଶܹℎଷୀଵ ) 

After computing αଵ,ߙଶ and αଷ, the final embedding is obtained as a weighted sum: 

ݔ =  ߙଷ
ୀଵ  ݔ

Finally, ݔ  is fed to the following full-connected head to produce binary logits as in the original 
Chromoformer model. 

Next, we also examined the effect of another form of self-attention, namely scaled dot-product self-
attention (Vaswani et al., 2017), which has already been used at the core of transformer modules in 
Chromoformer (Figure R3-4b). 

 

As a result, we did not observe significant performance improvement of attention-based aggregation 
over concatenation-based aggregation of three regulatory embeddings (Figure R3-4c). Based on this 
result, we could deduce that the fully connected layers downstream the concatenation operation have 
sufficient capacity to learn the nonlinear interactions between latent features of different resolutions. 
We added this discussion to the revised manuscript (Supplementary Fig. 4). 

 

5. Also, why the authors specifically consider 100bp, 500bp and 2000bp input regions? Did the 
authors check the prediction result only for two regions like 100bp and 500bp OR 500bp and 2000bp?  

 

We appreciate the reviewer’s suggestion. According to the comment, we conducted additional 
experiments by training Chromoformer models using every combination of input resolutions (i.e., 
using only a single resolution and also using a combination of two out of three input resolutions) to 
justify our choice of using all the three input resolutions. We added the results in the revised 
manuscript (Supplementary Figure 3). 



As a result, we observed that the models using all the three resolutions altogether (2000bp, 5000bp 
and 100bp) were among the top 2 performing models in every cell type examined (Figure R3-5). We 
note that the combination of (2000bp and 500bp) or (2000bp and 100bp) resulted in comparable 
performances in some cases, but we considered it best to use the combination of all the three 
resolutions because it showed robustly high performances across cell types. 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors addressed all my comments and clarify the performance of the new method. I think the 

revised manuscript is highly improved and provides new insight. One of the interesting points that 

should be discussed is the marginal combined effect of H3K27ac and H3K4me1 (Supple Fig. 10). As 

these histone modifications are key marks for enhancer elements, it would be valuable to discuss how 

enhancer markers are not critical to predicting gene expression patterns. 

 

For other comments, several supplementary figures related to the cross-species and cross-cell type 

analyses would be worth being included in the main figures. 

 

I appreciate the authors for their valuable work in this research area. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

My concerns have been addressed. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

I thank the authors to provide an elaborate and clear explanation on all the questions asked. 

 

please note the following typo's: 

 

line 239: ...by the its... 

line 364: ...exists a certain ... 

line 518: ...from from... 



Response to reviewer’s comments 
We would appreciate all the reviewers for their constructive comments, which motivated us to conduct 
further analyses and helped us to improve our manuscript. In this revision, we added a discussion on 
multiple feature ablation experiment and also added Figure 8 to help readers with cross-species and 
cross-cell type performance of Chromoformer in the Discussion section. Please see below our 
detailed response to reviewers’ comments in blue. 

 

Reviewer #1 (Remarks to the Author): 
The authors addressed all my comments and clarify the performance of the new method. I think the 
revised manuscript is highly improved and provides new insight. One of the interesting points that 
should be discussed is the marginal combined effect of H3K27ac and H3K4me1 (Supple Fig. 10). As 
these histone modifications are key marks for enhancer elements, it would be valuable to discuss how 
enhancer markers are not critical to predicting gene expression patterns. 

 

We appreciate the insightful comment. We were also curious why ablating well-known enhancer 
marks H3K27ac and H3K4me1 at the same time did not result in significant performance degradation. 
Therefore, we further scrutinized the spatial correlation between HMs (Supplementary Figure 10b) 
and the patterns of multiple-feature ablation experiment (Supplementary Figure 10c). We noticed 
the co-occurrence of active HMs (H3K4me1, H3K4me3, H3K27ac and H3K9ac; Supplementary 
Figure 10b) and considerable performance drop when those four HMs are simultaneously removed 
from model training (Supplementary Figure 10c, sixth row). Notably, the amount of validation AUC 
decrease was even greater than many of H3K36me3-ablated cases. However, when any of the four 
active marks are once included in the training, the performance degradation seemed to be greatly 
alleviated. Altogether, the redundancy of active HMs in part explains why the ablation of H3K27ac and 
H3K4me1 is not solely sufficient to degrade the performance of Chromoformer. We especially 
conjecture that the promoter-promoter (P-P) interactions between active promoters marked by 
H3K4me3 or H3K9ac may be hinting the existence of transcription factories enriched with enhancers, 
compensating the absence of H3K27ac and H3K4me1 marks. Nevertheless, we note that ablating 
both H3K27ac and H3K4me1 with additional HMs showed relatively high performance drop (without 
H3K36me3 ablation) and added indications for that in Supplementary Figure 10c (green box). 
Following the reviewer’s suggestion, we added additional discussion to a subsection named 
“Chromoformer learns to attend to the distant transcriptional elongation signals at gene bodies” 
regarding Supplementary Figure 10. 

 

For other comments, several supplementary figures related to the cross-species and cross-cell type 
analyses would be worth being included in the main figures. 

According to the reviewer’s suggestion, we added an additional Figure (Figure 8) including cross-
species and cross-cell type analyses results to improve the readability of the Discussion section of 
the manuscript. 

 

I appreciate the authors for their valuable work in this research area. 

We thank the reviewer for the considerate comments. 

 



Reviewer #2 (Remarks to the Author): 
My concerns have been addressed. 

 

Reviewer #4 (Remarks to the Author): 
I thank the authors to provide an elaborate and clear explanation on all the questions asked. 

 

please note the following typo's: 

 

line 239: ...by the its... 

line 364: ...exists a certain ... 

line 518: ...from from... 

 

We fixed the typos accordingly. 
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