
Viv: multiscale visualization of high-
resolution multiplexed bioimaging data on 
the web

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41592-022-01482-7

Supplementary information

https://doi.org/10.1038/s41592-022-01482-7



Viv: Multiscale Visualization of High-Resolution Multiplexed Bioimaging Data on the Web
T Manz, I Gold, NH Patterson, C McCallum, MS Keller, BW Herr II, K Börner, JM Spraggins, N Gehlenborg

Supplementary Note 1

Motivation
Visualization of highly multiplexed, high-resolution tissue datasets on the web relies on client
software that displays server-side rendered images1,2 rather than rendering data in the client.
The JavaScript clients for many of these applications, such as Minerva2, Facetto3, Human
Protein Atlas Microscopy Viewer4, OMERO iViewer5, Digital Slide Archive6, and Cytomine7 are
based on tools like OpenSeadragon8 or OpenLayers9, which are popular web-based viewers for
zoomable images. The viewers load image tiles encoded in RGB/A data formats that are
natively supported by web browsers (e.g., PNG, JPEG). Therefore primary high-resolution
datasets, including those stored in open standard formats, must first be rendered to image tiles
in order to use these tools. Image tiles can be rendered dynamically, as with client-server
models like OMERO5, or statically, where each level of the multi-resolution representation
(pyramidal data) is pre-rendered as a nested directory of PNG or JPEG files (see Figure 1).

Whole-slide datasets derived from bright-field assays such as Hematoxylin and Eosin (H&E)
stains or Periodic acid-Schiff (PAS) stains only contain red, green, and blue (RGB) channels and
do not require additional data transformations to render. This means current web technologies
are sufficient for viewing these datasets, despite the overhead of conversion to browser-friendly
image tiles, since only zooming and panning interactions are necessary for exploration.

Datasets produced by multiplexed imaging methods10–13, however, are instead most often stored
as multidimensional stacks of 2D planes where each plane—or channel—typically represents a
chemical signal, such as a fluorophore bound to an antibody in immunofluorescence. Images
derived from non-targeted methods like imaging mass spectrometry14 (IMS) are stored similarly
with a deep m/z dimension. Multidimensional stacks (including T, C, Z dimensions) may contain
over a hundred 16- or 32-bit grayscale planes that must be pseudo-colorized for visualization,
and it is desirable to view each channel separately since the specificity of the acquisition
methods is high. Therefore, effective interactive analysis of these datasets require both zoom
and pan interactions as well as rapid switching between groups of channels via sophisticated
rendering.

Multi-Channel Rendering
Multi-channel rendering involves the blending of data from separate channels into a single
image, allowing users to view isolated signals or blended composites during analysis. Individual
channel data transformations are applied per pixel to generate a final image. Efficient
multi-channel rendering is especially important to oncologists and pathologists who rely on
seamless visual experience when making a diagnosis3. Multi-channel color mapping is
increasingly important in modern cell-based image analysis, where many channel combinations

1

https://paperpile.com/c/JK8AMo/Ez2Nr+HwAWe
https://paperpile.com/c/JK8AMo/HwAWe
https://paperpile.com/c/JK8AMo/99Ca1
https://paperpile.com/c/JK8AMo/AUztV
https://paperpile.com/c/JK8AMo/au6Qk
https://paperpile.com/c/JK8AMo/UuO0l
https://paperpile.com/c/JK8AMo/8o713
https://paperpile.com/c/JK8AMo/yE3uj
https://paperpile.com/c/JK8AMo/vtqVz
https://paperpile.com/c/JK8AMo/au6Qk
https://paperpile.com/c/JK8AMo/I7IXi+mSPtC+HtVoI+ETkp1
https://paperpile.com/c/JK8AMo/kjVrB
https://paperpile.com/c/JK8AMo/99Ca1


are possible with limited overlap, and channels may be grouped according to some biologically
relevant criteria3.

Desktop applications are the current gold standard for interactive analysis and support many
types of rendering. In contrast to existing web-based viewers, desktop-oriented programs make
use of low-latency connections to primary data and leverage graphics cards for rapid rendering.
Specific software and hardware requirements, however, restrict the availability of these tools to
a wider scientific audience, and the coupling of data storage and computational environment
limit the user experience when viewing remote data, if supported, over low-latency connections.

Most existing JavaScript tools for viewing multiscale images do not implement multi-channel
rendering, and instead tightly coupled client-server architectures are utilized to enable
interactive analysis of highly multiplexed datasets on the web3,15. It is important to note that this
approach strictly avoids sending raw data to the client, which has the benefit of smaller data
transfer per request, but ultimately the client is totally dependent on the server for information.
Sampling many rendering settings within a server-rendered viewer incurs a server-round-trip
and additional data transfer per configuration, whereas loading raw data on the client is
expensive upfront but subsequent re-renders are instantaneous and do not require additional
data transfer.

Offline server-side rendering is accomplished by applying a set of data transformations to
primary imaging data prior to configuring a web server, yielding a unique rendered copy of the
original dataset (directory hierarchy of JPEG or PNG image tiles) for each combination of
channel groupings and data transformations. Although this approach is simple to deploy, it
prevents end users from on-demand visual exploration since data transformations and channel
groupings are fixed and only determined offline. Consequently, web viewers of this type are
tailored towards explanatory visualization where users are guided through a narrative that
accompanies the pre-rendered image pyramids2.

In online server-side rendering, users define channel groupings and data transformations via a
web user interface, and then a server applies the desired transformations on-the-fly and renders
image tiles to send back to the client. While this approach has been implemented successfully, it
requires substantial maintenance and the tight coupling of client and server inhibits the use of
either in isolation. User experience also degrades when the server is at capacity or over a slow
network connection since adjusting individual channel transformations, sampling channel
groupings, or toggling channel visibility requires the client to await a new server-rendering. In
contrast, identical user interactions in analogous desktop software yield low-latency, continuous
updates since graphics cards are exploited to quickly apply new data transformations to the
same in-memory data.

WebGL (Web Graphics Library) allows similar access to the GPU as desktop software but has
yet to be applied to enable multi-channel rendering of high-resolution, multiplexed image data
on the web. Existing WebGL-based viewers showcase the potential for complex browser-based
rendering but are primarily designed for single-channel volumetric datasets (typically

2

https://paperpile.com/c/JK8AMo/99Ca1
https://paperpile.com/c/JK8AMo/jF5Ge+99Ca1
https://paperpile.com/c/JK8AMo/HwAWe


lossy-compressed, 8-bit dense arrays), rely on data to fit in-memory for visualization, or still use
custom server implementations16–19. Additionally, these viewers are fully-integrated applications
and as such do not provide reusable components for building or extending existing interactive
bioimaging visualizations.

Name Description URL

WebGL Low-level JavaScript API for rendering
high-performance interactive graphics.

https://www.khronos.org/webgl/

WebAssembly Portable binary-code format that is
executable in modern web browsers.

https://www.w3.org/TR/wasm-core-1/

WebWorkers Web API to run scripts in a separate thread
from the main execution thread.

https://www.w3.org/TR/workers/

geotiff.js A JavaScript library to parse TIFF files for
web-based visualization.

https://geotiffjs.github.io/

Zarr.js A TypeScript implementation of Zarr20. https://github.com/gzuidhof/zarr.js/

Deck.gl21 WebGL-powered framework for
high-performance visualization.

https://deck.gl/

Bio-Formats15 Software tool suite for reading and writing
image data using standardized, open
formats.

https://www.openmicroscopy.org/bio-formats/

bioformats2raw Java application to convert proprietary
image file formats to intermediate N5/Zarr
structure.

https://github.com/glencoesoftware/bioformats2raw

raw2ometiff Java application to convert outputs of
bioformats2raw to an OME-TIFF pyramid.

https://github.com/glencoesoftware/raw2ometiff

Blosc22 Lossless compression library used by
Zarr20.

https://github.com/Blosc/c-blosc

Supplementary Table 1. Software libraries and web technologies used by Viv.

Software Architecture
Viv is a JavaScript library that provides GPU-accelerated multi-channel rendering of
high-resolution multiplexed images directly in the web browser. It is implemented in the
TypeScript programming language (https://www.typescriptlang.org), allowing ease of use in
other JavaScript and TypeScript projects. As a design philosophy, we built Viv on top of open
standard image formats created by the Open Microscopy Environment (OME), OME-TIFF23 and
OME-NGFF24. Therefore primary data which can be viewed by popular desktop software25–27

may also be viewed directly by Viv without converting to a transient browser-friendly format.

Due to its modular architecture, Viv is embeddable and can be deployed to support visualization
for exploration and explanation in a wide range of different settings
(doi:10.6084/m9.figshare.19416401) Since Viv operates on multi-resolution data formats, the

3

https://paperpile.com/c/JK8AMo/ZWT9J+j2PY2+MzNFY+pMraG
https://www.khronos.org/webgl/
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/workers/
https://geotiffjs.github.io/
https://paperpile.com/c/JK8AMo/31vHh
https://zarr.readthedocs.io/en/stable/
https://paperpile.com/c/JK8AMo/kocDR
https://deck.gl/
https://paperpile.com/c/JK8AMo/jF5Ge
https://www.openmicroscopy.org/bio-formats/
https://github.com/glencoesoftware/bioformats2raw
https://github.com/glencoesoftware/raw2ometiff
https://paperpile.com/c/JK8AMo/Y6xAQ
https://paperpile.com/c/JK8AMo/31vHh
https://github.com/Blosc/c-blosc
https://www.typescriptlang.org
https://paperpile.com/c/JK8AMo/EOZfv
https://paperpile.com/c/JK8AMo/0oIwa
https://paperpile.com/c/JK8AMo/2xYom+OHNeQ+LBZPX


rendering performance is not affected by the size of the images. We designed Viv as a modular
JavaScript library using modern web technologies (see Supplementary Table 1) to support
dynamic fetching, decoding, and rendering of pyramidal multiplex datasets. The data loading
component of Viv is built on the geotiff.js and zarr.js libraries, to which we contributed additional
features to support efficient data chunk retrieval. Viv exposes its rendering functionality as
reusable Deck.gl21 layers, allowing the composition of multiple image sources in a single
interactive view. The Deck.gl library has no dependencies on web user interface frameworks
and can be used in any JavaScript application, enabling Viv to be incorporated into existing
client software with little overhead. Finally, Viv offers several custom high-level React
components that handle complex rendering and interactivity, such as overview and detail and
multiple linked views.

Data Preparation
Bio-Formats15 is a software tool for reading proprietary microscopy image data and metadata
using standardized, open formats. It provides the ability to translate over 150 file formats and
associated metadata to the OME data model. OME-TIFF has been available for over a decade
and is a common format for sharing imaging data. It is recommended and used by the Image
Data Resource28 and various consortia such as Human BioMolecular Atlas Program29 and the
4D Nucleome Consortium30. OME-NGFF is a complementary open format that is designed to
address fundamental limitations of OME-TIFF at scale. The format is under active collaborative
development by the OME community as a cloud-friendly solution to provide flexible storage of
multidimensional datasets from established and emerging imaging assays.

Supplementary Figure 1. Viv Bio-Formats compatibility. The Bio-Formats command-line tools
are used sequentially to generate OME-NGFF and OME-TIFF images. The bioformats2raw
utility creates OME-NGFF which can be converted to an OME-TIFF via raw2ometiff. Viv’s
data loader utilities are compatible with both OME-NGFF and OME-TIFF formats.

4

https://paperpile.com/c/JK8AMo/kocDR
https://paperpile.com/c/JK8AMo/jF5Ge
https://paperpile.com/c/JK8AMo/ZtyOi
https://paperpile.com/c/JK8AMo/mFo0i
https://paperpile.com/c/JK8AMo/pXFk6


Viv supports viewing both OME-NGFF and OME-TIFF directly via HTTP (Supplementary Figure
1). Writing OME-NGFF and OME-TIFF can be accomplished using the Bio-Formats
command-line suite. The bioformats2raw utility (v0.4.0,
https://github.com/glencoesoftware/bioformats2raw) is responsible for converting proprietary
image formats to Zarr, generating pyramidal levels from large resolution planes if not available.
The Bio-Formats pipeline subsequently converts this representation to OME-TIFF via
raw2ometiff (v0.3.0, https://github.com/glencoesoftware/raw2ometiff).

Once created, Viv can access these data on-demand via HTTP. A local web-server is sufficient
for viewing datasets locally, and full web applications may be deployed by uploading the same
datasets to a commodity web-server or commercial cloud object storage (e.g., Amazon S3,
Google Cloud Storage, Microsoft Azure Blob).

Data Loading
Viv’s data loaders provide a consistent interface for retrieving data tiles from arbitrary sources.
Data loaders fetch individual compressed chunks from OME-TIFF or OME-NGFF via HTTP, and
subsequently decompress these data for rendering. Custom loaders may be implemented to
support additional data sources.

An important component of Viv’s data loaders is the support for Zarr20, the binary format
underlying OME-NGFF. Zarr is an open-source format for the storage of chunked, compressed,
multidimensional arrays. The original implementation of Zarr is written in Python, but its
popularity has led to implementations in several languages (C++, Java, Julia, JavaScript). The
underlying compressed chunk data and array metadata can be saved in any key-value store,
most commonly a local file directory or cloud object storage. This flexibility allows the
configuration of custom storage for application-specific needs, meaning various backends can
be utilized to support visualizations with Viv. For example, our Viv-based Vizarr viewer
implements a custom Zarr interface to securely transfer data from a Python backend via the
ImJoy31 Remote Procedure Call (https://github.com/imjoy-team/imjoy-rpc).

Data loading from OME-TIFF files is handled through HTTP byte-range requests. OME-TIFF
defines its multi-resolution representation via TIFF Sub-Image File Directories (SubIFDs)
(https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFFPM6.pdf) which are
accessed on the client to load specific sub-resolutions. Simply reading OME-TIFF via HTTP is
limited, however, due to TIFF’s linear binary layout which was designed for local filesystems.

We propose the use of a complementary pre-computed index to avoid seeking on the client and
improve the efficiency of random chunk access. We developed a python command line utility
(and website) to generate an OME-TIFF index (JSON) containing the corresponding byte-offsets
for each TIFF Image File Directory (IFD) (https://github.com/hms-dbmi/generate-tiff-offsets). Viv
utilizes the byte-offsets to skip the otherwise required step of linearly seeking the series of IFDs,
providing more direct access to individual chunks. We found that OME-TIFF with an IFD index
(Indexed OME-TIFF) substantially reduces OME-TIFF chunk access latencies

5

https://github.com/glencoesoftware/bioformats2raw
https://github.com/glencoesoftware/raw2ometiff
https://paperpile.com/c/JK8AMo/31vHh
https://paperpile.com/c/JK8AMo/tVVjY
https://github.com/imjoy-team/imjoy-rpc
https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFFPM6.pdf
https://github.com/hms-dbmi/generate-tiff-offsets


(doi:10.6084/m9.figshare.19416344). Critically, our method is scalable since the total number of
byte-offsets in an IFD index is independent of the number of pyramidal sub-resolutions for a
dataset.

Data retrieval for all loaders is done in an asynchronous event loop so that multiple compressed
chunks can be fetched concurrently. Web Workers are used to perform chunk decoding on
separate threads, providing parallelism and freeing the user interface to remain responsive to
user interactions. Popular image compression methods have been ported to JavaScript
previously, but desktop software typically relies on libraries written in low-level languages like C
or C++ for performing binary decompression. WebAssembly enables the reuse of these same
libraries in a web browser with similar performance. We compiled the modern high-performance
compressor Blosc22 (Zarr default), Lempel-Ziv-Welch (LZW)32 (OME-TIFF default), and the
popular Zstd and LZ4 algorithms to WebAssembly to support rapid and flexible decoding.

Rendering Component
The multi-channel rendering component of Viv is implemented as custom Deck.gl layers.
Deck.gl is a WebGL-powered framework for exploratory visualization of large, spatial datasets.
A layer is a core concept of Deck.gl. It describes a packaged visualization type that combines a
collection of data and methods to render these data in a shared coordinate system. Interactive
Deck.gl visualizations can be constructed by composing layers with others (points, polygons, text
annotations, etc.), enabling highly customizable and efficient rendering of complex scenes.

Viv layers control what is rendered when a user interacts with the WebGL canvas. The
declarative layer API provides the ability to define specific channel selections from a
multidimensional source as well as desired data transformations per channel. Additionally, affine
transformations are supported per layer via a 4x4 transformation matrix. These parameters can
be updated within a reactive paradigm, enabling GPU-accelerated rendering across modern
web frameworks and user interfaces. Each Viv layer uses a data loader to retrieve individual
chunks for the corresponding channel selections as a user zooms and pans in the coordinate
space. Chunks are fetched and decoded by the loaders and then loaded on the GPU, where
shaders apply the user-defined data transformations. Once the data have been retrieved for a
particular region, changes to desired transformations (contrast limits, opacity, color mapping,
visibility) simply re-render using the previously loaded data. This creates a low-latency user
experience when exploring channel combinations and data transformations.

To enable the rapid exploration of spatial distributions and correlations between channels, Viv
provides a reactive API for blending the data from different channels into a single image layer.
Data chunks contain the pixel intensities for individual channels, and once bound to the GPU,
data transfer functions are applied one of two ways:

1. Additive Blending. Each channel is assigned an RGB (or equivalently, HSV) color
value, defining a linear color transfer function that maps black to the minimum value and
the color to the maximum value per channel. The contributions of individual channels are

6

https://paperpile.com/c/JK8AMo/Y6xAQ
https://paperpile.com/c/JK8AMo/weWWa


then additively blended into a single RGBA image following min-max normalization. The
respective contrast limits, as well as the colors for each transfer function, are exposed
via the Viv Layer API. This type of additive blending ensures non-overlapping colors for
up to three channels when using pure red, green, and blue. Viv currently supports up to
six concurrently rendered channels per image, which is useful when viewing additional
channels that have little to no spatial overlap.

2. Additive Color Mapping. The second option is to use a single transfer function that
maps the combined channel intensities to a colormap such as Viridis or Magma. Each
channel intensity is min-max normalized to 0-1, and all normalized intensities are
summed. Sum is then used as the input for a transfer function. This method is similar to
the lookup tables supported by OMERO iViewer5. We use glslify33 to inject transfer
functions into the Viv shaders which scale intensity values to RGB colors.

When multiple images are loaded into Viv, alpha compositing between layers is supported.
Additionally, rendering is completely flexible in Viv, and library users are able to implement
custom shaders to modify the builtin behavior described above.

Viv API
The Viv API comprises the following major elements. Details are available in the documentation
(http://viv.gehlenborglab.org).

1. Viewers. Drop-in React components that expose interfaces for developers to supply
controllers for the various rendering settings. Handle complex rendering and interactivity,
such as overview and detail and multiple linked views.

2. Views. Building blocks for supporting viewers with multiple views, like side-by-side or
picture-in-picture. A view is a stateful object defined by a particular zoom level and
bounding box.

3. Layers. Control what spatial regions and channels to render in each view, along with
what data transformations to apply per channel. Viv provides
MultiscaleImageLayer and ImageLayer layers that support rendering pyramidal
and nonpyramidal images, respectively. The VolumeLayer supports rendering 3D
views via ray casting.

4. Loaders. Shared interface for accessing the metadata and channel data from OME-TIFF
and OME-NGFF via HTTP.

Supplementary References
1. Aeffner, F. et al. Introduction to Digital Image Analysis in Whole-slide Imaging: A White

7

https://paperpile.com/c/JK8AMo/au6Qk
https://paperpile.com/c/JK8AMo/kTkxR
http://viv.gehlenborglab.org
http://paperpile.com/b/JK8AMo/Ez2Nr


Paper from the Digital Pathology Association. J. Pathol. Inform. 10, 9 (2019).

2. Rashid, R. et al. Interpretative guides for interacting with tissue atlas and digital pathology

data using the Minerva browser. bioRxiv 2020.03.27.001834 (2020)

doi:10.1101/2020.03.27.001834.

3. Krueger, R. et al. Facetto: Combining Unsupervised and Supervised Learning for

Hierarchical Phenotype Analysis in Multi-Channel Image Data. IEEE Trans. Vis. Comput.

Graph. 26, 227–237 (2020).

4. Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28,

1248–1250 (2010).

5. Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology.

Nat. Methods 9, 245–253 (2012).

6. Gutman, D. A. et al. The Digital Slide Archive: A Software Platform for Management,

Integration, and Analysis of Histology for Cancer Research. Cancer Res. 77, e75–e78

(2017).

7. Rubens, U. et al. Cytomine: Toward an Open and Collaborative Software Platform for

Digital Pathology Bridged to Molecular Investigations. Proteomics Clin. Appl. 13, e1800057

(2019).

8. OpenSeadragon. https://openseadragon.github.io/.

9. Gratier, T., Spencer, P. & Hazzard, E. OpenLayers 3 : Beginner’s Guide. (Packt Publishing

Ltd, 2015).

10. Goltsev, Y. et al. Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed

Imaging. Cell 174, 968–981.e15 (2018).

11. Rashid, R. et al. Highly multiplexed immunofluorescence images and single-cell data of

immune markers in tonsil and lung cancer. Sci Data 6, 323 (2019).

8

http://paperpile.com/b/JK8AMo/Ez2Nr
http://paperpile.com/b/JK8AMo/HwAWe
http://paperpile.com/b/JK8AMo/HwAWe
http://paperpile.com/b/JK8AMo/HwAWe
http://dx.doi.org/10.1101/2020.03.27.001834
http://paperpile.com/b/JK8AMo/HwAWe
http://paperpile.com/b/JK8AMo/99Ca1
http://paperpile.com/b/JK8AMo/99Ca1
http://paperpile.com/b/JK8AMo/99Ca1
http://paperpile.com/b/JK8AMo/AUztV
http://paperpile.com/b/JK8AMo/AUztV
http://paperpile.com/b/JK8AMo/au6Qk
http://paperpile.com/b/JK8AMo/au6Qk
http://paperpile.com/b/JK8AMo/UuO0l
http://paperpile.com/b/JK8AMo/UuO0l
http://paperpile.com/b/JK8AMo/UuO0l
http://paperpile.com/b/JK8AMo/8o713
http://paperpile.com/b/JK8AMo/8o713
http://paperpile.com/b/JK8AMo/8o713
http://paperpile.com/b/JK8AMo/yE3uj
https://openseadragon.github.io/
http://paperpile.com/b/JK8AMo/yE3uj
http://paperpile.com/b/JK8AMo/vtqVz
http://paperpile.com/b/JK8AMo/vtqVz
http://paperpile.com/b/JK8AMo/I7IXi
http://paperpile.com/b/JK8AMo/I7IXi
http://paperpile.com/b/JK8AMo/mSPtC
http://paperpile.com/b/JK8AMo/mSPtC


12. Ijsselsteijn, M. E., van der Breggen, R., Farina Sarasqueta, A., Koning, F. & de Miranda, N.

F. C. C. A 40-Marker Panel for High Dimensional Characterization of Cancer Immune

Microenvironments by Imaging Mass Cytometry. Front. Immunol. 10, 2534 (2019).

13. Lin, J.-R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells

using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015).

14. Neumann, E. K., Djambazova, K., Caprioli, R. M. & Spraggins, J. M. Multimodal Imaging

Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine. J. Am.

Soc. Mass Spectrom. (2020) doi:10.1021/jasms.0c00232.

15. Moore, J. et al. OMERO and Bio-Formats 5: flexible access to large bioimaging datasets at

scale. in vol. 9413 941307 (International Society for Optics and Photonics, 2015).

16. itk-vtk-viewer. itk-vtk-viewer https://kitware.github.io/itk-vtk-viewer/index.html.

17. neuroglancer. https://github.com/google/neuroglancer.

18. Boergens, K. M. et al. webKnossos: efficient online 3D data annotation for connectomics.

Nat. Methods 14, 691–694 (2017).

19. Saalfeld, S., Cardona, A., Hartenstein, V. & Tomancak, P. CATMAID: collaborative

annotation toolkit for massive amounts of image data. Bioinformatics 25, 1984–1986

(2009).

20. Miles, A. et al. zarr-developers/zarr-python: v2.4.0. (2020). doi:10.5281/zenodo.3773450.

21. Wang, Y. Deck. gl: Large-scale web-based visual analytics made easy. arXiv preprint

arXiv:1910.08865 (2019).

22. Alted, F. Blosc, an extremely fast, multi-threaded, meta-compressor library.

https://blosc.org/.

23. Goldberg, I. G. et al. The Open Microscopy Environment (OME) Data Model and XML file:

open tools for informatics and quantitative analysis in biological imaging. Genome Biol. 6,

9

http://paperpile.com/b/JK8AMo/HtVoI
http://paperpile.com/b/JK8AMo/HtVoI
http://paperpile.com/b/JK8AMo/HtVoI
http://paperpile.com/b/JK8AMo/ETkp1
http://paperpile.com/b/JK8AMo/ETkp1
http://paperpile.com/b/JK8AMo/kjVrB
http://paperpile.com/b/JK8AMo/kjVrB
http://paperpile.com/b/JK8AMo/kjVrB
http://dx.doi.org/10.1021/jasms.0c00232
http://paperpile.com/b/JK8AMo/kjVrB
http://paperpile.com/b/JK8AMo/jF5Ge
http://paperpile.com/b/JK8AMo/jF5Ge
http://paperpile.com/b/JK8AMo/ZWT9J
https://kitware.github.io/itk-vtk-viewer/index.html
http://paperpile.com/b/JK8AMo/ZWT9J
http://paperpile.com/b/JK8AMo/j2PY2
https://github.com/google/neuroglancer
http://paperpile.com/b/JK8AMo/j2PY2
http://paperpile.com/b/JK8AMo/MzNFY
http://paperpile.com/b/JK8AMo/MzNFY
http://paperpile.com/b/JK8AMo/pMraG
http://paperpile.com/b/JK8AMo/pMraG
http://paperpile.com/b/JK8AMo/pMraG
http://paperpile.com/b/JK8AMo/31vHh
http://dx.doi.org/10.5281/zenodo.3773450
http://paperpile.com/b/JK8AMo/31vHh
http://paperpile.com/b/JK8AMo/kocDR
http://paperpile.com/b/JK8AMo/kocDR
http://paperpile.com/b/JK8AMo/Y6xAQ
https://blosc.org/
http://paperpile.com/b/JK8AMo/Y6xAQ
http://paperpile.com/b/JK8AMo/EOZfv
http://paperpile.com/b/JK8AMo/EOZfv


R47 (2005).

24. Moore, J. et al. OME-NGFF: a next-generation file format for expanding bioimaging

data-access strategies. Nat. Methods 1–3 (2021).

25. Sofroniew, N. et al. napari/napari: 0.2.8. (2019). doi:10.5281/zenodo.3592005.

26. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat.

Methods 9, 676–682 (2012).

27. Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Sci.

Rep. 7, 16878 (2017).

28. Williams, E. et al. The Image Data Resource: A Bioimage Data Integration and Publication

Platform. Nat. Methods 14, 775–781 (2017).

29. Consortium, H. & HuBMAP Consortium. The human body at cellular resolution: the NIH

Human Biomolecular Atlas Program. Nature vol. 574 187–192 (2019).

30. Dekker, J. et al. 4D Nucleome Network. Corrigendum: The 4D nucleome project. Nature

552, 278 (2017).

31. Ouyang, W., Mueller, F., Hjelmare, M., Lundberg, E. & Zimmer, C. ImJoy: an open-source

computational platform for the deep learning era. Nat. Methods 16, 1199–1200 (2019).

32. Welch, T. A. A technique for high-performance data compression. Computer 8–19 (1984).

33. WebGL Insights. (A K Peters/CRC Press, 2015).

10

http://paperpile.com/b/JK8AMo/EOZfv
http://paperpile.com/b/JK8AMo/0oIwa
http://paperpile.com/b/JK8AMo/0oIwa
http://paperpile.com/b/JK8AMo/2xYom
http://dx.doi.org/10.5281/zenodo.3592005
http://paperpile.com/b/JK8AMo/2xYom
http://paperpile.com/b/JK8AMo/OHNeQ
http://paperpile.com/b/JK8AMo/OHNeQ
http://paperpile.com/b/JK8AMo/LBZPX
http://paperpile.com/b/JK8AMo/LBZPX
http://paperpile.com/b/JK8AMo/ZtyOi
http://paperpile.com/b/JK8AMo/ZtyOi
http://paperpile.com/b/JK8AMo/mFo0i
http://paperpile.com/b/JK8AMo/mFo0i
http://paperpile.com/b/JK8AMo/pXFk6
http://paperpile.com/b/JK8AMo/pXFk6
http://paperpile.com/b/JK8AMo/tVVjY
http://paperpile.com/b/JK8AMo/tVVjY
http://paperpile.com/b/JK8AMo/weWWa
http://paperpile.com/b/JK8AMo/kTkxR



