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Note S1. Dirac-like field with chirality – Flavor Weyl field  

The Dirac fields obey the famous Dirac equation, (−𝑖𝛼𝑖𝜕𝑖 + 𝑚𝛽)𝜓(𝑥) = 𝑖𝜕0𝜓(𝑥), 

where 𝛼𝑖 = 𝜏𝑥⨂𝜎𝑖  and 𝛽 = 𝜏𝑧⨂𝜎0 . Its field operators furnish a 4D irreducible 

representation of the Lorentz group. Such a group can be written as a combination of two 

disconnected pieces—𝑂(3,1) = 𝑆𝑂(3,1) + 𝑃 𝑆𝑂(3,1) , where 𝑆𝑂(3,1)1 is a connected 

subgroup of 𝑂(3,1). The reducible representation of 𝑆𝑂(3,1), i.e., (0,1/2)⨁(1/2,0), in 

the presence of P, becomes irreducible for the Lorentz group 𝑂(3,1), giving rise to the 

Dirac fields. However, seldom considered is the possibility of elementary spin-1/2 particles 

described by four-component fields having (1/2,0) ⨁(1/2,0)  (or equivalently, (0,1/

2) ⨁(0,1/2)). To achieve such fields, P should be broken, reducing the corresponding 

mailto:liuqh@sustech.edu.cn


 

 2 

symmetry group to 𝑆𝑂(3,1) . Therefore, (1/2,0) ⨁(1/2,0)  would become a reducible 

representation, corresponding to a field that naturally decomposes into two Weyl fields. 

Second, additional internal symmetries need to be assumed to elevate the symmetry 

hierarchy of the system, rendering (1/2,0) ⨁(1/2,0) representation irreducible. Internal 

symmetry operations are required to decouple the space-time operations according to the 

Coleman–Mandula theorem2. Furthermore, we selected them to form an 𝑆𝑈(2) group 

connecting two Weyl fields with the same chirality, analogous to the 𝑆𝑈(2)  flavor 

symmetry in high-energy physics. Specifically, it is analogous to the isospin symmetry 

proposed by Heisenberg, pairing a proton and a neutron forming an 𝑆𝑈(2) doublet.3 

Such isospin symmetry can stabilize free and causal quantum fields that follow the 

representation (1/2,0) ⨁(1/2,0) (and (0,1/2) ⨁(0,1/2)). The corresponding fields are 

called flavor Weyl fields, described by the following massless Dirac-like equation: 

𝑖𝛼𝑖𝜕𝑖𝜓(𝑥) = ±𝑖𝜕0𝜓(𝑥),                              (1) 

where 𝜓(𝑥) denotes a four-component free field operator and 𝛼𝑖 = 𝜏𝑖⨂𝜎0. Furthermore, 

the energy spectrum of equation (1) is doubly degenerate owing to the protection of the 

additional 𝑆𝑈(2) group, resembling the role of P in the Dirac equation. 

To construct such flavor Weyl field, we firstly assume that inversion symmetry is broken 

such that left-handed Weyl field and right-handed Weyl field could exist individually. Then, 

we further assume a four component Dirac field can be written as the form 𝜓 = (
𝜓𝐿

1

𝜓𝐿
2) 

where 𝜓𝐿
1  and 𝜓𝐿

2  are two left-handed and 2-component Weyl fields following the 

irreducible representation (1/2,0) of the proper orthochronous Lorentz transformation. 

Then the representation matrices of the angular momentum operators and boost operators 
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of proper orthochronous Lorentz transformation are 𝓙 =
1

2
𝜏0 ⊗ 𝝈,  𝓚 = −

𝑖

2
𝜏0 ⊗ 𝝈 , 

where 𝜏𝑖 and 𝜎𝑗 (i = 0, x, y, z) are Pauli matrices. 

Such field is reducible under proper orthochronous Lorentz transformation, to stabilize 

this field, we further assumes that there is an internal 𝑆𝑈(2)  symmetry group with 

generators represented as 𝓘 =
1

2
𝝉 ⊗ 𝜎0, which implies that the elements of 𝑆𝑈(2) group 

transform on 𝜓 = (
𝜓𝐿

1

𝜓𝐿
2)  by 𝑒𝑥𝑝(−𝑖𝜽 ⋅

1

2
𝝉) (

𝜓𝐿
1

𝜓𝐿
2) , identical to the transformation 

properties of 𝑆𝑈(2) isospin symmetry on two quantum fields in standard model. Then, it 

is obvious that such field describe one particle formed by two Weyl fields connected by 

the internal 𝑆𝑈(2) symmetry group. 

Then, following the process of constructing field operator provided in Ref. 4, we can see 

that 𝜓 can be constructed for describing massless spin-1/2 particles. It could also be shown 

that this field obeys the following equation  

(− ∂0 + 𝛼𝑖𝜕𝑖)𝜓(𝑥) = 0,                                              (4) 

where 𝛼𝑖 = σ0⨂𝜎𝑖. This 4-component field have 4 independent variables, however, when 

we do not assume internal 𝑆𝑈(2)  symmetry group, the field operator will reduce to 

operators with two independent variables. 

Note S2. Spin space groups and description of magnetic materials without 

spin-orbit coupling 

Because spin and orbit degrees of freedom are partially decoupled in magnetic systems 

when SOC effect is weak, we follow the notations by Litvin et al. that write spin and spatial 
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operations in separate slots and denote spin rotations and spatial rotations as 𝑈𝒏(𝜃) and 

𝐶𝒎(𝜑), respectively5,6, where 𝒏 and 𝒎 denote are rotation axes and 𝜃 and 𝜑 the rotation 

angles. By considering time reversal 𝑇 , spatial inversion symmetry 𝑃  and translation 

symmetry 𝒕, all elements of a spin space group can be written as the following form: 

{𝑇𝑛1  𝑈𝒏(𝜃)||𝑃𝑛2𝐶𝒎(𝜑)|𝒕}, 

with 𝑛1 = 0,1 and 𝑛2 = 0,1. Although time-reversal 𝑇 could reverse momentum in the 

reciprocal space, both 𝑇 and 𝑈𝒏(𝜃) can be seen as the symmetries of spin in real space 

when analyzing the symmetry. 𝑃, 𝐶𝒎(𝜑) and 𝒕 are spatial symmetries. Thus, we separate 

the 5 types of symmetry into spin symmetries, 𝑇 and 𝑈𝑛(𝜃), and spatial symmetries, 𝑃, 

𝐶𝒎(𝜑) and 𝒕, by a double vertical line.  

When spin-orbit coupling is neglected in magnetic materials, spin and lattice DOF are 

decoupled, rendering three kinds of operation, i.e., pure spin operation, pure spatial 

operation and operation of combined spin and spatial operation. This allows the definition 

of two types of spin group, i.e., nontrivial and a trivial spin group, where the nontrivial spin 

group is composed of spatial operations or/and combined operations of spatial and spin 

operations, and the trivial spin group is formed by pure spin operations. It has been shown 

that every spin group can be written as the direct product of a nontrivial and a trivial spin 

group5.  

The recent discussions about spin group symmetry mainly focus on nontrivial spin 

groups, especially nontrivial spin point groups. In ref. 7, symmetry invariants of all 

nontrivial spin point groups, used for classifying projective representations based on the 

second group cohomology, are listed. In ref. 8, energy band degeneracy and topological 
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insulating phases protected by the combined operations of spin rotation and spatial rotation 

are discussed. Nevertheless, even if the complex spiral incommensurate magnetic 

structures are excluded from consideration, spin point groups with trivial part containing 

more than identity element cannot be neglected in general. This is because the collinear or 

coplanar magnetic structures, commonly existing in realistic materials, have trivial part 

containing symmetry elements that could usually contribute to spin degeneracy and 

quasiparticle excitations. Most importantly, the spin point groups of magnetic structures 

corresponding to type-IV magnetic groups have additional trivial part being significant 

which contribute to flavor Weyl points discussed in the main text. 

For non-spiral magnetic structures classified into conventional type-I and type-III 

magnetic space group, the spin point group part of spin space group has trivial part being 

{𝐸}  for noncoplanar magnetic structures, 𝑍2
𝐾  for coplanar but not collinear magnetic 

structures , and 𝑍2
𝐾 × 𝑆𝑂(2) for collinear magnetic structures, where 𝑆𝑂(2) is the spin 

rotation group with rotation operations along the axis of magnetic order 𝑥 , and 𝑍2
𝐾 =

{{𝐸||𝐸|0}, {𝑈𝒏(𝜋)𝑇||𝐸|0}} is the group generated by the combined operation of a spin 

rotation operation perpendicular to the magnetic moments and a time reversal operation. 

All of the 597 nontrivial spin point groups, which directly applies to noncoplanar spin 

arrangements, are listed in ref. 6. For spin arrangements being coplanar and collinear, there 

are 252 and 90 possible spin point groups, derived in ref. 8. However, for spiral magnetic 

structures described by any type of magnetic space group or non-spiral magnetic structures 

described by type-IV magnetic space group, the spin point group part of spin space group 

could go beyond {𝐸}, 𝑍2
𝐾 and 𝑍2

𝐾 × 𝑆𝑂(2) because of the existence of operations of the 

form {𝑅||𝐸|𝝉} where 𝝉 is a lattice translation with {𝐸||𝐸|𝝉} is not contained in the spin 
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space group. Specifically, if a nonchiral magnetic structure belongs to type-IV magnetic 

space group, the existence of time reversal symmetry combined with translation symmetry 

{𝑇||𝐸|𝝉} would add a group 𝑍2
𝑇 = {{𝐸||𝐸}, {𝑇||𝐸}} to the trivial spin point group and the 

spin group would be 𝑍2
𝑇 × 𝑍2

𝐾 × 𝑆𝑂(2) or 𝑍2
𝑇 × 𝑍2

𝐾. Most importantly, the combination of 

𝑍2
𝑇 and 𝑍2

𝐾 will lead to spin flip symmetry {𝑈𝒏(𝜋)||𝐸} which corresponds to the combined 

symmetry of 180 degree of spin rotation and half translation in spin space group, 

{𝑈𝒏(𝜋)||𝐸|𝝉1/2}. This symmetry {𝑈𝒏(𝜋)||𝐸|𝝉1/2} is contained in the little group of every 

momentum in the Brillouin zone, which could lead to effective 𝑆𝑈(2) isospin symmetry if 

there is additionally a SO(2) group, as is shown in the main text.  

Note S3. Symmetry properties of CoNb3S6 when neglecting spin-orbit 

coupling 

We know that without consideration of magnetic order in CoNb3S6, the crystal structure 

belongs to the space group 𝑃6322, following Hermann–Mauguin notation, while, with 

magnetic order, the structure corresponds to type-IV magnetic space group 𝑃𝐵21212. If 

using notations of spin group (Ref. 6), the magnetic space group is 𝑃𝐵 21 
2𝑥 21 

2𝑦 2 
2𝑧 , with all 

spatial rotation combined with a spin rotation of the same angle around the same axis. This 

group commute with the single electron Hamiltonian of this system with spin orbit coupling 

(SOC), and there cannot be more symmetry operations beyond this group (Ref. 5,8,9).  

If we neglect SOC now, the spin rotations and spatial rotations are not forced to be 

operated simultaneously, i.e., be operated at the same time with the same angle and the 

same rotation axis. Thus, in addition to the magnetic group 𝑃𝐵 21 
2𝑥 21 

2𝑦 2 
2𝑧 , decoupled spin 

and orbit rotation operations appear to commute with the Hamiltonian of our system8. 
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Because the distribution of magnetic moments does not guarantee 6-fold rotations or 3-

fold rotations of the form {𝑈𝒏(𝜋)||𝐶𝑧(𝜋/3)|𝝉} or {𝑈𝒏(𝜋)||𝐶𝑧(2𝜋/3)|𝝉}, the rotations of 

the highest order of the system are still two fold rotations. Thus, the nontrivial spin space 

group of this system can be written as the magnetic space group, 𝑃𝐵 21 
2 21 

2 2 
2 . From Ref. 

8, the trivial spin space group of this collinear magnetic system is unique to be 𝑆𝑂(2) × 𝑍2
𝐾. 

Then, the full spin space group of this system can be written as product of these two groups 

(𝑃𝐵 21 
2 21 

2 2 
2 )(𝑆𝑂(2) × 𝑍2

𝐾). By selecting the proper nontrivial part of this group, we can 

write the group as direct product of a trivial group and a nontrivial group, 

(𝑃𝐵 21 
1 21 

1 2 
1 ) × (𝑆𝑂(2) × 𝑍2

𝐾) = 𝑃𝐵 21 
1 21 

1 2 
1 1 

∞𝑚 , where 1 
∞𝑚  represents the trivial part 

of spin space group 𝑆𝑂(2) × 𝑍2
𝐾. The elements of this full spin group are shown in Table 

S1. 

Note that there could be more than one choice of the nontrivial part of a spin space group, 

such that the full spin space group can be written as the direct product of the nontrivial one 

with a trivial group. In the case of spin space group 𝑃𝐵 21 
1 21 

1 2 
1 1 

∞𝑚 , by replacing every 

time reversal operation contained in the elements of the group 𝑃𝐵 21 
1 21 

1 2 
1  to a spin 

rotation 𝑈𝒚(𝜋) (or any other spin rotations 𝑈𝒏(𝜋), with  𝒏 ∥ 𝑐𝑜𝑠𝜑�̂� + 𝑠𝑖𝑛𝜑�̂�, 𝜑 ∈ (0, 𝜋]), 

the resulting group still commutes with 1 
∞𝑚 , thus we can write the full spin space group 

as the direct product of this group with 1 
∞𝑚 .  

Table S1. Group elements of the magnetic space group and spin group describing CoNb3S6. 

 
Spin space 

group 
Group elements 

w/ 

SOC 

𝑃𝐵 21 
2 21 

2 2 
2  

 

H:                      {𝐸||𝐸|0}, {𝑈𝑥(𝜋)||C𝑥(𝜋)|0}, 

{𝑈𝑦(𝜋)||C𝑦(𝜋)|𝝉(𝒃+𝒄)/2}, {𝑈𝑧(𝜋)||C𝑧(𝜋)|𝝉(𝒃+𝒄)/2} 
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M:         {𝑇||𝐸|𝝉(𝒂+𝒃)/2}, {𝑇𝑈𝑥(𝜋)||C𝑥(𝜋)|𝝉(𝒂+𝒃)/2}, 

{𝑇𝑈𝑦(𝜋)||C𝑦(𝜋)|𝝉(𝒂+𝒄)/2}, {𝑇𝑈𝑧(𝜋)||C𝑧(𝜋)|𝝉(𝒂+𝒄)/2} 

w/o 

SOC 

Nontrivial: 

𝑃𝐵 21 
1 21 

1 2 
1  

H:                          {𝐸||𝐸|0}, {E||C𝑥(𝜋)|0}, 

{𝐸||C𝑦(𝜋)|𝝉(𝒂+𝒄)/2}, {𝐸||C𝑧(𝜋)|𝝉(𝒂+𝒄)/2} 

M:              {𝑇||𝐸|𝝉(𝒂+𝒃)/2}, {𝑇||C𝑥(𝜋)|𝝉(𝒂+𝒃)/2}, 

{T||C𝑦(𝜋)|𝝉(𝒃+𝒄)/2}, {T||C𝑧(𝜋)|𝝉(𝒃+𝒄)/2} 

Trivial: 

1 
∞𝑚  

{𝑇𝑈𝑛(𝜋)||𝐸||0} (𝑛 ∥ 𝑐𝑜𝑠𝜑�̂� + 𝑠𝑖𝑛𝜑�̂�, 𝜑 ∈ (0, 𝜋]) 

{𝑈𝑥(𝜃)||𝐸||0} (𝜃 ∈ (0,2𝜋]) 

𝝉(𝒂+𝒃)/2 = (1/2,1/2,0), 𝝉(𝒃+𝒄)/2 = (0,1/2,1/2), 𝝉(𝒂+𝒄)/2 = (1/2,0,1/2); 

H/M: elements with/without time-reversal symmetry. 

 

Fig. S1. Evolution of Wannier charge centers (WCCs) calculated on a spherical surface 

enclosing P1/P2 and N1/N2. The calculation results show that the Dirac points P1 and P2 

have chirality +2 and the Dirac points N1 and N2 have chirality −2. 

 

Note S4. The other material candidates 

In Table S2 we provide the list of flavor Weyl materials according to the symmetry 

filters. Such procedure has screened out 62 material candidates. Then, we further carry out 

DFT calculations on these candidates without considering spin-orbit coupling. In this step, 
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we rule out the materials that are insulating, and focus on the flavor Weyl point near the 

Fermi level (within ~1 eV around the Fermi level).  

Table S2. Collinear antiferromagnetic materials realizing flavor Weyl semimetal. The label 

and chemical formula in the table are from the Bilbao MAGNDATA database. 

1.32:Lu2MnCoO6 1.565:Pb2CoOsO6 1.429:BaFe2Se3 1.184:Na2Co2TeO6 

1.330:Lu2CoMnO6 1.592:Pb2NiOsO6 1.111:GdBiPt 1.192:SmMn2O5 

1.438:BaCoF4 1.325:PrMn2O5 1.232:CuMnSb 1.335:Nd2Pd2In 

1.64:BaNiF4 1.374:HoNiGe 1.58:La2O2Fe2OSe2 1.586:PrFeAsO 

1.100:Cu2MnSnS4 1.583:La1.5Ca0.5CoO4 1.120:BaFe2Se3 1.18:MnS2 

1.440:CrPS4 1.55:Na2MnF5 1.79:Li2CoSiO4 1.439:BaCoF4 

1.459:CeFe3(BO3)4 1.136:AgCrS2 1.589:Fe0.967Nb3S6 1.472:CaOFeS 

1.7:NdFe3B4O12 1.561:GeNi2O4 1.349:CoNb3S6 1.71:SrCo2V2O8 

1.90:YFe3(BO3)4 1.563:GeNi2O4 1.50:AgNiO2 1.101:LuMnO3 

1.20:HoMnO3 1.341:TmMnO3 1.86:GeV4S8 1.298:BaCdVO(PO4)2 

1.263:Ca3Ru2O7  1.33:ErAuGe 1.504:GdCuSn 1.505:GdAgSn 

1.506:GdAuSn 1.353:SmNiO3 1.354:EuNiO3 1.43:PrNiO3 

1.45:NdNiO3 1.463:Sr2Fe3Se2O3 1.172:NiTa2O6 1.281:YBaCuFeO5 

1.24:ZnV2O4 1.574:NdBiPt 1.156:LaMn3Cr4O12 1.165:Ni3TeO6 

1.581:FeTiO3 1.91:TbFe3(BO3)4 1.233:CuMnSb 1.265:CuMnSb 

1.424:UCu5 1.275:Ba6Co6ClO15.5   

 

Except for CoNb3S6, we show another representative candidate, i.e., GdCuSn, for ideal 

flavor Weyl points near the Fermi level. GdCuSn adopts an orthorhombic crystal structure 

and a collinear AFM order with the magnetic moments originated from Gd 4f electrons 

(Supplementary Fig. S2a). Different from CoNb3S6, GdCuSn is nonchiral, yet supporting 

flavor Weyl points. We thus plot its band structure in the AFM phase (Fig. S2b) and 

identify two inequivalent flavor Weyl points occurring at the generic momenta, as shown 

in Figs. S2c-S2f. Each of the two Weyl points represents four equivalent flavor Weyl points 

connected by nonsymmorphic glide reflection symmetries with the glide mirrors 

perpendicular to the x and y axis. 
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Figure S2: (a) The crystal and collinear AFM magnetic structure of GdCuSn. The red 

arrow denotes the direction of the magnetic moment. (b) The band structure of GdCuSn 

without spin-orbit coupling. The black dashed line and pink dashed circles denote the 

Fermi level and the rough positions of the flavor Weyl points, respectively. (c,e) the 

electronic structure near the flavor Weyl point. There are four flavor Weyl points at ~ 0.19 

eV above the Fermi level which are labeled by A, and another four flavor Weyl points at ~ 

0.39 eV below the Fermi level A'. Note that . (e,f) The Wannier charge centers (WCCs) of 

the flavor Weyl points and their Chern numbers.  
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