
Supplementary Material

1 THE COMPUTATIONAL MODEL

C-IMMSIM is a model that uses the concept of agents (i.e., it is an agent-based model, ABM) to represent
cells in the immune system [6]. A large number of cells are simulated in a virtual volume. When confronted
with an antigenic challenge, their interaction/cooperation, governed by the rules describing their behaviour,
evolve the system from a naive state to the state of immunological memory.

Being more a general-purpose modeling platform rather than just a model, C-IMMSIM lends itself to
characterize the role of the immune response in different human pathologies ranging from infections to
cancer passing through the chronic inflammation associated with type 2 diabetes ([8]). Relevant to the
present study, the model has recently been used to simulate the clonal dominance in heterologous immune
responses [8] and the response to a multi-epitope vaccine against SARS-CoV-2 [16, 1].

The system is in a stable state (apart from random fluctuations due to natural cell death/birth of cells) until
the adenovirus vaccine is injected. This is day 0 of the simulation. It follows a sequence of stochastic events
promoting cell duplication, cytokine secretion and eventually culminating in the humoral and cellular
immune response. Due to the high degree of details of the algorithms enacting such events, an agent-based
model is not described by means of mathematical formulas but logical rules or more complex algorithms
that singularly or in combination with other rules, encode what are regarded as established mechanisms of
the immune system (e.g., the clonal selection theory of Burnet, the thymus education of T lymphocytes, the
replicative senescence of T-cells, T-cell anergy and Ag-dose induced tolerance in B-cells, and the danger
theory of Matzinger).

In C-IMMSIM each simulated time step corresponds to eight hours of real life. Cells diffuse randomly in
the represented volume and interact among them. Upon specific recognition through receptor bindings,
they perform actions that determine their functional behavior. These actions are coded as probabilistic rules
and define the transition of the interacting cell entities from one “condition” to another. In fact, each rule is
executed only if the parts involved are in specific states (e.g., naı̈ve, active, resting, antigen-presenting).

Besides cell-cell interaction and cooperation, this model simulates the intra-cellular processes of antigen
uptake and presentation. Endogenous antigens are fragmented and combined with MHC class I molecules
for presentation on the cell surface to CTLs’ receptors (this is the cytosolic pathway), whereas exogenous
antigens are degraded into small pieces, which are then bound to MHC class II molecules for presentation
to T helpers’ receptors (this is the endocytic pathway).

The stochastic execution of the algorithms coding for the dynamical rules results in a sequence of
cause/effect events culminating in the production of effector immune cells and in the establishment of
immunological memory. The starting point of this series of events is the injection of the adenovirus coding
for the Spike protein of SARS-CoV-2 (see Figure S1). This may take place any time after the simulation
starts. In the present study, the first immunization injection is performed at time zero. At that initial time,
the system is “naı̈ve” with respect to the injected antigen, meaning that there are neither specific T and B
memory cells nor plasma cells and antibodies able to recognize the antigen peptides. Moreover, the system
is designed to maintain the global population of cells in a quasi steady-state (homeostasis), if no stimulation
takes place, whereas the system moves away from such dynamical (stochastic) equilibrium when it is
perturbed by an antigenic challenge. Besides the parameters defining the characteristics of the adenovirus

1



Supplementary Material

related to entry in the muscle cells and production of the spike protein of the Severe Acute Respiratory
Syndrome Coronavirus 2 isolate Wuhan-Hu-1 (NCBI Reference Sequence: NC 045512), whose primary
structure is reported in Figure S1 and further described in the following section “Computing peptides
immunogenicity”, the coded vaccine construct in this model is defined as a set of B-cell epitopes and T-cell
epitopes consisting of amino acid sequences and defining its antigenicity.

If the vaccine elicits a strong immune response it depends on the injected dose and on the antigenicity of
the B and T epitopes. These variables determine the level deployment of both cellular and humoral branches
of the immune system, as shown in past simulation studies [17]. The model resorts to pre-computed ranked
lists of T-cell epitopes calculated with the neural network NetMHCpan method [18, 22, 21]. This feature,
which is described below, follows the choice of a definite HLA set (discussed below in the section “Selecting
the HLA haplotype”). As the neutralizing antibody response to the Spike protein is mainly focused on the
RBD, and one of the datasets used to tune the model contains anti-RBD antibody measures, we included in
the simulations only B-cell epitopes from the RBD domain. B-cell epitopes were computed with BepiPred
[15]. The computed epitopes largely overlap with RBD regions experimentally identified as targets of
anti-Spike antibody responses [12].

Figure S1. Primary structure of the spike protein (NCBI Reference Sequence: YP 009724390.1) of
the Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1 (NCBI Reference Sequence:
NC 045512). The RBD is shown in yellow and the B-epitopes computed by BepiPred in red.

1.1 Estimated Parameters

The model has been extensively used in the past so that many parameters have already been fixed (either
by manual curation with literature information or by numerical estimation in generic settings - i.e., not
pathogen-specific simulations). For the present study we calibrated only the parameters in table S1.
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Table S1. Parameters estimated in the model

Name Value Meaning

p1 300 Vaccine dosage, i.e., adenoviral particles per microliter
p2 0.03 Probability proportional to the antigen persistence in antigen presenting cells
p3 148 Ratio of long lived plasma cells half life to half life of normal plasma cells
p4 0.695 Rate of release of spike proteins by adenoviral transfected cells i.e., muscle cells

1.2 Selecting the HLA haplotype

The computational model accounts for differences in the HLA haplotype when determining which
peptides are presented by antigen-presenting cells. To this end, it takes in input a list of such peptides
for each HLA molecule considered together with the propensity of each peptide to bind to it. This list is
computed by using third-party immunoinformatics tools as described in the next section “Computing the
peptide immunogenicity”. The “HLA haplotype freq search” in the “Allele Frequency Net Database” [2]
was used in order to select two HLA-A, two HLA-B and two DRB alleles which are most prevalent in
the caucasian phenotype [4]. The result pointed to the following alleles: HLA-A*02:01, HLA-A*24:02,
HLA-B*35:01, HLA-B*40:02, DRB1*07:01 and DRB1*15:01.

1.3 Computing peptides immunogenicity

The strain of SARS-CoV-2 used in this study corresponds to the reference sequence NCBI Reference
Sequence: NC 045512.2. The primary structure of the spike protein is the only molecule used to derive
B epitopes and class I and II peptides. The spike protein (NCBI Reference Sequence: YP 009724390.1)
is reported in Figure S1, with the RBD region evidenced in yellow and the B-epitopes computed with
BepiPred (using the parameter EpitopeThreshold equal to 0.5, corresponding to specificity of 0.57 and
sensitivity 0.58 [10]) shown in bold red. To identify cytotoxic T-cell peptides (CTL peptides) and helper
T-cell peptides (HTL peptides) of the spike protein, we have employed two immunoinformatics tools:

- for the prediction of 9-mer long CTL peptides, the “ANN 4.0 prediction method”
in the online tool MHC-I binding prediction of the IEDB Analysis Resource [20]
was used to find peptides with affinity for the chosen set of HLA class I alleles (i.e.,
HLA-A*02:01, HLA-A*24:02, HLA-B*35:01 and HLA-B*40:02)[23, 19, 3]. The
peptides were classified as strong, moderate and weak binders based on the peptide
percentile rank and IC50 value. Peptides with IC50 values ¡50 nM were considered to
have high affinity, ¡500 nM intermediate affinity and ¡5000 nM low affinity towards a
particular HLA allele. Also, lower the percentile rank, greater is meant the affinity
[23, 19, 3];

- for what concerns the HTL peptides, the NetMHCIIpan 3.2 server was used for the
prediction of 9-mer long HTL peptides which had an affinity for the HLA class II
alleles (i.e., DRB1*07:01 and DRB1*15:01) used in this study [14]. The predicted
peptides were classified as strong, intermediate and non-binders based on the concept
of percentile rank as given by NetMHCII with a threshold value set at 2, 10 and > 10%
, respectively. In other words, peptides with percentile rank ≤ 2 were considered
as strong binders whereas a percentile rank between 2 and 10% designate moderate
binders; peptides with percentile score > 10 are considered to be non-binders [14].
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Since the list of CTL and HTL peptides and the relative affinity score is the same as in [7] we send the
interested reader to the supplementary material of that work for further details.

1.4 Modeling adenoviral capsid immunogenicity

The anti-adenoviral antibody response was not simulated at the epitope level, but, in a simplification of a
largely unknown scenario, the vaccine-induced antibody response to the adenoviral capsid was assumed
to be proportional to the vaccine-induced antibody response to the Spike. To this end, the computational
model included the rule that adenoviral vaccine-induced antibodies can bind to the adenoviral vaccine.
When vaccine-induced antibodies bind to the vaccine and form immune complexes, there is a reduced
transduction of muscle cells by the vaccine, and less Spike antigen is produced. To evaluate the effect of
anti-adenoviral antibodies, in-silico immunization experiments were performed enabling or disabling the
rule that adenoviral vaccine-induced antibodies can bind to the adenoviral vaccine. We found that the effect
of the interval between doses is analogous in both experiments, as in both cases higher antibody responses
are obtained at longer inter-dose intervals, as shown in Figure S2. With this in mind, in the present study,
we choose to enable the rule that the vaccine induces anti-adenoviral antibodies, as this was demonstrated
in a clinical trial [5] and is the more realistic scenario.

2 STATISTICAL METHODS

2.1 Approximate Bayesian Computation to estimate parameters

To calibrate the simulator with data from [11], we used the statistical method called Approximate
Bayesian Computation (ABC, [9] [25] [24]) to estimate the following parameters of the computational
model:

θ1 represents the persistence of phagocyted antigen before it is degraded in the cytosol of antigen
presenting cells;

θ2 is the half life of plasma cells;
θ3 is the rate at which the Spike protein is produced in infected muscle cells.

Let us define
x(0) = x0 the initial condition of the model;
v the vaccination schedule; we indicate with v1A the vaccination schedule relative to the protocol 1A,

v1B for protocol 1B, and v1C for protocol 1C;
y(t) = M(θ, x0, v, t) denotes the trajectory of the model variables starting in the initial condition x0

subjected to the vaccination schedule v. M() is calculated running C-IMMSIM .

The ABC algorithm can then be formulated as follows:

Step 1: execute N times the simulation by sampling with the Latin Hypercube the space of
meaningful parameters θ = (θ1, θ2, θ3);

Step 2: for each i = 1, . . . , N and for each v ∈ {v1A, v1B, v1C} compute J realizations of
the stochastic model yj(t) = Mj(θi, x0, v, t) with j = 1, . . . , J ; scale yj(t) to be in
[0, 1];

Step 3: calculate dv =
[∑

t (⟨y(t)⟩ − yt)
2
]1/2

where ⟨y(t)⟩ is the average value, over the J

simulations, of the trajectory point yj(t) = Mj(θi, x0, v, t) hence dv is the residual

4



Supplementary Material

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

to
t I

g

1e6

1A-yesAd
1B-yesAd
1C-yesAd
1A-noAd
1B-noAd
1C-noAd

Figure S2. The graph reports the dynamic of IgG in two separate in-silico experiments, in which the
antibodies induced by the vaccine were allowed (1A-yesAd, 1B-yesAd, 1C-yesAd) , or not allowed
(1A-noAd, 1B-noAd, 1C-noAd) to bind the adenoviral capside. The time interval between the first and
second dose was 10 weeks in 1A-yesAd and 1A-noAd, 20 weeks in 1B-yesAd and 1B-noAd, and 45 weeks
in 1C-yesAd and 1C-noAd. The response to the second dose is lower in groups 1A-yesAd, 1B-yesAd and
1C-yesAd compared to 1A-noAd, 1B-noAd and 1C-noAD, indicating that vaccine-induced anti-adenoviral
antibodies can reduce the immunogenicity of the second dose. On the other hand, the effect of the timing
of the second dose on the magnitude of the response is similar in both experiments, with longer intervals
resulting in higher responses in both situations.

sum of squares (RSS) computed summing all deviations from the available data points
yt;

Step 4: calculate d1A+d1B +d1C for each of the parameter considered θ and rank them from
low to high, then pick the top 10% that minimise this sum. The distribution of these
θs represents the posterior distribution of the parameters of interest.

2.2 Stepwise Regression

Stepwise regression is a statistical method to identify the most important variables among many of them
when there is no theory that can help as a guide. The method is used to determine whether variables Ab(t1),
Plb(t1), Th(t1), Tc(t1), and B(t1) can be used as explanatory variables for the increment of Ab induced by
the second dose, that is ∆Ab = Ab (tm)− Ab (t1).

There are three possible ways to implement it: the first consists of starting with a linear regression model
containing only the constant term and, at each step, a regressor (or variable) is added to the model if it
improves the fit evaluated using some criteria of fitness, such as the residual sum of squares; the second
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algorithm consists of stating with a linear model which includes all the variables and at each step a variable
is removed if its loss does not have a significant impact on the model fit; the third algorithm is a combination
of the previous two. We have resorted to the third option for our analysis because it consists in the most
complete one.

More details on these model selection algorithms can be found in [13].

2.3 Analyzing data by Principal Component Regression (PCR)

For the data analysis we have employed the Principal Component Regression (PCR), which is a regression
model based on Principal Component Analysis (PCA) useful when dealing with multivariate data that
exhibit multicollinearity. In particular, it consists of a linear regression where the dependent variable is
explained/described as a linear combination of principal components. Principal components are orthogonal
vectors that span the vector space generated by the original variables.
More formally, let X = (Ab(t1), P lb(t1), Th(t1), T c(t1), B(t1)) be our regressors, Y = Ab(tm) be our
dependent variable and W = AX be the principal components, namely the i-th column of matrix A

contains the loadings of the i-th component. Then, the principal components regression provides the
following model

Y = α1A1X + α2A2X + α3A3X + α4A4X + α5A5X (S1)

where Ai refers to the i-th column of the matrix A (loadings of the i-th principal component) and αi refers
to the i-th regression coefficient. More details on PCR can be found in [13].

3 SUPPLEMENTARY FIGURES

Figure S3. As the interval between the doses becomes longer, the humoral response (i.e., Ab, Pbl, B) and
the T helper response (Th) to the second dose improve. The box plots show the median, IQR, and range of
Ab, Plb, Th, Tc and B in treatment groups 1A, 1B and 1C at time tf .
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