Catalytic and Photochemical Strategies to Stabilized Radicals Based on Anomeric Nucleophiles

Feng Zhu,^a Shuo-qing Zhang,^b Zhenhao Chen,^a Jinyan Rui,^a Xin Hong,^b* Maciej A. Walczak^a*

^aDepartment of Chemistry, University of Colorado, Boulder, CO 80309, United States ^bDepartment of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China

*hxchem@zju.edu.cn *maciej.walczak@colorado.edu

Table of Contents

1. GENERAL INFORMATION	S3
2. GENERAL PROCEDURES	S4
3. ADDITIONAL REACTION OPTIMIZATION CONDITIONS	S5
4. DETAILED EXPERIMENTAL PROCEDURES FOR COMPOUNDS 17A-51	S8
5. DETAILED EXPERIMENTAL PROCEDURES FOR COMPOUNDS S1-S13	S26
6. ADDITIONAL MECHANISTIC EXPERIMENTS	S32
6.1. Anomerization experiments with thioglycosdies and anomeric stannanes	\$32
6.2. Thioglycosylations with late transition metals	S32
6.3. Probing the role of Cu(II) in thermal and photochemical thioglycosylations	\$33
6.4. Radical trapping experiments	\$33
6.5. Kinetic isotope effect experiments	S34
6.6. NMR analysis of disulfide-bipyridine mixtures	S36
6.7. UV-VIS Absorption Spectra	S37
7. COMPUTATIONAL DETAILS	S37
8. REFERENCES	S59
9. COPIES OF 1D AND 2D NMR SPECTRA	S60

1. General Information

All chemicals were purchased as reagent grade and used without further purification unless otherwise noted. Solvents were filtered through a column of activated alumina prior to use. All reactions were carried out under anhydrous N₂ in oven-dried glassware. *m*-Xylene was distilled under nitrogen over sodium and degassed prior to use. Anhydrous 1,4-dioxane, 4,4'-di-tert-butyl-2,2'-dipyridyl and CuCl were purchased from Sigma-Aldrich. Aldrich® Micro Photochemical Reactors (5 W blue LED strips) were purchased from Sigma-Aldrich. Anhydrous KF was purchased from Strem Chemicals, Inc. Visualizations were performed with UV light and/or Hanessian stain and/or sulfuric acid stain (5% H₂SO₄ in MeOH). Column chromatography was performed on silica gel (230-400 mesh). ¹H and ¹³C NMR spectra were recorded on Bruker/Varian 300/400/500 MHz instruments and are reported as follows: chemical shift (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. The residual solvent reference peaks were used from published literature. 2D NMR experiments were performed using standard parameters (200 and More NMR Experiments, S. Berger, S. Braun, Wiley-VCH, 2004). IR measurements were performed on Agilent Cary 630 FT/IR instrument and optical rotations were measured on JASCO P-1030 and are reported as average of five data points. High-resolution mass spectra (HR-MS) were recorded on a Waters Synapt G2 HDMS q-TOF hybrid mass spectrometer. UV-vis spectra were recorded on Cary 5000 UV/Vis Spectrometer.

2. General Procedures

General Procedure A for Cross-Coupling Reactions

Anomeric stannane (1.50 equiv), disulfide (1.00 equiv), and CuCl (300 mol%) were added to a one-dram vial with a screw-top septum, and the vial was then evacuated and refilled with N₂ (3x). Anhydrous m-xylene and 1,2-dichloroethane (2:1, 3.00 mL) were added and the reaction mixture was heated in an oil bath (130 °C) for the indicated period of time, cooled to rt, filtered through a pad of Celite®, and concentrated. ¹H NMR spectra were recorded using this mixture to evaluate diastereoselectivity. The crude material was purified by column chromatography on SiO₂.

General Procedure B for Cross-Coupling Reactions

Anomeric stannane (1.50 equiv), disulfide or *N*-arylthiosuccinimide (1.00 equiv), KF (3.00 equiv), 4,4'-di*tert*-butyl-2,2'-dipyridyl or 2,2':6',2"-terpyridine (25 - 45 mol%), and CuCl (20 - 40 mol%) were added to a one-dram vial with a screw-top septum, and the vial was then evacuated and refilled with N₂ (3x). After anhydrous 1,4-dioxane (2.00 mL) were added, the reaction mixture was stirred at 120 °C under 5W blue LED irradiation for the indicated period of time. The resulting mixture was cooled to rt, filtered through a pad of Celite®, and concentrated. ¹H NMR spectra were recorded using this mixture to evaluate diastereoselectivity. The crude material was purified by column chromatography on SiO₂.

General Procedure C for Cross-Coupling Reactions

Anomeric stannane (1.50 equiv), disulfide (1.00 equiv), KF (3.00 equiv), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (45 mol%) were added to a one-dram vial with a screw-top septum, and the vial was then evacuated and refilled with N₂ (3x). After anhydrous 1,4-dioxane (2.00 mL) were added, the reaction mixture was stirred at 120 °C under 5W blue LED irradiation for the indicated period of time. The resulting mixture was cooled to rt, filtered through a pad of Celite®, and concentrated. ¹H NMR spectra were recorded using this mixture to evaluate diastereoselectivity. The crude material was purified by column chromatography on SiO₂.

Reaction set-up for photochemical thioglycosylations:

3. Additional Reaction Optimization Conditions

Reaction conditions: **22** (0.100 mmol, 1.0 equiv), **17d** (1.5 equiv), CuCl (20 mol%), Ligand (25 mol%) and 1,4-dioxane (2.0 mL) under N_2 , 130 °C, 24h, yield of isolated product. Anomeric selectivities determined by ¹H NMR analysis of unpurified reaction mixtures.

BnO OBn SnBu +		CuCl (20 -40 mol%) L1 (25 -45 mol%) SPMP	
Buo Cupa3	Å	KF (200 %) 1,4-dioxane 130°C	SPMP
17d	22		23

Entry	Catalyst	Additives	Solvent	Yield	α:β
1 ^a	CuCl (20 mol%)	KF (300 mol%)	Dioxane	31%	Only α
2ª	CuCl (20 mol%)	KF (300 mol%)	Dioxane/Xylene(1:1)	32%	Only α
3ª	CuCl (20 mol%)	LiF (300 mol%)	Dioxane/Xylene(1:1)	36%	Only α
4 ^a	CuCl (20 mol%)	CsF (300mol%)	Dioxane/Xylene(1:1)	19%	Only α
5	CuCl (40 mol%)	KF (300 mol%)	Dioxane/Xylene(1:1)	52%	Only α
6	CuCl (40 mol%)	LiF (300 mol%)	Dioxane/Xylene(1:1)	44%	Only α
7	CuBr (40 mol%)	KF (300 mol%)	Dioxane/Xylene(1:1)	41%	Only α
8	Cul (40 mol%)	KF (300 mol%)	Dioxane/Xylene(1:1)	<5%	Only α
9	CuTc (40 mol%)	KF (300 mol%)	Dioxane/Xylene(1:1)	38%	Only α
10	CuOP(O)Ph ₂ (40 mol%)	KF (300 mol%)	Dioxane/Xylene(1:1)	27%	Only α
11	CuCl ₂ (40 mol%)	KF (300 mol%)	Dioxane/Xylene(1:1)	N.D.	N.A.
12 ^b	CuCl (40 mol%)	KF (300 mol%)	Dioxane/Xylene(1:1)	28%	Only α
13°	CuCl (40 mol%)	KF (300 mol%)	Dioxane/Xylene(1:1)	50%	Only α
14 ^{c,d}	CuCl (40 mol%)	KF (300 mol%)	Dioxane/Xylene(1:1)	50%	>30:1
15 ^e	CuCl (40 mol%)	KF (300 mol%)	Dioxane/Xylene(1:1)	36%	Only α
16	CuCl (50 mol%)	KF (300 mol%)	Dioxane/Xylene(1:1)	50%	Only α
17 ^f	CuCl (40 mol%)	KF (300 mol%)	Dioxane/Xylene(1:1)	52%	Only α
18 ^{f,g}	CuCl (40 mol%)	KF (300 mol%)	Dioxane	21%	Only α
19 ^{c,f,g}	CuCl (40 mol%)	KF (300 mol%)	Dioxane	54%	Only α
20 ^{g,h}	CuCl (40 mol%)	KF (300 mol%)	Dioxane	73%	Only α
21 ^{g,i}	CuCl (20 mol%)	KF (300 mol%)	Dioxane	74%	Only α
22 ^{i,j}		KF (300 mol%)	Dioxane	N.D.	N.A.
23 ^k	CuCl (40 mol%)	KF (300 mol%)	Dioxane	52%	Only a

General reaction conditions: β-D-glucose **17d** (1.5 equiv), sulfur electrophile (1 equiv), CuCl (20 - 40 mol%), terpyridine L1 (25 – 45 mol%), 1,4-dioxane/*m*-xylene (1:1, 2.0 mL) under N₂, 130 °C, 96 h, yield of isolated product, anomeric selectivities determined by ¹H NMR using unpurified reactions mixtures. ^a 24 h. ^bSulfur electrophile **24** (1 equiv) was used. ^cSulfur electrophile **18** (1 equiv) was used. ^dTerpyridine L1 (40 mol%) were used. ^eSulfur electrophile **25** was used. ^fTerpyridine L1 (45 mol%), 120 °C, 96 h. ^gBlue LED irradiation was used. ^hSulfur electrophile **18** (1 equiv), dtbbpy L11 (25 mol%),120 °C, 96 h. ^jWithout CuCl and blue LED irradiation. ^kSulfur electrophile **18** (1 equiv), dtbbpy L11 (45 mol%), 120 °C, 96 h, without blue LED irradiation.

	OBn	L11 (45 mol% KF (3 equiv)	⁶⁾	OBn
BnO BnC	5 SnBu ₃ + (PMPS);	(PMPS) ₂ blue LED 1,4-dioxane, 120°C		SPMP
	17d 18			23
Entry	Variation from standar	d conditions	Yield	α:β
1	none		72%	Only α
2	no blue LEI	C	N.D.	
3	no L11		50%	Only α
4	no KF		61%	Only α
5	no blue KF and L11		50%	Only α
6	DMAP instead of L11		46%	Only α
7	toluene as solvent		43%	Only α
8	MeCN as solvent 50%		Only α	
9	tBuOH as solvent 38% Only		Only α	
10	D DMF as solvent N.D. N		N.A.	
11	1 room temperature was employed		15%	Only α
12	<i>t</i> BuOH as solvent		38%	Only α
13	4-Methoxybenzenethiol	was employed	N.D.	
14	22 was emplo	yed	N.D.	
15	390 nm was em	ployed	33%	Only α

General reaction conditions: disulfide (0.100 mmol, 1 equiv), anomeric stannanes (1.5 equiv), L11 (45 mol%), KF (3 equiv), blue LED (5W), 1,4-dioxane (2 mL), 120 °C, 48 h, yield of isolated product, anomeric selectivities determined by ¹H NMR using unpurified reactions mixtures.

4. Detailed Experimental Procedures for Compounds 17a-51

(2-*O*-(4-Methoxybenzyl)-3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)tri-*n*-butylstannane (17a). To a solution of (3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)tri-*n*-butylstannane (300 mg, 0.41 mmol) in THF (3.00 mL) KHMDS (1.00 mL, 0.500 mmol, 0.5 M in PhMe) was added under N₂ at rt. After stirring for 0.5 h, 4-methoxybenzyl chloride (0.82 mmol, 0.110 mL) was added to the reaction mixture and stirred 12 h. The crude mixture was purified by chromatographic purification on SiO₂ (Hexanes:EtOAc, 15:1) to afford product **17a** (304.4 mg, 88%) as a light yellow oil: $[\alpha]_D^{25} = -4.0$ (c = 0.40, CHCl₃); IR (ATR) v = 3029, 2959, 2921, 2863, 1733, 1490, 1458, 1360, 1240, 1094, 730, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.37 - 7.26 (m, 13H), 7.25 - 7.16 (m, 4H), 6.87 - 6.79 (m, 2H), 4.99 - 4.94 (m, 2H), 4.88 - 4.81 (m, 2H), 4.68 - 4.53 (m, 4H), 3.79 (s, 3H), 3.75 - 3.59 (m, 5H), 3.49 (d, *J* = 10.8 Hz, 1H), 3.30 - 3.26 (m, 1H), 1.54 - 1.37 (m, 6H), 1.33 - 1.20 (m, 6H), 0.96 - 0.73 (m, 15H); ¹³C NMR (75 MHz, CDCl₃) δ 159.2, 138.9, 138.6, 130.9, 129.3, 128.6, 128.5, 128.4, 128.1, 127.8 (2), 127.7, 127.6, 127.5, 113.8, 89.7, 83.4, 81.6, 79.4, 75.5, 75.2, 74.9, 74.2, 73.6, 69.7, 55.4, 29.3, 27.6, 13.8, 9.3; HRMS (ESI) *m/z* calcd for C₄₇H₆₄O₆SnNa [M + Na]⁺ 867.3617, found 867.3623.

(2-*O*-(4-(Trifluoromethyl)benzyl)-3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)tri-*n*-butylstannane (17b). To a solution of (3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)tri-*n*-butylstannane (300 mg, 0.41 mmol) in THF (3.00 mL) KHMDS (1.00 mL, 0.500 mmol, 0.5 M in PhMe) was added under N₂ at rt. After stirring for 0.5 h, 4- (trifluoromethyl)benzyl chloride (0.82 mmol, 0.120 mL) was added to the reaction mixture and stirred 12 h. The crude mixture was purified by chromatographic purification on SiO₂ (Hexanes:EtOAc, 20:1) to afford the product **17b** (202 mg, 56%) as a light yellow oil: $[\alpha]_D^{25} = -4.2$ (c = 0.30, CHCl₃); IR (ATR) v = 3032, 2960, 2920, 2863, 1743, 1480, 1458, 1367, 1250, 1102, 730, 695 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.55 (d, *J* = 8.1 Hz, 2H), 7.37 - 7.23 (m, 17H), 5.11 (d, *J* = 12.3 Hz, 1H), 4.96 (d, *J* = 11.0 Hz, 1H), 4.84 (d, *J* = 10.9 Hz, 1H), 4.96 (d, *J* = 11.0 Hz, 1H), 4.84 (d, *J* = 10.9 Hz, 1H), 4.96 (d, *J* = 11.0 Hz, 1H), 4.84 (d, *J* = 10.9 Hz), 1H), 4.84 (d, *J* = 10.9 Hz).

1H), 4.73 (d, J = 11.1 Hz, 1H), 4.70 - 4.57 (m, 4H), 3.79 - 3.60 (m, 5H), 3.52 (d, J = 10.7 Hz, 1H), 3.35 - 3.26 (m, 1H), 1.53 - 1.37 (m, 6H), 1.30 - 1.19 (m, 6H), 0.94 - 0.77 (m, 15H); ¹³C NMR (75 MHz, CDCl₃) δ 142.9, 138.8, 138.6, 138.5, 128.6 (2), 128.5, 128.0, 127.9 (2), 127.8, 127.7, 127.6 (2), 127.2, 125.4, 125.4 - 125.2 (m), 89.6, 83.4, 81.9, 79.4, 75.5, 75.2, 74.7, 73.6, 73.4, 72.3, 69.6, 29.2, 27.5, 13.8, 9.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -62.49; HRMS (ESI) *m*/*z* calcd for C₄₇H₆₁O₅FSnNa [M + Na]⁺ 905.3391, found 905.3380.

(2-*O*-Methyl-3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)tri-*n*-butylstannane (17c). To a solution of (3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)tri-*n*-butylstannane (300 mg, 0.41 mmol) in THF (3.00 mL) was added KHMDS (1.00 mL, 0.500 mmol, 0.5 M in PhMe) under N₂ at rt. After stirring for 0.5 h, CH₃I (0.82 mmol, 0.052mL) was added to the reaction mixture and stirred for 8 h. The crude mixture was purified by chromatography on SiO₂ (Hexanes:EtOAc, 20:1) to afford the product **17c** (303 mg, 99%) as a colorless liquid: $[\alpha]_D^{23} = -1.0$ (c = 2.40, CHCl₃); IR (ATR) v = 3033, 2959, 2929, 2873, 1733, 1499, 1458, 1365, 1275, 1097, 739, 702, 601 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.40 - 7.24 (m, 15H), 4.97 - 4.77 (m, 3H), 4.68 -4.50 (m, 3H), 3.72 - 3.65 (m, 2H), 3.62 - 3.36 (m, 7H), 3.28 - 3.23 (m, 1H), 1.60 - 1.47 (m, 6H), 1.42 - 1.21 (m, 6H), 1.07 - 0.82 (m, 15H); ¹³C NMR (75 MHz, CDCl₃) δ 138.9 (2), 138.6 (2), 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 89.6, 83.7, 83.4, 79.1, 75.4, 75.2, 74.9, 73.6, 69.6, 60.5, 29.2, 27.6, 13.9, 9.1; HRMS (ESI) *m/z* calcd for C₄₀H₅₈O₅SnNa [M + Na]⁺ 761.3204, found 761.3220.

4-Methoxyphenyl 2-*O*-(4-methoxybenzyl)-3,4,6-tri-*O*-benzyl-1-thio-β-D-glucopyranoside (21a). According to the general protocol A, (2-*O*-(4-methoxybenzyl)-3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)tri-*n*-butylstannane 17a (127 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), and CuCl (30.0 mg, 0.300 mmol) were added to anhydrous *m*-xylene and 1,2-dichloroethane (2:1, 3.00 mL). The reaction mixture was heated under N₂ at 130 °C for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 8:1) 21a (55.4 mg, 80%) as a light yellow oil: $[\alpha]_D^{25} = +0.9$ (c = 16.3, CHCl₃); IR (ATR) $\nu = 3033$, 2906, 2866, 1596, 1517, 1495, 1458, 1361, 1290, 1249, 1067, 1033, 914, 828, 739, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.59 - 7.54 (m, 2H), 7.38 - 7.27 (m, 15H), 7.24 - 7.20 (m, 2H), 6.91 - 6.87 (m, 2H), 6.80 - 6.74 (m, 2H), 4.95 - 4.82 (m, 4H), 4.70 (d, J = 9.9 Hz, 1H), 4.65 - 4.53 (m, 4H), 3.83 - 3.60 (m, 10H), 3.50 - 3.40 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 159.8, 159.5, 138.6, 138.5, 138.2, 135.2, 130.5, 130.0, 128.6, 128.5, 128.4, 128.1, 128.0, 127.9 (2), 127.8, 127.6, 123.7, 114.5, 114.0, 88.1, 86.9, 80.7, 79.1,

78.0, 75.9, 75.1 (2), 73.5, 69.2, 55.4 (2); HRMS (ESI) *m*/*z* calcd for C₄₂H₄₄O₇SNa [M + Na]⁺ 715.2705, found 715.2715.

4-Methoxyphenyl 2-*O*-(**4**-(**trifluoromethyl**)**benzyl**)-**3**,**4**,**6**-**tri**-*O*-**benzyl**-**1**-**thio**-**β**-**D**-**glucopyranoside** (**21b**). According to the general protocol A, (2-*O*-(4-(trifluoromethyl)benzyl)-3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)tri-*n*-butylstannane **17b** (132.2 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), and CuCl (30.0 mg, 0.300 mmol) were added to anhydrous *m*-xylene and 1,2-dichloroethane (2:1, 3.00 mL). The reaction mixture was heated under N₂ at 130 °C for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 9:1) **21b** (53.3 mg, 73%, α:β > 50:1) as a light yellow oil: $[\alpha]_D^{24} = -1.3$ (c = 13.7, CHCl₃); IR (ATR) v = 3033, 2903, 2866, 1596, 1499, 1458, 1327, 1290, 1249, 1164, 1126, 1067, 823, 739, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.61 - 7.58 (m, 2H), 7.55 - 7.48 (m, 4H), 7.38 - 7.30 (m, 15H), 6.79 - 6.74 (m, 2H), 4.95 - 4.77 (m, 5H), 4.65 - 4.53 (m, 4H), 3.83 - 3.62 (m, 7H), 3.51 - 3.41 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 142.4 (2), 138.5, 138.4, 138.1, 135.2, 130.6 - 129.3 (m), 128.6 (2), 128.5, 128.1, 128.0, 127.9, 127.8 (2), 127.7, 125.5 - 125.4 (m), 123.4, 114.6, 87.9, 86.9, 81.0, 79.2, 78.0, 75.9, 75.2, 74.5, 73.6, 69.2, 55.4; ¹⁹F NMR (282 MHz CDCl₃) δ -62.47; HRMS (ESI) *m/z* calcd for C₄₂H₄₁O₆F₃SNa [M + Na]⁺ 753.2474, found 753.2472.

4-Methoxyphenyl 2-O-methyl-3,4,6-tri-O-benzyl-1-thio-β-D-glucopyranoside (21c). According to the general protocol A, (2-*O*-methyl-3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)tri-*n*-butylstannane **S3** (110.7 mg, 0.150 mmol), 1-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (23.7 mg, 0.100 mmol), and CuCl (30.0 mg, 0.300 mmol) were added to anhydrous *m*-xylene and 1,2-dichloroethane (2:1, 3.00 mL). The reaction mixture was heated under N₂ at 130 °C for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 8:1) **17**c (39.9 mg, 68%, α:β = 1:17) as a light yellow oil: $[\alpha]_D^{24} = -1.7$ (c = 16.3, CHCl₃); IR (ATR) v = 3033, 1903, 2866, 1596, 1495, 1458, 1365, 1286, 1249, 1074, 1033, 914, 832, 739, 702, 646, 527 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.58 - 7.52 (m, 2H), 7.37 - 7.27 (m, 13H), 7.23 - 7.20 (m, 2H), 6.80 - 6.73 (m, 2H), 4.92 - 4.81 (m, 3H), 4.62 - 4.51 (m, 3H), 4.43 (d, *J* = 9.8 Hz, 1H), 3.80 - 3.69 (m, 5H), 3.65 (s, 3H), 3.62 - 3.54 (m, 2H), 3.44 (ddt, *J* = 8.5, 3.9, 1.9 Hz, 1H), 3.18 - 3.12 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 138.6, 138.5, 138.3, 135.3, 128.6, 128.5 (2), 128.1, 128.0, 127.9 (2), 127.8, 127.6, 123.5, 114.5, 87.8, 86.9, 82.7, 79.1, 77.8, 75.8, 75.1, 73.5, 69.3, 61.1, 55.4; HRMS (ESI) *m/z* calcd for C₃₅H₃₈O₆SNa [M + Na]⁺ 609.2287, found 609.2295.

4-Methoxyphenyl 3,4,6-tri-*O***-benzyl-2-deoxy-1-thio**-α**-D-glucopyranoside (23).** According to the general protocol B, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane¹ **17d** (106 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (23.7 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (6.70 mg, 0.025 mmol), and CuCl (2.00 mg, 0.020 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 8:1) **23** (41.2 mg, 74%) as a colorless oil. Characterization data matched the literature report.¹

4-Methoxyphenyl 3,4,6-tri-*O***-benzyl-2-deoxy-1-thio-α-D-glucopyranoside (27).** According to the general protocol B, (2,3,4,6-tetra-*O*-benzyl-2-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (122.1 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (23.7 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (6.70 mg, 0.025 mmol), and CuCl (2.00 mg, 0.020 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 9:1) **23** (31.8 mg, 48%, α : β = 2.7:1) as a colorless oil. Characterization data matched the literature report.²

4-Methoxyphenyl 2-*O***-methyl-3,4,6-tri-***O***-benzyl-1-thio-α-D-glucopyranoside (27b). According to the general protocol B, (2-***O***-methyl-3,4,6-tri-***O***-benzyl-β-D-glucopyranosyl)tri-***n***-butylstannane S3** (110.6 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (23.7 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 2,2':6',2''-terpyridine (5.80 mg, 0.025 mmol), and CuCl (2.00 mg, 0.020 mmol) were added to anhydrous *m*-xylene and 1,4-dioxane (1:1, 2.00 mL). The reaction mixture was stirred at 130 °C for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 5:1) **27b** (51.6 mg, 88%, α:β = 3.9:1) as a light yellow oil: $[\alpha]_D^{23} = +17.8$ (c = 1.35, CHCl₃); IR (ATR) v = 3033, 2925, 2858, 1596, 1499, 1458, 1361, 1290, 1249, 1093, 1033, 832, 743, 702, 650 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.48 - 7.42 (m, 2H), 7.40 - 7.27 (m, 13H), 7.17 (dd, *J* = 7.2, 2.4 Hz, 2H), 6.87 - 6.72 (m, 2H), 5.60 (d, *J* = 5.3 Hz, 1H), 4.97 (d, *J* = 10.9 Hz, 1H), 4.82 (dd, *J* = 22.6, 10.9 Hz, 2H), 4.63 - 4.49 (m, 2H), 4.48 - 4.37 (m, 2H), 3.87 - 3.78 (m, 2H), 3.76 (s, 3H), 3.70 - 3.60 (m, 3H), 3.55 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.7, 139.0, 138.4, 138.2, 134.9, 128.5, 128.5, 128.1, 128.0, 128.0, 127.8, 127.7, 124.5, 114.7, 87.7, 82.7, 82.5, 77.7, 75.8, 75.3, 73.6, 71.2, 69.0, 58.3, 55.5; HRMS (ESI) *m/z* calcd for C₃₅H₃₈O₆SNa [M + Na]⁺ 609.2287, found 609.2288.

4-Methoxyphenyl 3,4,6-tri-*O***-benzyl-1-thio**-α**-D-glucopyranoside (27c).** According to the general protocol B, (3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)tri-*n*-butylstannae¹ (109 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 3:1) **27c** (25.8 mg, 45%, α:β = 3.9:1) as a light yellow oil: $[\alpha]_D^{22} = +26.9$ (c = 1.05, CHCl₃); IR (ATR) v = 3402, 3033, 2910, 2869, 1596, 1499, 1458, 1365, 1290, 1249, 1178, 1074, 1033, 832, 743, 702, 646 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.47 - 7.42 (m, 2H), 7.39 - 7.27 (m, 13H), 7.21 - 7.18 (m, 2H), 6.81 - 6.76 (m, 2H), 5.46 (d, *J* = 5.3 Hz, 1H), 4.89 (s, 2H), 4.83 (d, *J* = 10.9 Hz, 1H), 4.62 (d, *J* = 11.9 Hz, 1H), 4.55 (d, *J* = 10.8 Hz, 1H), 4.48 (d, *J* = 12.0 Hz, 1H), 4.40 - 4.38 (m, 1H), 3.95 (q, *J* = 6.5 Hz, 1H), 3.82 (dd, *J* = 10.8, 4.3 Hz, 4H), 3.77 (s, 3H), 3.73 - 3.63 (m, 3H), 2.33 (d, *J* = 6.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 138.5, 138.2, 138.1, 135.0, 128.7, 128.6, 128.5, 128.1, 128.0 (3), 127.8, 124.1, 114.8, 91.1, 83.6, 77.9, 75.6, 75.1, 73.6, 72.6, 72.0, 68.8, 55.5; HRMS (ESI) *m/z* calcd for C₃₄H₃₆O₆SNa [M + Na]⁺ 595.2130, found 595.2135.

4-Methoxyphenyl 3,4-di-*O*-benzyl-6-*O*-acetyl-2-deoxy-1-thio-α-D-glucopyranoside (27d). According to the general protocol B, (3,4-di-*O*-benzyl-6-*O*-acetyl-2-deoxy-β-D-galactopyranosyl)tri-*n*-butylstannane **S1** (98.9 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 4:1) **27d** (24.4 mg, 48%) as a colorless oil: $[\alpha]_D^{24} = +24.9$ (c = 1.60, CHCl₃); IR (ATR) v = 3033, 2955, 1745, 1596, 1499, 1458, 1368, 1290, 1249, 1182, 1097, 1033, 832, 743, 702, 650 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.40 - 7.29 (m, 12H), 6.85 - 6.80 (m, 2H), 5.47 (d, *J* = 5.5 Hz, 1H), 4.94 (d, *J* = 10.9 Hz, 1H), 4.72 - 4.60 (m, 3H), 4.44 - 4.22 (m, 3H), 4.01 (ddd, *J* = 11.5, 8.6, 4.8 Hz, 1H), 3.79 (s, 3H), 3.46 (dd, *J* = 9.6, 8.6 Hz, 1H), 2.46 (ddd, *J* = 13.5, 4.9, 1.4 Hz, 1H), 2.11 - 2.03 (m, 1H), 2.01 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 159.8, 138.3, 138.2, 134.8, 128.6 (2), 128.3, 128.0, 127.9, 124.7, 114.7, 84.9, 78.2, 78.0, 75.1, 72.0, 70.0, 63.7, 55.5, 35.9, 21.0; HRMS (ESI) *m/z* calcd for C₂₉H₃₂O₆SNa [M + Na]⁺ 531.1817, found 531.1823.

According to the general protocol C, (3,4-di-*O*-benzyl-6-*O*-acetyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane **S1** (98.9 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h

and afforded after chromatographic purification on SiO_2 (Hexanes:EtOAc, 4:1) **27d** (36.6 mg, 72%) as a colorless oil.

4-Methoxyphenyl 3,4,6-tri-*O*-(**4-methoxybenzyl**)-**2-deoxy-1-thio-α-D-glucopyranoside (27e).** According to the general protocol B, (3,4,6-tri-*O*-(4-methoxybenzyl)-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane **S2** (123.1 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (6.70 mg, 0.025 mmol), and CuCl (2.00 mg, 0.020 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 4:1) **27e** (38.8 mg, 60%) as a light yellow oil: $[\alpha]_D^{24} = +17.7$ (c = 7.65, CHCl₃); IR (ATR) v = 3033, 2906, 2839, 1614, 1514, 1465, 1365, 1305, 1246, 1178, 1089, 1033, 825, 761, 646, 523 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.40 - 7.21 (m, 6H), 7.13 - 7.09 (m, 2H), 6.91 - 6.73 (m, 8H), 5.49 (d, *J* = 5.3 Hz, 1H), 4.81 (d, *J* = 10.4 Hz, 1H), 4.64 - 4.54 (m, 3H), 4.45 - 4.37 (m, 2H), 4.32 (ddd, *J* = 9.8, 4.4, 1.9 Hz, 1H), 3.94 (ddd, *J* = 11.3, 8.6, 4.7 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.78 (s, 3H), 3.76 (s, 3H), 3.75 - 3.69 (m, 1H), 3.63 (dd, *J* = 10.5, 2.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.6, 159.4, 159.3 (2), 134.6, 130.8, 130.7, 130.4, 129.7 (2), 129.5, 125.2, 114.6, 114.0, 113.9, 113.8, 85.1, 78.4, 77.7, 74.7, 73.1, 71.7, 71.7, 68.7, 55.4, 55.3, 36.2; HRMS (ESI) *m/z* calcd for C₃₇H₄₂O₈SNa [M + Na]⁺ 669.2498, found 669.2503.

4-Methoxyphenyl 3,4,6-tri-*O***-benzyl-2-deoxy-1-thio**-α**-D-galactopyranoside** (27f). According to the general protocol B, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-galactopyranosyl)tri-*n*-butylstannane **S3** (106 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 9:1) **27f** (29.5 mg, 53%) as a light yellow oil: $[\alpha]_D^{24} = +17.4$ (c = 4.15, CHCl₃); IR (ATR) v = 3033, 2869, 1596, 1495, 1458, 1368, 1286, 1249, 1178, 1093, 1063, 1033, 832, 739, 702, 650 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.41 - 7.27 (m, 17H), 6.74 - 6.69 (m, 2H), 5.55 (d, *J* = 5.5 Hz, 1H), 4.94 (d, *J* = 11.6 Hz, 1H), 4.67 - 4.61 (m, 3H), 4.50 - 4.40 (m, 3H), 3.95 - 3.89 (m, 2H), 3.74 (s, 3H), 3.62 (dd, *J* = 6.3, 0.9 Hz, 2H), 2.58 (ddd, *J* = 12.8, 11.7, 5.7 Hz, 1H), 2.19 - 2.13 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.6, 139.0, 138.4, 138.4, 134.7, 128.6, 128.5, 128.4, 128.2, 127.8 (2), 127.7 (2), 127.5, 125.1, 114.6, 85.5, 75.5, 74.5, 73.6, 73.6, 70.9, 70.7, 69.9, 55.4, 31.8. Characterization data matched the literature report.²

According to the general protocol C, (3,4,6-tri-O-benzyl-2-deoxy- β -D-galactopyranosyl)tri-n-butylstannane S3 (106 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300

mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 9:1) **27f** (33.6 mg, 64%) as a light yellow oil.

4-Methoxyphenyl 3,4-di-*O*-benzyl-2-deoxy-1-thio-α-L-fucopyranoside (27g). According to the general protocol B, (3,4-di-*O*-benzyl-2-deoxy-β-L-fucopyranosyl)tri-*n*-butylstannane S4 (90.2 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (6.70 mg, 0.025 mmol), and CuCl (2.00 mg, 0.020 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 8:1) **27g** (23.9 mg, 53%) as a light yellow oil: $[\alpha]_D^{23} = -12.9$ (c = 7.60, CHCl₃); IR (ATR) v = 3033, 2936, 2869, 1596, 1495, 1458, 1365, 1286, 1249, 1175, 1104, 1059, 1030, 962, 832, 739, 702, 650 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.41- 7.27 (m, 12H), 6.88 - 6.81 (m, 2H), 5.57 (d, *J* = 5.4 Hz, 1H), 4.99 (d, *J* = 11.7 Hz, 1H), 4.72 - 4.58 (m, 3H), 4.34 - 4.28 (m, 1H), 3.93 (ddd, *J* = 12.2, 4.4, 2.4 Hz, 1H), 3.79 (s, 3H), 3.67 - 3.66 (m, 1H), 2.56 (td, *J* = 12.6, 5.7 Hz, 1H), 2.18 - 2.12 (m, 1H), 1.20 (d, *J* = 6.5 Hz, 3H);¹³C NMR (75 MHz, CDCl₃) δ 159.4, 139.0, 138.5, 134.8, 134.1, 128.6, 128.4, 128.3, 128.2, 127.8, 127.6, 127.5, 127.4, 125.6, 114.6, 85.5, 76.2, 76.0, 74.6, 70.6, 67.8, 55.4, 31.4, 17.3; HRMS (ESI) *m/z* calcd for C₂₇H₃₀O₄SNa [M + Na]⁺ 473.1762, found 473.1753.

According to the general protocol C, $(3,4-di-O-benzyl-2-deoxy-\beta-L-fucopyranosyl)tri-$ *n*-butylstannane S4 (90.2 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 8:1) 27g (35.2 mg, 78%) as a light yellow oil.

Phenyl 3,4,6-tri-*O***-benzyl-2-deoxy-1-thio-α-D-glucopyranoside (27h).** According to the general protocol B, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane (106 mg, 0.150 mmol), 1,2-diphenyldisulfane (21.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 10:1) **27h** (24.2 mg, 46%, α/β > 15:1) as a colorless oil: $[\alpha]_D^{23} = +11.8$ (c = 2.60, CHCl₃); IR (ATR) v = 3033, 2921, 2866, 1588, 1458, 1365, 1100, 1030, 739, 698, 642 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.50 - 7.43 (m, 2H), 7.36 - 7.27 (m, 13H), 7.25 - 7.19 (m, 5H), 5.69 (d, *J* = 5.8 Hz, 1H), 4.91 (d, *J* = 10.9 Hz, 1H), 4.72 - 4.58 (m, 3H), 4.55 (d, *J* = 10.8 Hz, 1H), 4.46 (d, *J* = 12.1 Hz, 1H), 4.31 (ddd, *J* = 9.9, 4.2, 2.1 Hz, 1H), 4.02 - 3.94 (m, 1H), 3.83 (dd, *J* = 10.7, 4.1 Hz, 1H), 3.74 - 3.62 (m, 2H), 2.46 (ddd, *J* = 13.4, 4.9, 1.4 Hz, 1H), 2.13 (ddd, *J* = 13.5, 11.6, 5.7 Hz, 1H); ¹³C NMR (75

MHz, CDCl₃) δ 138.6, 138.5, 138.3, 135.2, 131.3, 129.0, 128.6, 128.5 (2), 128.1, 128.0, 127.9 (2), 127.8, 127.7, 127.2, 84.2, 78.6, 78.1, 75.1, 73.5, 72.1, 71.9, 69.0, 36.4; HRMS (ESI) *m/z* calcd for C₃₃H₃₄O₄SNa [M + Na]⁺ 549.2075, found 549.2078.

According to the general protocol C, $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\beta-D-\text{glucopyranosyl})\text{tri-}n-\text{butyl}\text{stannane}^1$ (106 mg, 0.150 mmol), 1,2-diphenyldisulfane (21.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'- di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 10:1) **27h** (33.7 mg, 64%) as a colorless oil.

4-Methylphenyl 3,4,6-tri-*O***-benzyl-2-deoxy-1-thio-α-D-glucopyranoside (27i).** According to the general protocol B, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (106 mg, 0.150 mmol), 1,2-bis(4-methylphenyl)disulfane (24.6 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 9:1) **27i** (32.5 mg, 60%) as a colorless oil: $[\alpha]_D^{23} = +17.3$ (c = 5.80, CHCl₃); IR (ATR) v = 3033, 2921, 2866, 1499, 1458, 1365, 1193, 1089, 1030, 814, 739, 702, 650 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.41 - 7.28 (m, 15H), 7.23 - 7.20 (m, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 5.62 (d, *J* = 5.7, 1H), 4.91 (d, *J* = 10.9 Hz, 1H), 4.72 - 4.53 (m, 4H), 4.46 (d, *J* = 12.0 Hz, 1H), 4.33 (ddd, *J* = 9.8, 4.2, 2.0 Hz, 1H), 3.98 (ddd, *J* = 11.6, 5.8, 3.3 Hz, 1H), 3.83 (dd, *J* = 10.6, 4.2 Hz, 1H), 3.73 - 3.61 (m, 2H), 2.46 (ddd, *J* = 13.4, 4.9, 1.4 Hz, 1H), 2.31 (s, 3H), 2.11 (ddd, *J* = 13.4, 11.6, 5.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 138.6 (2), 138.3, 137.4, 132.0, 131.3, 129.8, 128.6, 128.5, 128.4, 128.0 (2), 127.9, 127.8 (2), 127.7, 84.5, 78.6, 78.1, 75.1, 73.5, 72.0, 71.8, 69.1, 36.3, 21.2; HRMS (ESI) *m/z* calcd for C₃₄H₃₆O₄SNa [M + Na]⁺ 563.2232, found 563.2241.

According to the general protocol C, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (106 mg, 0.150 mmol), bis(4-methylphenyl)disulfane (24.6 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 9:1) **27i** (28.7 mg, 53%) as a colorless oil.

2-Naphthyl 3,4,6-tri-*O***-benzyl-2-deoxy-1-thio**- α **-D-glucopyranoside (27j).** According to the general protocol B, (3,4,6-tri-*O***-benzyl-2-deoxy-** β **-D-glucopyranosyl)tri-***n***-butylstannane**¹ (106 mg, 0.150 mmol), 1,2-di(naphthalen-2-yl)disulfane (31.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane

(2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 9:1) **27j** (26.0 mg, 45%, α : β > 20:1) as a colorless oil: $[\alpha]_D^{25} = +18.6$ (c = 2.50, CHCl₃); IR (ATR) v = 3033, 2921, 2866, 1587, 1499, 1458, 1365, 1193, 1097, 1030, 948, 858, 817, 739, 702, 638 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.96 (s, 1H), 7.79 - 7.68 (m, 3H), 7.53 - 7.41 (m, 3H), 7.39 - 7.27 (m, 12H), 7.23 - 7.20 (m, 2H), 5.82 (d, *J* = 5.4 Hz, 1H), 4.92 (d, *J* = 10.9 Hz, 1H), 4.74 - 4.54 (m, 4H), 4.45 (d, *J* = 12.0 Hz, 1H), 4.36 (ddd, *J* = 9.7, 4.0, 1.9 Hz, 1H), 4.03 (ddd, *J* = 11.5, 8.7, 4.9 Hz, 1H), 3.83 (dd, *J* = 10.7, 4.1 Hz, 1H), 3.68 (ddd, *J* = 8.8, 5.0, 3.0 Hz, 2H), 2.5 - 2.45 (m, 1H), 2.17 (ddd, *J* = 13.4, 11.5, 5.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 138.6, 138.5, 138.2, 133.9, 132.5, 132.4, 129.7, 128.7, 128.6, 128.5 (2), 128.1, 128.0, 127.9 (3), 127.8, 127.7, 127.6, 126.6, 126.1, 84.1, 78.6, 78.1, 75.2, 73.6, 72.1, 72.0, 69.1, 36.4; HRMS (ESI) *m/z* calcd for C₃₇H₃₆O₄SNa [M + Na]⁺ 599.2232, found 599.2239.

According to the general protocol C, $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\beta-D-\text{glucopyranosyl})\text{tri-}n-\text{butylstannane}^1$ (106 mg, 0.150 mmol), 1,2-di(naphthalen-2-yl)disulfane (31.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 9:1) **27j** (31.8 mg, 55%) as a colorless oil.

3,4-Dimethoxyphenyl 3,4,6-tri-*O***-benzyl-2-deoxy-1-thio-α-D-glucopyranoside (27k).** According to the general protocol B, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (106 mg, 0.150 mmol), 1,2-bis(3,4-dimethoxyphenyl)disulfane (33.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 5:1) **27k** (31.1 mg, 53%) as a colorless oil: $[\alpha]_D^{23} = +13.2$ (c = 1.45, CHCl₃); IR (ATR) v = 3033, 2906, 2866, 1588, 1506, 1458, 1398, 1365, 1320, 1257, 1234, 1182, 1093, 1030, 951, 914, 884, 854, 739, 702, 653, 609 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.37 - 7.27 (m, 13H), 7.24 - 7.20 (m, 2H), 7.06 - 6.98 (m, 2H), 6.70 (d, *J* = 8.3 Hz, 1H), 5.56 (d, *J* = 5.4 Hz, 1H), 4.91 (d, *J* = 10.9 Hz, 1H), 4.72 - 4.53 (m, 4H), 4.47 (d, *J* = 12.1 Hz, 1H), 4.36 (ddd, *J* = 9.8, 4.5, 2.0 Hz, 1H), 3.97 (ddd, *J* = 11.5, 8.8, 4.9 Hz, 1H), 3.88 - 3.76 (m, 7H), 3.69 - 3.56 (m, 2H), 2.45 (ddd, *J* = 13.7, 4.6, 1.0 Hz, 1H) 2.09 (ddd, *J* = 13.3, 11.6, 5.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 149.2, 149.1, 138.6, 138.5, 138.2, 128.6, 128.5 (2), 128.1, 128.0, 127.9 (2), 127.8 (2), 125.8, 125.6, 116.0, 111.6, 85.1, 78.7, 78.0, 75.2, 73.6, 72.0, 71.8, 69.3, 56.1, 56.0, 36.2; HRMS (ESI) *m/z* calcd for C₃₅H₃₈O₆SNa [M + Na]⁺ 609.2287, found 609.2289.

According to the general protocol C, $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\beta-D-\text{glucopyranosyl})\text{tri-}n-\text{butylstannane}^1$ (106 mg, 0.150 mmol), 1,2-bis(3,4-dimethoxyphenyl)disulfane (33.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 5:1) **27k** (33.4 mg, 60%) as a colorless oil.

4-Acetylaminophenyl 3,4,6-tri-*O***-benzyl-2-deoxy-1-thio-α-D-glucopyranoside (27l).** According to the general protocol B, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (106 mg, 0.150 mmol), 1,2-bis(4-acetylaminophenyl)disulfane (33.2 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 1:1) **27l** (47.3 mg, 81%) as a colorless foam: $[\alpha]_D^{24} = +18.5$ (c = 3.50, CHCl₃); IR (ATR) v = 3316, 3033, 2918, 2869, 1674, 1596, 1532, 1499, 1458, 1402, 1372, 1316, 1257, 1097, 1033, 836, 743, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.39 - 7.27 (m, 17H), 7.22 -7.19 (m, 2H), 7.11 (s, 1H), 5.59 (d, J = 5.4 Hz, 1H), 4.90 (d, J = 10.9 Hz, 1H), 4.71 - 4.52 (m, 4H), 4.45 (d, J = 12.0 Hz, 1H), 4.30 (dd, J = 10.0, 3.0 Hz, 1H), 3.96 (ddd, J = 11.5, 8.6, 4.8 Hz, 1H), 3.82 (dd, J = 10.6, 4.1 Hz, 1H), 3.68 - 3.60 (m, 2H), 2.44 (dd, J = 13.4, 4.9 Hz, 1H), 2.16 - 2.05 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 138.6, 138.5, 138.3, 137.4, 132.9, 129.8, 128.6, 128.5(2), 128.1, 128.0, 127.9 (2), 127.8, 127.7, 120.3, 84.6, 78.6, 78.0, 75.1, 73.6, 72.1, 71.9, 69.1, 36.3, 24.9; HRMS (ESI) *m/z* calcd for C₃₅H₃₇O₅SNa [M + Na]⁺ 606.2292, found 606.2292.

According to the general protocol C, $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\beta-D-\text{glucopyranosyl})\text{tri-}n-\text{butylstannane}^1$ (106 mg, 0.150 mmol), 1,2-bis(4-acetamidophenyl)disulfane (33.2 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 1:1) **27I** (40.8 mg, 70%) as a colorless foam.

Phenyl 3,4,6-tri-*O*-benzyl-2-deoxy-1-seleno-α-D-glucopyranoside (27m). According to the general protocol B, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (106 mg, 0.150 mmol), 1,2-diphenyldiselane (31.2 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 2,2':6',2''-terpyridine (5.8 mg, 0.025 mmol), and CuCl (2.00 mg, 0.020 mmol) were added to anhydrous *m*-xylene and 1,4-dioxane (1:1, 2.00 mL). The reaction mixture was stirred at 130 °C for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 10:1) **27m** (29.8 mg, 48%, α:β = 5:1) as a light yellow oil: $[\alpha]_D^{25} = +17.3$ (c = 5.00, CHCl₃); IR (ATR) v = 3063, 3033, 2910, 2866, 1581, 1458, 1365, 1190, 1097, 1030, 951, 735, 698, 624, 568 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.59 - 7.54 (m, 2H), 7.38 - 7.19 (m, 18H), 6.00 (d, *J* = 5.4, 1H), 4.91 (d, *J* = 10.8, 1H), 4.71 - 4.45 (m, 5H), 4.24 (ddd, *J* = 9.9, 4.1, 2.1 Hz, 1H), 3.96 - 3.75 (m, 2H), 3.71 - 3.63 (m, 2H), 2.55 (ddd, *J* = 13.6, 4.9, 1.4 Hz, 1H), 2.19 (ddd, *J* = 13.5, 11.5, 5.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 138.6, 138.5, 138.2, 133.8, 129.2, 128.6, 128.5 (2), 128.1, 128.0, 127.9 (2), 127.8 (2), 127.5, 82.5, 78.7, 78.4, 75.2, 73.6, 73.5, 72.0, 68.9, 37.5; HRMS (ESI) *m/z* calcd for C₃₃H₃₄O₄SeNa [M + Na]⁺ 597.1520, found 597.1521.

According to the general protocol C, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (106 mg, 0.150 mmol), 1,2-diphenyldiselane (31.2 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 10:1) **27m** (35.4 mg, 57%) as a light yellow oil.

Phenyl 3,4,6-tri-*O***-benzyl-1-seleno-α-D-glucopyranoside (27n).** According to the general protocol B, (3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (109 mg, 0.150 mmol), 1,2-diphenyldiselane (31.2 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), 2,2':6',2''-terpyridine (5.80 mg, 0.025 mmol), and CuCl (2.00 mg, 0.020 mmol) were added to anhydrous *m*-xylene and 1,4-dioxane (1:1, 2.00 mL). The reaction mixture was stirred at 130 °C for 96 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 5:1) **27n** (38.9 mg, 66%, α:β = 4:1) as a light yellow oil: $[\alpha]_D^{23} = +24.2$ (c = 11.2, CHCl₃); IR (ATR) v = 3450, 3063, 3033, 2869, 1581, 1499, 1458, 1361, 1212, 1074, 1048, 914, 735, 298, 620, 575, 553 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.64 - 7.60 (m, 2H), 7.40 - 7.27 (m, 14H), 7.26 - 7.18 (m, 4H), 5.95 (d, *J* = 5.1 Hz, 1H), 4.94 - 4.82 (m, 3H), 4.65 - 4.50 (m, 2H), 4.47 (d, *J* = 12.0 Hz, 1H), 4.24 (ddd, *J* = 9.7, 3.8, 2.1 Hz, 1H), 3.91 (dt, *J* = 9.2, 5.4 Hz, 1H), 3.83 (dd, *J* = 10.9, 3.8 Hz, 1H), 3.78 - 3.58 (m, 3H), 2.39 (d, *J* = 5.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 138.5, 138.1, 138.0, 134.4, 129.2 (2), 128.7, 128.6, 128.5, 128.1, 128.0 (2), 127.9, 127.8, 89.8, 84.4, 77.3, 75.5, 75.1, 73.9, 73.6, 72.8, 68.5; HRMS (ESI) *m/z* calcd for C₃₃H₃₄O₅SeNa [M + Na]⁺ 613.1469, found 613.1475.

2-Methoxyphenyl 3,4,6-tri-*O***-benzyl-2-deoxy-1-thio-α-D-glucopyranoside (46a).** According to the general protocol C, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (106 mg, 0.150 mmol), 1,2-bis(2-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 8:1) **46a** (25.1 mg, 45%) as a colorless oil: $[\alpha]_D^{29} = +17.8$ (c = 5.05, CHCl₃); IR (ATR) v = 3067, 3033, 2921, 2866, 1585, 1480, 1458, 1365, 1275, 1249, 1194, 1097, 1074, 1030, 952, 851, 739, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.53 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.41 - 7.26 (m, 13H), 7.24 - 7.16 (m, 3H), 6.92 - 6.82 (m, 2H), 5.82 (d, *J* = 5.5 Hz, 1H), 4.91 (d, *J* = 10.9 Hz, 1H), 4.73 - 4.50 (m, 4H), 4.42 (d, *J* = 12.1 Hz, 1H), 4.31 - 4.24 (m, 1H), 4.13 - 4.01 (m, 1H), 3.87 (s, 3H), 3.84 - 3.77 (m, 1H), 3.72 - 3.54 (m, 2H), 2.51 (ddd, *J* = 13.4, 5.0, 1.4 Hz, 1H), 2.14 (ddd, *J* = 13.5, 11.6, 5.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 158.0, 138.7, 138.6, 138.3, 132.5, 128.6, 128.5 (2), 128.4, 128.0, 127.8 (2), 127.7 (2), 122.8, 121.4, 110.7, 81.9, 78.6, 78.2, 75.1, 73.5, 72.0, 71.9, 68.9, 55.9, 36.2; HRMS (ESI) *m/z* calcd for C_{34H36}O₅SNa [M + Na]⁺ 579.2181, found 579.2185.

3-Methoxyphenyl 3,4,6-tri-*O*-benzyl-2-deoxy-1-thio-α-D-glucopyranoside (46b). According to the general protocol C, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (106 mg, 0.150 mmol), 1,2-bis(3-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 8:1) **46b** (29.0 mg, 52%) as a colorless oil: $[\alpha]_D^{28} = +19.5$ (c = 5.20, CHCl₃); IR (ATR) v = 3061, 3033, 2921, 2869, 1592, 1480, 1458, 1369, 1287, 1253, 1194, 1097, 1048, 1033, 955, 866, 739, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.40 - 7.13 (m, 16H), 7.07 - 7.01 (m, 2H), 6.77 (ddd, J = 8.2, 2.4, 1.2 Hz, 1H), 5.73 (d, J = 5.6, 1H), 4.91 (d, J = 10.9 Hz, 1H), 4.74 - 4.52 (m, 4H), 4.47 (d, J = 12.1 Hz, 1H), 4.29 (ddd, J = 9.7, 4.1, 2.0 Hz, 1H), 3.97 (ddd, J = 11.5, 8.7, 4.8 Hz, 1H), 3.83 (dd, J = 10.7, 4.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 138.6, 138.5, 138.2, 136.4, 129.8, 128.6, 128.5 (2), 128.1, 128.0, 127.9 (2), 127.8, 127.7, 123.3, 116.1, 113.2, 84.1, 78.5, 78.1, 75.1, 73.5, 72.1, 71.9, 69.0, 55.4, 36.4; HRMS (ESI) *m/z* calcd for C₃₄H₃₆O₅SNa [M + Na]⁺ 579.2181, found 579.2190.

2-Benzamidopheny 3,4,6-tri-*O***-benzyl-2-deoxy-1-thio-α-D-glucopyranoside (46c).** According to the general protocol C, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (106 mg, 0.150 mmol), *N,N'*-(disulfanediylbis(2,1-phenylene))dibenzamide (45.6 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 5:1) **46c** (51.6 mg, 80%, α:β = 10:1) as a colorless oil: $[\alpha]_D^{29} = +11.3$ (c = 15.1, CHCl₃); IR (ATR) v = 3361, 3029, 2866, 1681, 1581, 1514, 1495, 1436, 1365, 1305, 1249, 1194, 1097, 1030, 739, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.28 (s, 1H), 8.57 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.99 - 7.90 (m, 2H), 7.61 - 7.27 (m, 17H), 7.22 - 7.16 (m, 2H), 7.08 - 6.93 (m, 1H), 5.42 (dd, *J* = 5.3, 2.2 Hz, 1H), 4.86 (d, *J* = 10.9 Hz, 1H), 4.75 - 4.48 (m, 4H), 4.39 (d, *J* = 13.6, 4.8, 2.2 Hz, 1H), 2.17 - 2.01 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 165.3, 139.8, 138.4, 138.3, 138.0, 136.1, 135.2, 132.5, 132.2, 132.0, 130.5, 129.0, 128.6, 128.5 (2), 128.1 (2), 128.0 (2), 127.9, 127.8 (3), 127.7, 127.2, 124.5, 122.2, 120.6, 85.5, 77.8, 77.5, 74.8, 73.6, 73.3, 72.1, 68.5, 36.4; HRMS (ESI) *m/z* calcd for C₄₀H₃₉O₅SNNa [M + Na]⁺ 668.2447, found 668.2474.

4-Fluorophenyl 3,4,6-tri-*O***-benzyl-2-deoxy-1-thio-α-D-glucopyranoside (46d).** According to the general protocol C, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (106 mg, 0.150 mmol), 1,2-bis(4-fluorophenyl)disulfane (25.4 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 10:1) **46d** (30.5 mg, 55%) as a colorless oil: $[\alpha]_D^{29} = +19.2$ (c = 6.40, CHCl₃); IR (ATR) v = 3033, 2921, 2866, 1592, 1495, 1458, 1369, 1231, 1160, 1093, 1033, 952, 836, 739, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.49 - 7.40 (m, 2H), 7.39 - 7.26 (m, 13H), 7.25 - 7.19 (m, 2H), 6.97 - 6.79 (m, 2H), 5.57 (d, *J* = 5.7 Hz, 1H), 4.91 (d, *J* = 10.9 Hz, 1H), 4.73 - 4.52 (m, 4H), 4.47 (d, *J* = 11.9 Hz, 1H), 4.37 - 4.28 (m, 1H), 4.03 - 3.90 (m, 1H), 3.81 (dd, *J* = 10.6, 4.6 Hz, 1H), 3.74 - 3.49 (m, 2H), 2.44 (ddd, *J* = 13.5, 5.0, 1.4 Hz, 1H), 2.11 (ddd, *J* = 13.5, 11.6, 5.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 164.2, 160.9, 138.5 (2), 138.2, 134.4, 134.2, 129.8 (2), 128.6, 128.5 (2), 128.1, 128.0, 127.9 (2), 127.8 (2), 116.2, 115.9, 84.7, 78.6, 78.0, 75.2, 73.6, 72.1, 71.8, 69.1, 36.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -114.28; HRMS (ESI) *m/z* calcd for C₃₃H₃₃O₄SFNa [M + Na]⁺ 567.1981, found 567.1995.

4-Chlorophenyl 3,4,6-tri-*O***-benzyl-2-deoxy-1-thio-α-D-glucopyranoside (46e).** According to the general protocol A, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (106 mg, 0.150 mmol), 1,2-bis(4-chlorophenyl)disulfane (28.7 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 9:1) **46e** (25.2 mg, 45%) as a colorless oil: $[\alpha]_D^{29} = +19.3$ (c = 5.50, CHCl₃); IR (ATR) v = 3033, 2921, 2862, 1499, 1480, 1458, 1365, 1194, 1093, 1030, 1015, 952, 821, 739, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.42 - 7.18 (m, 19H), 5.64 (d, *J* = 5.7, 1H), 4.91 (d, *J* = 10.9 Hz, 1H), 4.72 - 4.41 (m, 5H), 4.28 (ddd, *J* = 9.8, 4.4, 2.0 Hz, 1H), 3.96 (ddd, *J* = 11.6, 8.7, 4.9 Hz, 1H), 3.80 (dd, *J* = 10.6, 4.4 Hz, 1H), 3.70 - 3.55 (m, 2H), 2.44 (ddd, *J* = 13.5, 4.9, 1.4 Hz, 1H), 2.13 (ddd, *J* = 13.5, 11.6, 5.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 138.5, 138.4, 138.1, 133.5, 133.4, 132.8, 129.2, 129.1, 128.6, 128.5 (2), 128.1, 128.0, 127.9, 127.8 (2), 84.2, 78.5, 77.9, 75.2, 73.6, 72.1, 71.9, 69.0, 36.2; HRMS (ESI) *m/z* calcd for C₃₃H₃₃O₄CISNa [M + Na]⁺ 583.1686, found 583.1702.

4-(Trifluoromethyl)phenyl 3,4,6-tri-*O***-benzyl-2-deoxy-1-thio-α-D-glucopyranoside (46f).** According to the general protocol C, (3,4,6-tri-*O*-benzyl-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane¹ (106 mg, 0.150 mmol), 1,2-bis(4-(trifluoromethyl)phenyl)disulfane (35.4 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 10:1) **46f** (37.8 mg, 67%) as a white foam: $[\alpha]_D^{29} =$ +15.2 (c = 3.40, CHCl₃);IR (ATR) v = 3033, 2925, 2869, 1611, 1499, 1458, 1406, 1328, 1167, 1127, 1093, 1067, 1019, 1033, 955, 836, 739, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.60 - 7.52 (m, 2H), 7.49 - 7.42 (m, 2H), 7.40 - 7.26 (m, 13H), 7.24 - 7.15 (m, 2H), 5.78 (d, *J* = 6.4 Hz, 1H), 4.91 (d, *J* = 10.9 Hz, 1H), 4.73 - 4.51 (m, 4H), 4.46 (d, *J* = 11.9 Hz, 1H), 4.24 (ddd, *J* = 9.7, 4.3, 2.0 Hz, 1H), 3.96 (ddd, *J* = 11.6, 8.6, 4.9 Hz, 1H), 3.81 (dd, *J* = 10.7, 4.3 Hz, 1H), 3.72 - 3.59 (m, 2H), 2.44 (ddd, *J* = 13.6, 4.9, 1.4 Hz, 1H), 2.17 (ddd, *J* = 13.6, 11.6, 5.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 140.5, 138.4 (2), 138.1, 130.0, 128.6, 128.5 (2), 128.1, 128.0, 127.9, 127.9, 125.8 - 125.7 (m), 122.4, 83.3, 78.4, 77.9, 75.2, 73.6, 72.1, 72.1, 69.0, 36.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -62.6; HRMS (ESI) *m/z* calcd for C₃₄H₃₃O₄SF₃Na [M + Na]⁺ 617.1949, found 617.1971.

4-Methoxyphenyl 3,4-di-O-benzyl-6-tert-butydiphenylsilyl-2-deoxy-1-thio-α-D-glucopyranoside (47a). According to the general protocol С, (3,4-di-O-benzyl-6-tert-butydiphenylsilyl-2-deoxy-β-Dglucopyranosyl)tri-n-butylstannane S5 (128.3 mg, 0.150 mmol), 1,2-bis(2-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-tert-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 20:1) 47a (63.4 mg, 90%) as a colorless oil: $[\alpha]_D^{29} = +9.9$ (c = 19.5, CHCl₃); IR (ATR) v = 3070, 3033, 2933, 2858, 1696, 1462, 1499, 1462, 1432, 1365, 1290, 1249, 1182, 1156, 1093, 1033, 948, 829, 743, 706 cm⁻¹; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.75 - 7.64 \text{ (m, 4H)}, 7.47 - 7.20 \text{ (m, 18H)}, 6.82 - 6.71 \text{ (m, 2H)}, 5.55 \text{ (dd, } J = 5.8, 1.3 \text{ Hz},$ 1H), 4.99 (d, *J* = 10.9 Hz, 1H), 4.77 - 4.66 (m, 3H), 4.29 (ddd, *J* = 9.6, 4.0, 1.8 Hz, 1H), 4.10 - 3.89 (m, 3H), 3.77 (s, 3H), 3.75 - 3.66 (m, 1H), 2.50 (ddd, J = 13.3, 4.9, 1.4 Hz, 1H), 2.11 (ddd, J = 13.4, 11.6, 5.7 Hz, 1H), 1.08 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 159.4, 138.6, 138.5, 136.0, 135.7, 134.1, 134.0, 133.3, 129.7, 129.6, 128.6, 128.5, 128.1, 128.0, 127.9, 127.8 (2), 127.6, 125.8, 114.6, 85.1, 78.7, 78.1, 75.3, 73.1, 72.2, 63.2, 55.4, 36.5, 27.0, 19.5; HRMS (ESI) *m/z* calcd for C₄₃H₄₈O₅SSiNa [M + Na]⁺ 727.2889, found 727.2927.

4-Methoxyphenyl 3,4-di-*O*-benzyl-2-deoxy-1-thio-α-D-glucopyranoside (47b). According to the general protocol C, (3,4-di-*O*-benzyl-6-*O*-benzoyl-2-deoxy-α-D-glucopyranosyl)tri-*n*-butylstannane **S7** (108.2 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 4:1) **47b** (49.6 mg, 87%) as a light yellow oil: $[\alpha]_D^{29}$ = +15.7 (c = 13.7, CHCl₃); IR (ATR) v = 3033, 2925, 1722, 1596, 1499, 1458, 1279, 1249, 1179, 1093, 1030, 832, 717, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.03 - 7.95 (m, 2H), 7.61 - 7.52 (m, 1H), 7.48 -7.30 (m, 14H), 6.73 - 6.62 (m, 2H), 5.51 (dd, *J* = 5.6, 1.4 Hz, 1H), 4.99 (d, *J* = 10.9 Hz, 1H), 4.81 - 4.49 (m, 6H), 4.06 (ddd, *J* = 11.4, 8.5, 4.8 Hz, 1H), 3.72 (s, 3H), 3.57 (td, *J* = 9.1, 4.7 Hz, 1H), 2.51 (ddd, *J* = 13.4, 4.9, 1.4 Hz, 1H), 2.11 (ddd, *J* = 13.4, 11.6, 5.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 166.4, 159.7, 138.3, 138.1, 134.5, 133.1, 130.2, 129.9, 128.7, 128.6, 128.4, 128.3, 128.0 (2), 127.9, 127.1, 124.7, 114.7, 84.9, 78.6, 78.0, 75.2, 72.0, 70.3, 64.2, 55.4, 36.1; HRMS (ESI) *m/z* calcd for C₃₄H₃₄O₆SNa [M + Na]⁺ 593.1974, found 593.1980.

4-Methoxyphenyl 3,4-di-O-benzyl-6-O-(4-methoxybenzyl)-2-deoxy-1-thio-α-D-glucopyranoside (47c). C, (3,4-di-O-benzyl-6-O-(4-methoxybenzyl)-2-deoxy-β-D-According to the general protocol glucopyranosyl)tri-n-butylstannane S9 (110.7 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-tert-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 6:1) 47c (41.0 mg, 70%) as a light yellow oil: $[\alpha]_D^{29} = +9.0$ (c = 2.15, CHCl₃); IR (ATR) v = 3448, 2929, 2836, 1614, 1596, 1581, 1499, 1458, 1369, 1290, 1249, 1179, 1097, 1033, 832, 743, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.43 - 7.26 (m, 11H), 7.25 - 7.17 (m, 3H), 6.88 - 6.79 (m, 2H), 6.79 - 6.71 (m, 2H), 5.50 (d, J = 5.3 Hz, 1H), 4.89 (d, J = 10.9 Hz, 1H), 4.72 - 4.46 (m, 4H), 4.43 - 4.29 (m, 2H), 3.96 (ddd, J = 11.6, 8.7, 4.9 Hz, 1H), 3.82 - 3.71 (m, 7H), 3.68 - 3.50 (m, 2H), 2.49 - 2.37 (m, 1H), 2.14 -2.00 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.6, 159.3, 138.6 (2), 134.7, 132.8, 130.4, 130.1, 129.8, 129.7, 128.6, 128.5 (2), 128.0, 127.9, 127.8 (2), 125.1, 114.8, 114.6, 113.9, 113.8, 85.1, 78.7, 78.0, 75.1, 73.2, 72.0, 71.7, 68.7, 55.4, 55.4, 36.2; HRMS (ESI) m/z calcd for C₃₅H₃₈O₆SNa [M + Na]⁺ 609.2287, found 609.2303.

4-Methoxyphenyl 3,4-di-*O*-benzyl-2-deoxy-1-thio-α-D-glucopyranoside (47d). According to the general protocol C, (3,4-di-*O*-benzyl-2-deoxy-α-D-glucopyranosyl)tri-*n*-butylstannane **S6** (92.5 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 3:1) **47d** (41.0 mg, 88%) as a light yellow oil: $[\alpha]_D^{29} = +21.3$ (c = 16.1, CHCl₃); IR (ATR) v = 3461, 3033, 2921, 2873, 1596, 1495, 1458, 1369, 1290, 1249, 1179, 1093, 1033, 948, 832, 739, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.44 - 7.28 (m, 12H), 6.91 - 6.80 (m, 2H), 5.49 - 5.41 (m, 1H), 4.96 (d, *J* = 11.0 Hz, 1H), 4.76 - 4.59 (m, 3H), 4.23 (dtt, *J* = 9.3, 3.3, 1.6 Hz, 1H), 4.09 - 3.94 (m, 1H), 3.79 (m, 5H), 3.52 (dd, *J* = 9.7, 8.7 Hz, 1H), 2.46 (ddd, *J* = 13.5, 4.9, 1.4 Hz, 1H), 2.03 (ddd, *J* = 13.5, 11.5, 5.7 Hz, 1H), 1.71 (q, *J* = 5.0, 3.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 138.5, 138.4, 135.1, 128.6, 128.2, 128.0, 127.9, 124.6, 114.8, 85.0, 78.6, 77.8, 75.1, 72.2, 72.0, 62.3, 55.4, 36.0; HRMS (ESI) *m/z* calcd for C₂₇H₃₀O₅SNa [M + Na]⁺ 489.1712, found 489.1703.

4-Phenyl 2-deoxy-1-thio-α-D-glucopyranoside (47e). According to the general protocol B, (2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane⁴ (65.6 mg, 0.150 mmol), 1,2-bis(4-methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (CH₂Cl₂:MeOH, 10:1) **47e** (23.5 mg, 82%) as a colorless oil: $[\alpha]_D^{29} = +30.8$ (c = 11.9, MeOH); IR (ATR) v = 3342, 3065, 2925, 2884, 1588, 1484, 1443, 1235, 1186, 1071, 1045, 955, 851, 773, 743, 695 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.58 - 7.46 (m, 2H), 7.41 - 7.16 (m, 3H), 5.64 (ddt, *J* = 5.6, 1.2, 0.6 Hz, 1H), 4.07 (dddd, *J* = 9.7, 3.8, 3.2, 0.6 Hz, 1H), 3.96 - 3.76 (m, 3H), 3.39 - 3.33 (m, 1H), 2.30 (ddd, *J* = 13.3, 5.0, 1.2 Hz, 1H), 2.06 (ddd, *J* = 13.5, 11.9, 5.6 Hz, 1H); ¹³C NMR (75 MHz, CD₃OD) δ 136.5, 132.7, 129.9, 128.2, 85.7, 74.8, 73.3, 70.6, 62.4, 49.0, 39.7; HRMS (ESI) *m/z* calcd for C₁₂H₁₆O₄SNa [M + Na]⁺ 279.0667, found 279.0664.

48a

2-(3,4-Dimethoxyphenyl)tetrahydrofuran (48a). According the general protocol C, to 1tributyl(tetrahydrofuran-2-yl)stannane (54.2 mg, 0.150 mmol), 1,2-bis(3,4-dimethoxyphenyl)disulfane (33.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-tert-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 8:1) 48a (17.1 mg, 82%) as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 7.14 - 7.04 (m, 2H), 6.85 - 6.76 (m, 1H), 5.55 - 5.48 (m, 1H), 4.07 - 3.90 (m, 2H), 3.88 (s, 3H), 3.86 (s, 3H), 2.43 - 2.25 (m, 1H), 2.07 - 1.78 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 149.0 (2), 126.1, 125.8, 116.1, 111.6, 88.3, 67.4, 56.1, 56.0, 32.6, 25.0. Characterization data matched the literature report.²

48b

2-(3,4-Dimethoxyphenyl)tetrahydro-2*H***-pyran (48b).** According to the general protocol C, tributyl(tetrahydro-2*H*-pyran-2-yl)stannane (56.3 mg, 0.150 mmol), 1,2-bis(3,4-dimethoxyphenyl)disulfane (33.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 8:1) **48b** (15.5 mg, 70%) as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 7.12 - 7.04 (m, 2H), 6.86 - 6.75 (m, 1H), 5.04 (dd, *J* = 6.3, 3.7 Hz, 1H), 4.27 - 4.10 (m, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.65 - 3.48 (m, 1H), 2.09 - 1.94 (m, 1H), 1.91 - 1.55 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 149.0 (2), 125.8, 125.6, 116.1, 111.5, 86.4, 65.0, 56.1, 56.0, 31.7, 25.7, 22.0. Characterization data matched the literature report.²

1-(4-Methoxybenzyl)-4-((4-methoxyphenyl)thio)azetidin-2-one (48c). According to the general protocol C, 1,2-bis(4-1-(4-methoxybenzyl)-4-(tributylstannyl)azetidin-2-one (72.2)mg, 0.150 mmol), methoxyphenyl)disulfane (27.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-tert-butyl-2,2'dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 2:1) **48c** (29.0 mg, 88%) as a colorless oil: IR (ATR) v = 2955, 2840, 1756, 1614, 1596, 1514, 1499, 1465, 1391, 1290, 1249, 1179, 1108, 1033, 948, 832 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.40 - 7.28 (m, 2H), 7.17 - 7.04 (m, 2H), 6.97 - 6.67 (m, 4H), 4.78 - 4.57 (m, 2H), 4.05 (d, J = 14.9 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.17 (dd, J = 14.9, 4.8 Hz, 1H), 2.75 (ddd, J = 14.9, 2.3, 1.0 Hz, 1H); ¹³C NMR (75) MHz, CDCl₃) δ 165.3, 160.7, 159.3, 137.2, 129.9, 127.7, 119.9, 115.1, 114.3, 58.2, 55.5, 55.4, 44.0, 43.8; HRMS (ESI) m/z calcd for C₁₈H₁₉O₃SNa [M + Na]⁺ 352.0983, found 352.0984.

tert-Butyl 2-((4-methoxyphenyl)thio)pyrrolidine-1-carboxylate (48d). According to the general protocol C, *tert*-butyl 2-(tri-*n*-butylstannyl)pyrrolidine-1-carboxylate (69.0 mg, 0.150 mmol), 1,2-bis(3,4-dimethoxyphenyl)disulfane (33.8 mg, 0.100 mmol), KF (17.4 mg, 0.300 mmol), and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 19:1) **48d** (25.9 mg, 84%) as a colorless oil: H NMR (300 MHz, CDCl₃) δ 7.54 - 7.34 (m, 2H), 6.98 - 6.63 (m, 2H), 5.20 (d, *J* = 26.4 Hz, 1H), 3.79 (s, 3H), 3.34 (d, *J* = 26.7 Hz, 2H), 2.14 - 1.77 (m, 4H), 1.54 - 1.28 (m, 9H);¹³C NMR (75 MHz, CDCl₃) δ 199.1, 153.7, 137.2, 124.4, 114.6, 80.1, 67.1, 55.4, 45.6, 33.6, 28.4, 22.3. Characterization data matched the literature report.⁴

Methyl 6-O-(2-deoxy-3,4,6-tris-O-benzyl-a-D-galactopyranosyl)-2,3,4-tris-O-benzyl-a-Dglucopyranoside (51). According to the general protocol B, (3,4,6-tri-O-benzyl-2-deoxy-β-Dgalactopyranosyl)tri-n-butylstannane (159 mg, 0.225 mmol), 1,2-bis(4-methoxyphenyl)disulfane (41.7 mg, 0.150 mmol), KF (26.1 mg, 0.450 mmol), and 4,4'-di-tert-butyl-2,2'-dipyridyl (18.2 mg, 0.068 mmol) were added to anhydrous 1,4-dioxane (3.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 48 h and filtered through Celite® to obtain a crude mixture for next step. A solution of methyl 2,3,4-tri-O-benzyl-α-D-glucopyranoside 50 (46.4 mg, 0.100 mmol) and the crude mixture in dry CH₂Cl₂ (5 mL) was stirred with powdered molecular sieves (4Å) under N₂ for 30 min. NIS (45 mg, 0.200 mmol) was added and stirring was continued for further 30 min, when after addition of a catalytic amount of AgOTf (2.6 mg, 0.010 mmol) the color of the reaction mixture turned deep yellow brown. The mixture was stirred for 10h, then Et₃N was added to quench the mixture. After stirring for additional 20 min, the mixture was concentrated and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 6:1) **51** (63.4 mg, 72%, $\alpha:\beta=5:1$) as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 7.43 -7.22 (m, 30H), 5.04 (d, J = 3.6 H, 1H), 5.00 (d, J =10.8 Hz, 1H), 4.96 - 4.76 (m, 4H), 4.69 (d, J = 12.2 Hz, 1H), 4.65 - 4.50 (m, 5H), 4.39 (q, J = 11.8 Hz, 2H), 4.00 (dd, J = 9.6, 8.8 Hz, 1H), 3.94 - 3.69 (m, 5H), 3.68 - 3.42 (m, 5H), 3.33 (s, 3H), 2.22 (td, J = 12.5, 3.6)Hz, 1H), 2.03 (dd, J = 12.6, 4.5 Hz, 1H);¹³C NMR (75 MHz, CDCl₃) δ 139.0, 138.9, 138.5, 138.4, 138.3 (2), 128.6, 128.5, 128.4, 128.3, 128.2 (2), 128.0, 127.8 (2), 127.7, 127.6, 127.5, 98.4, 98.0, 82.3, 80.1, 78.0, 77.4, 75.9, 75.1, 74.4, 74.3, 73.5, 73.4, 73.0, 70.4, 70.2, 69.9, 69.5, 66.2, 55.1, 31.1. Characterization data matched the literature report.⁵

5. Detailed Experimental Procedures for Compounds S1-S13

(3,4-Di-O-benzyl-6-O-acetyl-2-deoxy-β-D-glucopyranosyl)tri-n-butylstannane (S1). To a solution of i-Pr₂NH (1.45 mL, 10.3 mmol) in anhydrous THF (15.0 mL), n-BuLi (6.20 mL, 9.95 mmol, 1.6 M in hexane) was added at 0 °C. After stirring for 15 min, Bu₃SnH (3.00 mL, 10.6 mmol) was added, and the reaction mixture was stirred at -78 °C for another 15 min. The solution of Bu₃SnLi in THF was warmed up to 0 °C. To a solution of 3,4-di-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-D-glucose (2.00 g, 3.43 mmol) in CHCl₃/PhMe (2:1, 15.0 mL) was added SOCl₂ (1.80 mL, 24.8 mmol). The resulting solution was stirred at rt for 0.5 h and concentrated under vacuum. The residue was dissolved in THF (20.0 mL) and added dropwise via syringe to the above freshly prepared solution of Bu₃SnLi (9.95 mmol) in THF (15.0 mL) at 0 °C. The resulted reaction mixture was stirred at 0 °C for 1.5 h, quenched with water, and extracted with EtOAc (3 x 50.0 mL). The combined organic layer was dried over Na₂SO₄, concentrated, and was purified by short column on SiO₂ (Hexanes:EtOAc, 25:1) to obtain the crude product (117 mg, 4.0%) as a colorless oil. To a solution of the above product (117 mg, 0.137 mmol) in anhydrous THF (3.00 mL), TBAF solution (0.40 mL, 4.0 mmol, 1.00 M in THF) was added under N₂. The reaction mixture was stirred at rt 12 h and concentrated under vacuum. The residue was dissolved in pyridine/Ac₂O mixture (3:1, 4.00 mL) and stirred 12 h. After removal of the volatiles, the crude mixture was quenched with water, extracted with EtOAc (3 x 50.0 mL) and purified by column chromatography on SiO₂ (Hexanes:EtOAc, 50:1) to obtain S1 (49.0 mg, 54%) as a colorless oil: $[\alpha]_{D}^{22} = -0.7$ (c = 3.90, CHCl₃); IR (ATR) v = 3033, 2955, 1745, 1596, 1499, 1458, 1368, 1290, 1249, 1097, $1033, 832, 743, 702, 650 \text{ cm}^{-1}$; ¹H NMR (300 MHz, CDCl₃) δ 7.36 - 7.27 (m, 10H), 4.95 (d, J = 10.9 Hz, 1H), 4.75 - 4.59 (m, 3H), 4.31 (dd, J = 11.6, 2.2 Hz, 1H), 4.16 (dd, J = 11.6, 5.2 Hz, 1H), 3.67 - 3.54 (m, 2H), 3.38 (dd, J = 9.6, 8.5 Hz, 1H), 3.26 (ddd, J = 9.6, 5.2, 2.1 Hz, 1H), 2.15 (ddd, J = 13.0, 5.0, 2.0 Hz, 1H), 2.01 (s, 10.1)3H), 1.82 (td, J = 13.2, 10.7 Hz, 1H), 1.61 - 1.42 (m, 6H), 1.37 - 1.25 (m, 6H), 1.01 - 0.78 (m, 15H); ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 138.8, 138.5, 134.9, 129.8, 128.6 (2), 128.3, 127.9, 127.8 (2), 83.0, 80.4, 79.0, 75.3, 71.6, 70.7, 64.4, 36.8, 29.2, 27.5, 21.0, 13.8, 8.8; HRMS (ESI) *m/z* calcd for C₃₄H₅₂O₅SnNa [M + Na]⁺ 683.2742, found 683.2750.

S2

(3,4,6-Tri-*O*-(4-methoxybenzyl)-2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane (S2). To a solution of (2-deoxy-β-D-glucopyranosyl)tri-*n*-butylstannane (72.0 mg, 0.165 mmol) in THF (2.00 mL) was added KHMDS (1.50 mL, 0.750 mmol, 0.5 M in PhMe) under N₂ at room temperature. After stirring for 0.5 h, 4-methoxybenzyl chloride (0.660 mmol, 0.089mL) was added. The resulted reaction mixture was stirred at r.t. for 8 h, quenched with water, and extracted with EtOAc (3 x 50.0 mL). The combined organic layer was dried over Na₂SO₄, concentrated, and was purified by short column on SiO₂ (Hexanes:EtOAc, 20:1) to afford S2 (109 mg, 83%) as a white foam: $[\alpha]_D^{23} = -1.16$ (c = 1.50, CHCl₃); IR (ATR) v = 2955, 2929, 2854, 1614, 1517, 1465, 1361, 1305, 1253, 1176, 1097, 1041, 825 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.33 - 7.27 (m, 3H), 7.24 (d, *J* = 2.1 Hz, 1H), 7.19 - 7.12 (m, 2H), 6.90 - 6.80 (m, 6H), 4.81 (d, *J* = 10.5 Hz, 1H), 4.67 - 4.59 (m, 2H), 4.59 - 4.52 (m, 2H), 4.47 (d, *J* = 11.8 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.79 (s, 3H), 3.66 - 3.48

(m, 4H), 3.42 (t, J = 9.0 Hz, 1H), 3.20 (dt, J = 9.4, 3.3 Hz, 1H), 2.15 - 2.06 (m, 1H), 1.81 (td, J = 13.2, 10.5 Hz, 1H), 1.50 (ddd, J = 6.7, 4.9, 3.4 Hz, 6H), 1.36 - 1.25 (m, 6H), 1.02 - 0.80 (m, 15H); ¹³C NMR (75 MHz, CDCl₃) δ 159.3, 131.2, 129.8, 129.4, 129.2, 113.9 (2), 113.8, 83.3, 82.8, 79.1, 77.4, 74.8, 73.2, 71.4, 70.8, 69.9, 55.4, 55.4, 37.2, 29.3, 27.5, 13.9, 8.8; HRMS (ESI) *m*/*z* calcd for C₄₂H₆₂O₇SnNa [M + Na]⁺ 821.3425, found 821.3441.

(3,4,6-Tri-*O*-benzyl-2-deoxy-β-D-galactopyranosyl)tri-*n*-butylstannane (S3). To a solution of *i*-Pr₂NH (1.9 mL, 13.8 mmol) in anhydrous and degassed THF (13.8 mL) was added *n*-BuLi (5.34 mL, 13.3 mmol, 2.5 M in hexanes) at -78°C. After stirring for 15 min, to the reaction mixture Bu₃SnH (3.84 mL, 4.16 g, 14.3 mmol) was added and stirred for another 15 min, then allowed to warm up to 0 °C. A solution of 3,4,6-tri-*O*-benzyl-2-deoxy-α-D-galactopyranosyl chloride (2.08 g, 4.60 mmol) in anhydrous THF (27.6 mL) was added at 0 °C. After stirring at 0 °C for 1.5 h, the reaction was quenched with H₂O (50.0 mL) and extracted with EtOAc (3 × 30.0 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and purified by column chromatography on SiO₂ (Hexanes:EtOAc, 1:0 to 30:1) to afford S3 (1.03 g, 31.1%) as a colorless oil: $[\alpha]_{D}^{23} = -1.0$ (c = 38.1, CHCl₃); IR (ATR) v = 3033, 2959, 2925, 2854, 1499, 1458, 1361, 1208, 1100, 1030, 881, 735, 698, 601 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.41 - 7.27 (m, 15H), 5.03 (d, *J* = 11.8 Hz, 1H), 4.69 - 4.63 (m, 3H), 4.55 - 4.45 (m, 2H), 3.95 - 3.92 (m, 1H), 3.80 - 3.70 (m, 1H), 3.64 - 3.51 (m, 3H), 3.44 - 3.39 (m, 1H), 2.50 - 2.38 (m, 1H), 1.86 - 1.80 (m, 1H), 1.64 - 1.50 (m, 6H), 1.39 - 1.32 (m, 6H), 0.98 - 0.89 (m, 15H); ¹³C NMR (75 MHz, CDCl₃) δ 139.7, 138.9, 138.5, 128.5, 128.4, 128.1, 127.9, 127.7, 127.6(2), 127.4, 127.2, 80.9, 80.3, 77.6, 76.7, 74.1, 73.9, 73.6, 71.7, 70.2, 70.0, 32.5, 29.2, 27.5, 13.8, 8.7; HRMS (ESI) *m*/z calcd for C₃₉H₅₆O₄SnNa [M + Na]⁺ 731.3107, found 731.3118.

(2,3,4-Tri-O-benzyl-β-L-fucopyranosyl)tri-n-butylstannane (S4). To a solution of i-Pr₂NH (1.56mL, 11.13 mmol) in anhydrous THF (15.0 mL) was added n-BuLi (4.30 mL, 10.8 mmol, 2.5 M in hexane) at -78 °C. After stirring for 15 min, Bu₃SnH (3.26 mL, 11.5 mmol) was added at -78 °C. The reaction mixture was stirred another 15 min, then warmed up to 0 °C. To a solution of 3,4-di-O-benzyl-L-fucal (1.22 mg, 3.71 mmol) in CHCl₃/PhMe (2:1, 15.0 mL) was added SOCl₂ (0.5 mL). The resulting solution was stirred at room temperature for 0.5 h and concentrated under vacuum. The residue was dissolved in anhydrous THF and added dropwise to the above stannane mixture at 0 °C. After stirring for 1.5 h, the reaction mixture was quenched with water (30.0 mL) and extracted with EtOAc (3×20.0 mL). The combined organic layer was dried over Na₂SO₄, concentrated, and purified by column chromatography on SiO₂ (Hexanes:EtOAc, 25:1) to afford S4 (320 mg, 14%) as a colorless oil: $[\alpha]_{D}^{23} = +1.3$ (c = 2.55, CHCl₃); IR (ATR) v = 3033, 2959, 2925, 2854, 1499, 1458, 1380, 1361, 1212, 1182, 1111, 1059, 1033, 962, 843, 739, 702, 601 cm⁻¹; ¹H NMR (300 MHz, CDCl₃)δ 7.45 - 7.29 (m, 10H), 5.02 (d, J = 11.9 Hz, 1H), 4.69 (d, J = 11.9 Hz, 1H), 4.64 (d, J = 2.4 Hz, 2H), 3.69 (dd, J = 13.2, 2.0 Hz, 1H), 3.62 - 3.57 (m, 1H), 3.50 (ddd, J = 11.4, 4.6, 2.5 Hz, 1H), 3.29 - 3.20 (m, 1H), 2.36 (td, *J* = 12.9, 11.4 Hz, 1H), 1.82 - 1.72 (m, 1H), 1.56 - 1.48 (m, 6H), 1.36 - 1.28 (m, 6H), 1.15 (d, *J* = 6.4 Hz, 3H), $0.91 (q, J = 7.1 Hz, 15H); {}^{13}C NMR (75 MHz, CDCl_3) \delta 139.8, 139.1, 128.5, 128.2, 127.8, 127.6, 127.4, 127.2, 127.2, 127.8, 127.4, 127.2, 127.2, 127.8, 127.4, 127.2, 128.$ 81.0, 78.0, 76.9, 74.3, 71.5, 70.0, 32.1, 29.2, 27.5, 18.2, 13.9, 8.8; HRMS (ESI) m/z calcd for C₃₂H₅₀O₃SnNa $[M + Na]^+$ 625.2686, found 625.2689.

BnO BnO BnO SnBu₃

(3,4-Di-O-benzyl-6-(tert-butyldiphenylsilyl)-2-deoxy-α-D-glucopyranosyl)tri-n-butylstannane (S5). To a solution of *i*-Pr₂NH (1.45 mL, 10.3 mmol) in anhydrous THF (15.0 mL), *n*-BuLi (6.20 mL, 9.95 mmol, 1.6 M in hexane) was added at 0 °C. After stirring for 15 min, Bu₃SnH (3.00 mL, 10.6 mmol) was added, and the reaction mixture was stirred at -78 °C for another 15 min. The solution of Bu₃SnLi in THF was warmed up to 0 °C. To a solution of 3,4-di-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-D-glucose (2.00 g, 3.43 mmol) in CHCl₃/PhMe (2:1, 15.0 mL) was added SOCl₂ (1.80 mL, 24.8 mmol). The resulting solution was stirred at rt for 0.5 h and concentrated under vacuum. The residue was dissolved in THF (20.0 mL) and added dropwise via syringe to the above freshly prepared solution of Bu₃SnLi (9.95 mmol) in THF (15.0 mL) at 0 °C. The resulted reaction mixture was stirred at 0 °C for 1.5 h, quenched with water, and extracted with EtOAc (3 x 50.0 mL). The combined organic layer was dried over Na₂SO₄, concentrated, and was purified by short column on SiO₂ (Hexanes: EtOAc, 20:1) to afford S5 (879 mg, 33%) as a colorless oil: $[\alpha]_D^{30} = +16.0$ (c = 6.95, CHCl₃); IR (ATR) v = 3033, 2959, 2929, 2858, 1458, 1432, 1365, 1115, 1093, 1030, 870, 743, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.80 - 7.62 (m, 4H), 7.46 - 7.26 (m, 13H), 7.25 - 7.16 (m, 3H), 4.94 (d, *J* = 11.1 Hz, 1H), 4.76 - 4.49 (m, 4H), 3.88 (d, J = 3.2 Hz, 2H), 3.63 - 3.48 (m, 2H), 3.14 (dt, J = 7.7, 3.2 Hz, 1H), 2.28 - 2.08 (m, 2H), 1.55 - 1.34 (m, 6H), 1.33 - 1.20 (m, 6H), 1.05 (d, J = 3.7 Hz, 9H), 0.97 - 0.74 (m, 15H); ${}^{13}C$ NMR (75 MHz, CDCl₃) δ 156.9, 139.0, 138.8, 136.0, 135.8, 134.0, 133.6, 129.6, 129.6, 128.6, 128.4, 127.9, 127.8, 127.7, 127.6, 127.5, 80.9, 80.6, 78.7, 74.9, 71.6, 71.5, 63.8, 36.4, 29.3, 27.5, 27.0, 19.4, 13.8, 10.1; HRMS (ESI) m/z calcd for C₄₈H₆₈O₄SiSnNa [M + Na]⁺ 879.3807, found 879.3813.

(3,4-Di-*O*-benzyl-2-deoxy-α-D-glucopyranosyl)tri-*n*-butylstannane (S6). To a solution of the S5 (800 mg, 0.936 mmol) in anhydrous THF (3.00 mL), TBAF solution (3.70 mL, 3.70 mmol, 1.00 M in THF) was added under N₂. The reaction mixture was stirred at rt 12 h. The crude mixture purified by column chromatography on SiO₂ (Hexanes:EtOAc, 20:1) to obtain S6 (450 mg, 78%) as a colorless oil: $[\alpha]_D^{30} = +4.1$ (c = 18.9, CHCl₃); IR (ATR) v = 3469, 3033, 2959, 2921, 2854, 1499, 1458, 1365, 1179, 1089, 1030, 966, 877, 739, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.41 - 7.27 (m, 10H), 4.95 (d, *J* = 11.3 Hz, 1H), 4.74 - 4.46 (m, 4H), 3.81 - 3.51 (m, 3H), 3.39 (t, *J* = 8.8 Hz, 1H), 3.08 (ddd, *J* = 9.1, 4.8, 3.1 Hz, 1H), 2.24 - 2.06 (m, 2H), 1.83 (m, 1H), 1.54 - 1.37 (m, 6H), 1.35 - 1.24 (m, 6H), 0.96 - 0.80 (m, 15H); ¹³C NMR (75 MHz, CDCl₃) δ 138.7, 138.6, 128.6, 128.5, 128.1, 127.8, 127.8, 80.6, 79.5, 79.0, 75.0, 71.9, 71.4, 62.9, 36.3, 29.3, 27.6, 13.8, 10.1; HRMS (ESI) *m/z* calcd for C₃₂H₅₀O₄SnNa [M + Na]⁺ 641.2635, found 641.2653.

 $(3,4-Di-O-benzyl-6-O-benzoyl-2-deoxy-\alpha-D-glucopyranosyl)$ tri-n-butylstannane (S7). To a solution of $(3,4-Di-O-benzyl-2-deoxy-\alpha-D-glucopyranosyl)$ tri-*n*-butylstannane S6 (224 mg, 0.36 mmol) in pyridine (3

ml), benzoyl chloride (0.085 ml, 0.73 mmol) was added. The reaction mixture was stirred at rt 12 h. After removal of solvents, the crude mixture was quenched with water, extracted with EtOAc (3 x 50.0 mL) and purified by column chromatography on SiO₂ (Hexanes:EtOAc, 20:1) to obtain **S7** (142 mg, 55%) as a colorless oil: $[\alpha]_D^{29} = +4.2$ (c = 2.50, CHCl₃); IR (ATR) v = 3067, 3033, 2959, 2925, 2973, 1726, 1458, 1275, 1182, 1097, 1074, 1030, 968, 739, 717, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.07 - 7.99 (m, 2H), 7.58 - 7.50 (m, 1H), 7.41 - 7.19 (m, 12H), 4.96 (d, *J* = 11.1 Hz, 1H), 4.77 - 4.46 (m, 6H), 3.70 - 3.58 (m, 1H), 3.54 - 3.35 (m, 2H), 2.31 - 2.11 (m, 2H), 1.54 - 1.38 (m, 6H), 1.34 - 1.17 (m, 6H), 1.07 - 0.62 (m, 15H); ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 138.5, 138.4, 133.1, 129.9, 128.6, 128.5, 128.4, 128.2, 127.9 (2), 80.6, 78.5, 74.9, 71.5, 64.6, 36.1, 29.2, 27.6, 13.8, 10.1; HRMS (ESI) *m/z* calcd for C₃₉H₅₄O₅SnNa [M + Na]⁺ 745.2891, found 745.2899.

(3,4-Di-O-benzyl-2-deoxy-β-D-glucopyranosyl)tri-n-butylstannane (S8). To a solution of i-Pr₂NH (1.45 mL, 10.3 mmol) in anhydrous THF (15.0 mL), n-BuLi (6.20 mL, 9.95 mmol, 1.6 M in hexane) was added at 0 °C. After stirring for 15 min, Bu₃SnH (3.00 mL, 10.6 mmol) was added, and the reaction mixture was stirred at -78 °C for another 15 min. The solution of Bu₃SnLi in THF was warmed up to 0 °C. To a solution of 3,4di-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-D-glucose (2.00 g, 3.43 mmol) in CHCl₃/PhMe (2:1, 15.0 mL) was added SOCl₂ (1.80 mL, 24.8 mmol). The resulting solution was stirred at rt for 0.5 h and concentrated under vacuum. The residue was dissolved in THF (20.0 mL) and added dropwise via syringe to the above freshly prepared solution of Bu₃SnLi (9.95 mmol) in THF (15.0 mL) at 0 °C. The resulted reaction mixture was stirred at 0 °C for 1.5 h, quenched with water, and extracted with EtOAc (3 x 50.0 mL). The combined organic layer was dried over Na₂SO₄, concentrated, and was purified by short column on SiO₂ (Hexanes:EtOAc, 30:1) to obtain the crude product (117 mg, 4.0%) as a colorless oil. To a solution of the above product (117 mg, 0.137 mmol) in anhydrous THF (3.00 mL), TBAF solution (0.40 mL, 4.0 mmol, 1.00 M in THF) was added under N₂. After stirring at rt for 12 h, the reaction was quenched with H₂O (50.0 mL) and extracted with EtOAc (3 × 30.0 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and purified by column chromatography on SiO₂ (Hexanes:EtOAc, 1:0 to 20:1) to afford S8 (84 mg, 98%) as a colorless oil: $[\alpha]_{D}^{29} = -1.4$ (c = 4.60, CHCl₃); IR (ATR) v = 3591, 3461, 3033, 3067, 2959, 2929, 2858, 1458, 1365, 1212, 1104, 1078, 1033, 870, 825, 739, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.40 - 7.30 (m, 10H), 4.95 (d, J = 11.0 Hz, 1H), 4.79 - 4.61 (m, 3H), 3.82 (dd, J = 11.4, 3.1 Hz, 1H), 3.72 - 3.53 (m, 3H), 3.40 (t, J = 11.4, 3H)= 9.1 Hz, 1H), 3.16 (ddd, J = 9.4, 5.1, 3.1 Hz, 1H), 2.15 (ddd, J = 13.1, 5.0, 2.0 Hz, 1H), 1.81 (td, J = 13.3, 10.7 Hz, 2H), 1.61 - 1.44 (m, 6H), 1.37 - 1.24 (m, 6H), 1.01 - 0.77 (m, 15H); ¹³C NMR (75 MHz, CDCl₃) δ 138.9, 138.6, 134.9, 129.8, 128.6, 128.2, 127.9, 127.8, 127.7, 82.7, 82.4, 79.5, 75.3, 71.7, 70.9, 63.1, 37.0, 29.3, 27.5, 13.8, 8.8; HRMS (ESI) *m/z* calcd for C₃₂H₅₀O₄SnNa [M + Na]⁺ 641.2635, found 641.2650.

(3,4-Di-*O*-benzyl-6-(4-methoxybenzyl)-2-deoxy- β -D-glucopyranosyl)tri-*n*-butylstannane (S9). To a solution of (3,4-di-*O*-benzyl-2-deoxy- β -D-glucopyranosyl)tri-*n*-butylstannane S8 (124 mg, 0.2 mmol) in anhydrous THF (10.0 mL), KHMDS (0.60 mL, 0.300 mmol, 0.5 M in PhMe) was added under N₂ at rt. After stirring for 0.5 h, 4-methoxybenzyl chloride (0.400 mmol, 0.054 mL) was added to the reaction mixture and stirred 12 h. The crude mixture was purified by chromatographic purification on SiO₂ (Hexanes:EtOAc, 10:1)

to afford product **S9** (129.9 mg, 88%) as a light yellow oil: $[\alpha]_D^{28} = -0.7$ (c = 3.95, CHCl₃); IR (ATR) v = 3033, 2955, 2925, 2854, 1614, 1518, 1458, 1365, 1305, 1249, 1179, 1104, 825, 739, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.41 - 7.20 (m, 13H), 6.92 - 6.80 (m, 2H), 4.91 (d, *J* = 10.9 Hz, 1H), 4.75 - 4.44 (m, 5H), 3.79 (s, 3H), 3.71 - 3.42 (m, 5H), 3.23 (dt, *J* = 9.3, 3.2 Hz, 1H), 2.13 (ddd, *J* = 13.2, 4.9, 2.0 Hz, 1H), 1.84 (td, *J* = 13.2, 10.4 Hz, 1H), 1.57 - 1.45 (m, 6H), 1.39 - 1.22 (m, 6H), 1.09 - 0.74 (m, 15H); ¹³C NMR (75 MHz, CDCl₃) δ 159.1, 139.0, 138.9, 131.1, 129.2, 128.5, 128.4, 128.1, 127.8, 127.7, 113.8, 83.3, 83.0, 79.4, 75.2, 73.2, 71.7, 70.8, 69.8, 55.4, 37.1, 29.2, 27.5, 13.9, 8.8; HRMS (ESI) *m/z* calcd for C₄₀H₅₈O₅SnNa [M + Na]⁺ 761.3213, found 761.3231.

(3,4,6-Tri-*O*-benzyl-2-deoxy-β-D-(1-D)glucopyranosyl)tri-*n*-butylstannane (S10). To a solution of *i*-Pr₂NH (0.88 mL, 6.33 mmol) in anhydrous THF (15.0 mL) *n*-BuLi (2.5 mL, 6.12 mmol, 2.5 M in hexane) was added at -78 °C. The reaction mixture was stirred at -78 °C for 15 min followed by Bu₃SnH (1.8 5 mL, 6.54 mmol) and stirred at -78 °C for another 15 min, then allowed to warm up to 0 °C. A solution of 3,4,6-tri-*O*-benzyl-2-deoxy-α-D-glucopyranosyl chloride (920 mg, 2.11 mmol) in anhydrous THF (30.0 mL) was added at 0 °C. After stirring at 0 °C for 1.5 h, the reaction was quenched with H₂O (30.0 mL) and extracted with EtOAc (3 × 20.0 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and purified by column chromatography on SiO₂ (Hexanes:EtOAc, 25:1) to afford **S10** (603 mg, 40%) as a colorless oil: $[\alpha]_D^{23} = -1.0$ (c = 2.10, CHCl₃); IR (ATR) v = 3033, 2959, 2925, 2854, 1499, 1458, 1365, 1201, 1097, 873, 739, 702, 601 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.38 - 7.26 (m, 15H), 4.92 (d, *J* = 10.9 Hz, 1H), 4.76 - 4.59 (m, 4H), 4.55 (d, *J* = 12.3 Hz, 1H), 3.71 (d, *J* = 3.3 Hz, 2H), 3.62 - 3.45 (m, 2H), 3.24 (dt, *J* = 9.1, 3.2 Hz, 1H), 2.20 - 2.04 (m, 1H), 1.84 (dd, *J* = 13.1, 10.3 Hz, 1H), 1.57 - 1.48 (m, 6H), 1.37 - 1.25 (m, 6H), 1.02 -0.83 (m, 15H); ¹³C NMR (75 MHz, CDCl₃) δ 139.1, 139.0, 138.9, 128.5, 128.5, 128.4, 128.2, 127.8, 127.7, 127.6, 127.4, 83.2, 83.0, 79.4, 77.4, 75.3, 73.5, 71.7, 70.2, 37.0, 29.3, 27.5, 13.9, 8.8; HRMS (ESI) *m/z* calcd for C₃₉H₅₅DO4SnNa [M + Na]⁺ 732.3170, found 732.3180.

(3,4,6-Tri-*O*-benzyl-2-deoxy-α-D-(1-¹³C)glucopyranosyl)tri-*n*-butylstannane (S11). To a solution of *i*-Pr₂NH (1.05 mL, 7.50 mmol) in anhydrous and degassed THF (7.50 mL), *n*-BuLi (4.50 mL, 11.25 mmol, 2.5 M in hexanes) was added dropwise at -78°C. The reaction mixture was stirred at -78 °C for 15 min followed by Bu₃SnH (2.09 mL, 2.26 g, 7.75 mmol) and stirred at -78 °C for another 15 min, then allowed to warm up to 0 °C. A solution of 3,4,6-tri-*O*-benzyl-2-deoxy-α-D-(1-¹³C)glucopyranosyl chloride (1.13 g, 2.50 mmol) in anhydrous THF (15 mL) was added to the above stannane mixture at 0 °C. After stirring at 0 °C for 1.5 h, the reaction was quenched with H₂O (30.0 mL) and extracted with EtOAc (3 × 20.0 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and purified by column chromatography on SiO₂ (Hexanes:EtOAc, 1:0 to 10:1) to afford **S11** (0.669 g, 38%) as a light yellow oil: $[\alpha]_D^{24} = +5.3$ (c = 12.3, CHCl₃); IR (ATR) v = 3033, 2959, 2921, 2854, 1499, 1458, 1363, 1074, 1030, 881, 735, 698, 598 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.45 - 7.20 (m, 15H), 4.93 (d, *J* = 11.1 Hz, 1H), 4.75 - 4.45 (m, 5H), 3.81 - 3.45 (m, 4H), 3.22 - 3.16 (m, 1H), 2.23 - 2.19 (m, 2H), 1.60 - 1.42 (m, 6H), 1.37 - 1.25 (m, 6H), 1.00 - 0.70 (m, 15H); ¹³C NMR (75 MHz, CDCl₃) δ 139.0, 138.8, 138.4, 128.5, 128.4, 127.9, 127.8, 127.6, 80.8, 79.4, 78.9, 74.3, 74.2, 73.6, 72.0, 69.8, 69.7, 64.9, 29.2, 27.6, 13.8, 10.1; HRMS (ESI) m/z calcd for C₃₈¹³CCH₅₆O₄SnNa [M + Na]⁺ 732.3133, found 732.3143.

(3,4,6-Tri-O-benzyl-2-deoxy-B-D-(1-13C)glucopyranosyl)tri-n-butylstannane (S12). To a solution of i-Pr₂NH (1.05 mL, 7.50 mmol) in anhydrous THF (7.50 mL) was added *n*-BuLi (2.90 mL, 7.25 mmol, 2.5 M in hexanes) by dropwise at -78°C. After stirring at for 15 min, Bu₃SnH (2.09 mL, 2.26 g, 7.75 mmol) was added at -78 °C. The reaction mixture was stirred for another 15 min, then allowed to warm up to 0 °C. A solution of 3,4,6-tri-O-benzyl-2-deoxy- α -D-(1-¹³C)glucopyranosyl chloride (1.13 g, 2.50 mmol) in anhydrous THF (15 mL) was added to the above stannane mixture at 0 °C. After stirring at 0 °C for 1.5 h, the reaction mixture was quenched with H₂O (30.0 mL) and extracted with EtOAc (3×20.0 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and purified by column chromatography on SiO₂ (Hexanes: EtOAc, 1:0 to 30:1) to afford S12 (0.298 g, 17%) as a colorless oil: $[\alpha]_D^{25} = -0.9$ (c = 4.70, CHCl₃); IR (ATR) $v = 3033, 2959, 2925, 2854, 1499, 1458, 1361, 1208, 1100, 1030, 881, 735, 698, 601 \text{ cm}^{-1}$; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.43 - 7.27 \text{ (m, 15H)}, 4.94 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H)}, 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H}), 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H}), 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.73 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H}), 4.81 - 4.44 \text{ (m, 5H)}, 3.75 - 3.7$ 3.2 Hz, 2H), 3.68 (ddd, J = 137.2, 13.2, 1.7 Hz, 1H), 3.63 - 3.48 (m, 2H), 3.33 - 3.18 (m, 1H), 2.19 - 2.13 (m, 1H), 1.98 - 1.82 (m, 1H), 1.70 - 1.46 (m, 6H), 1.47 - 1.32 (m, 6H), 1.12 - 0.75 (m, 16H); ¹³C NMR (75 MHz, CDCl₃) & 139.0, 139.0, 138.9, 128.5, 128.4 (2), 128.1, 127.8, 127.7, 127.6, 127.4, 83.3-83.2 (d), 83.0 (d), 79.3, 75.2, 73.5-73.3 (m), 71.7, 70.8, 68.3 - 68.2 (m), 29.2, 27.5, 13.9, 8.8 - 8.7 (d); HRMS (ESI) m/z calcd for C₃₈¹³CCH₅₆O₄SnNa [M + Na]⁺ 732.3133, found 732.3146.

1-(((4-Methoxyphenyl)thio)oxy)-2,2,6,6-tetramethylpiperidine (S13). 1,2-Bis(4-methoxyphenyl)disulfane **18** (27.8 mg, 0.100 mmol) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (31.3 mg, 0.200 mmol) were added to a one-dram vial with a screw-top septum, and the vial was then evacuated and refilled with N₂ (3x). Anhydrous dioxane (2.00 mL) were added and the reaction mixture was stirred at room temperature under 5W blue LED irradiation for 12 h and afforded after chromatographic purification on SiO₂ (Hexanes:EtOAc, 10:1) **S13** (14.5 mg, 49%) as a light yellow oil: ¹H NMR (300 MHz, CDCl₃) δ 7.60 - 7.55 (m, 2H), 6.98 - 6.93 (m, 2H), 3.84 (s, 3H), 1.72 - 1.53 (m, 15H), 0.93 - 0.85 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.8, 141.6, 127.6, 114.1, 55.6, 43.7, 41.6, 35.5, 32.6, 28.9, 28.1, 17.4. Characterization data matched the literature report.⁷

6. Additional Mechanistic Experiments

6.1. ANOMERIZATION EXPERIMENTS WITH THIOGLYCOSDIES AND ANOMERIC STANNANES

Reaction conditions: 22 (0.100 mmol, 1.0 equiv), **17d** (1.5 equiv), CuCl (40 mol%), **L1** (45 mol%) and 1,4dioxane (2.0 mL) under N₂, 120 or 130 °C, 24 h, blue LED or without blue LED, yield of isolated product. Anomeric selectivities determined by ¹H NMR analysis of unpurified reaction mixtures.

No change in anomeric purity was observed for anomeric stannanes and thioglycosides upon exposure to the optimized reaction conditions.

6.2. THIOGLYCOSYLATIONS WITH LATE TRANSITION METALS

< C)Bn	catalyst (4 L1 (45	10 mol%) mol%) BnO	OBn
BnO BnO 17	-OSnBu ₃ ∕d 18	KF (400 dioxane, 24	mol%) 130 °C h	SPMP 23
Entry	Metal	Light	Yield	α:β
1	NiCl ₂ (DME)	No	23%	Only α
2	PdCl ₂ (MeCN) ₂	No	28%	Only α
3	AuCl(PPh ₃) ₃	No	16%	Only a
4	CoCl ₂ (PPh ₃) ₂	No	N.D.	N.A.
5	NiCl ₂ (DME)	Yes	18%	Only a
6	PdCl ₂ (MeCN) ₂	Yes	16%	Only a
7	AuCl(PPh ₃) ₃	Yes	45%	Only a
8	CoCl ₂ (PPh ₃) ₂	Yes	N.D.	N.A.

Reaction conditions: **18** (0.100 mmol, 1.0 equiv), **17d** (1.5 equiv), Catalyst (40 mol%), **L1** (45 mol%) and 1,4-dioxane (2.0 mL) under N₂, 130 °C, 24 h, blue LED or without blue LED, yield of isolated product. Anomeric selectivities determined by ¹H NMR analysis of unpurified reaction mixtures.

6.3. PROBING THE ROLE OF CU(II) IN THERMAL AND PHOTOCHEMICAL THIOGLYCOSYLATIONS

General reaction conditions: sulfur electrophile (0.100 mmol, 1.0 equiv), **17d** (1.5 equiv), $CuCl_2$ (20 - 40 mol%), **L1** (25 - 45 mol%) and 1,4-dioxane (2.0 mL) under N₂, blue LED or without blue LED, 130 °C, 24 h, yield of isolated product. Anomeric selectivities determined by ¹H NMR analysis of unpurified reaction mixtures.

6.4. RADICAL TRAPPING EXPERIMENTS

General reaction conditions: 22 (0.100 mmol, 1.0 equiv), stannanes (1.5 equiv), CuCl (40 mol%), L1 (45 mol%), KF (3 equiv), and 1,4-dioxane (2.0 mL) under N₂, 130 °C, 24 h, yield of isolated product. Anomeric selectivities determined by ¹H NMR analysis of unpurified reaction mixtures. ^a (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (2 equiv) was used. ^b 18 (0.100 mmol, 1.0 equiv), (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (2 equiv), and 1,4-dioxane (2.0 mL) under N₂, 23 °C, 24 h.

According to the general protocol A, (2,3,4,6-tri-O-benzyl- β -D)glucopyranosyl)tri-n-butylstannane¹ (81.4 mg, 0.100 mmol), (2,3,4,6-tri-O-benzyl- β -D-(1-D)glucopyranosyl)tri-n-butylstannane¹ (81.5 mg, 0.100 mmol), 1,2-bis(4-methoxyphenyl)disulfane **18** (83.4 mg, 0.300 mmol), KF (17.4 mg, 0.300 mmol), and CuCl (30.0 mg, 0.300 mmol) were added to anhydrous 1,2-dichloroethane and m-xylene (2:1, 3.00 mL). The reaction mixture was stirred under N₂ at 130 °C for 12 h. The KIE value represents the average of two separate runs. Based on the ¹H NMR results, an average KIE value of 1.03 was determined.

According to the general protocol C, $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\beta-D)$ glucopyranosyl)tri-*n*-butylstannane¹ (70.7 mg, 0.100 mmol), $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\beta-D-(1-D)$ glucopyranosyl)tri-*n*-butylstanne **S10** (70.8 mg, 0.100 mmol), 1,2-bis(4-methoxyphenyl)disulfane **18** (83.4 mg, 0.300 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred under N₂ at 130 °C for 24 h. The KIE value represents the average of two separate runs. Based on the ¹H NMR results, an average KIE value of 0.83 was determined.

$$BnO = OBn BnO = OBn BnO = OBn H + BnO = OBn BnO = SnBu3 + BnO = SnBu3 + O H + BnO = SnBu3 + O H + O = SnBu3 + O = SnBu3 + O = SPMP CuCl (40 mol%) KF (3 equiv) blue LED 1,4-dioxane 130 °C, 24 h SPMP$$

.

According to the general protocol C, $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\beta-D)$ glucopyranosyl)tri-*n*-butylstannane¹ (70.7 mg, 0.100 mmol), $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\beta-D-(1-D)$ glucopyranosyl)tri-*n*-butylstanne **S10** (70.8 mg, 0.100 mmol), 1-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione **22** (71.1 mg, 0.300 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred under N₂ at 130 °C for 24 h. The KIE value represents the average of two separate runs. Based on the ¹H NMR results, an average KIE value of 0.90 was determined.

According to the general protocol C, $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\beta-D)$ glucopyranosyl)tri-*n*-butylstannane¹ (70.7 mg, 0.100 mmol), $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\beta-D-(1-D)$ glucopyranosyl)tri-*n*-butylstanne **S10** (70.8

mg, 0.100 mmol), 1,2-bis(4-methoxyphenyl)disulfane **18** (83.4 mg, 0.300 mmol), KF (17.4 mg, 0.300 mmol), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 24 h. The KIE value represents the average of two separate runs. Based on the ¹H NMR results, an average KIE value of 0.92 was determined.

According to the general protocol C, $(3,4,6-tri-O-benzyl-2-deoxy-\beta-D)glucopyranosyl)tri-$ *n* $-butylstannane¹ (70.7 mg, 0.100 mmol), (3,4,6-tri-O-benzyl-2-deoxy-<math>\beta$ -D-(1-D)glucopyranosyl)tri-*n*-butylstanane **S10** (70.8 mg, 0.100 mmol), 1,2-bis(4-methoxyphenyl)disulfane **18** (83.4 mg, 0.300 mmol), KF (17.4 mg, 0.300 mmol), 24,4'-di-*tert*-butyl-2,2'-dipyridyl (12.1 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred at 120 °C under 5W blue LED irradiation for 24 h. The KIE value represents the average of two separate runs. Based on the ¹H NMR results, an average KIE value of 0.74 was determined.

According to the general protocol B, $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\beta-D-\text{glucopyranosyl})\text{tri-}n-\text{butylstannane}^1$ (70.7 mg, 0.100 mmol), $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\beta-D-(1-^{13}\text{C})\text{glucopyranosyl})\text{tri-}n-\text{butylstannane}$ **S11** (70.8 mg, 0.100 mmol), 1,2-bis(4-methoxyphenyl)disulfane **18** (83.4 mg, 0.300 mmol), KF (17.4 mg, 0.300 mmol), 2,2':6',2''-terpyridine (18.7 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred under N₂ at 130 °C for 12 h. The KIE value represents the average of two separate runs. Based on the ¹H NMR results, an average KIE value of 1.031 was determined.

According to the general protocol B, $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\alpha-D-\text{glucopyranosyl})\text{tri-}n-\text{butylstannane}^1$ (70.7 mg, 0.100 mmol), $(3,4,6-\text{tri-}O-\text{benzyl-}2-\text{deoxy-}\alpha-D-(1-^{13}\text{C})\text{glucopyranosyl})\text{tri-}n-\text{butylstannane}$ **S12** (70.8 mg, 0.100 mmol), 1,2-bis(4-methoxyphenyl)disulfane **18** (83.4 mg, 0.300 mmol), KF (17.4 mg, 0.300 mmol), 2,2':6',2''-terpyridine (18.7 mg, 0.045 mmol), and CuCl (4.00 mg, 0.040 mmol) were added to anhydrous 1,4-dioxane (2.00 mL). The reaction mixture was stirred under N₂ at 130 °C for 12 h. The KIE value represents the average of two separate runs. Based on the ¹H NMR results, an average KIE value of 1.033 was determined.

MeO	
Ratio of 2,2'-bipyridine to 18	¹ H NMR shift of <i>MeO</i> in disulfide*
0	3.8238
25:1	3.8181
50:1	3.8123
75:1	3.8069
100:1	3.8008
200:1	3.7778
300:1	3.7520
400:1	3.7265
500:1	3.7046
750:1	3.6500
1000:1	3.5929

*t*Bu

tBu

*300 MHz NMR, CDCl₃, 23 °C

*300 MHz NMR, CDCl₃, 23 $^{\circ}$ C

*300 MHz NMR, CDCl₃, 23 $^{\circ}$ C

Solutions in CHCl₃, 23 °C

7. Computational Details

All DFT calculations were performed with the Gaussian 16 software package.⁷ Geometry optimizations of all the minima and transition states were carried out at the B3LYP⁸ level of theory with additional Grimme's D3 dispersion correction (Becke-Johnson damping)⁹ using the def2-SVP basis set.¹⁰ Vibrational frequencies were computed at the same level to evaluate its zero-point vibrational energy (ZPVE) and thermal corrections at 298 K, as well as to check whether each optimized structure is a transition state or not. The single-point energies were computed at the same level of theory, combined with def2-TZVPP basis set and SMD solvation model¹¹ for 1,4-dioxane using the optimized structures. The 3D diagrams of molecules were generated using CYLView.¹² In addition, to correct the Gibbs free energies under pressure of 1 atm to the standard state in solution (1 mol/L), a correction of $RTln(c_s/c_g)$ (about 1.89 kcal/mol) is added to energies of all species. c_s is the standard molar concentration in solution (1 mol/L), c_g is the standard molar concentration in gas phase (0.0446 mol/L), and *R* is the gas constant.

Table S1. Zero-point correction (*ZPE*), thermal correction to enthalpy (*TCH*), thermal correction to Gibbs free energy (*TCG*), energies (*E*), enthalpies (*H*), and Gibbs free energies (*G*) (in Hartree) of the structures for all the figures calculated at the B3LYP-D3(BJ)/def2-TZVPP-SMD(1,4-dioxane)//B3LYP-D3(BJ)/def2-SVP level of theory.*

Structures	ZPE	ТСН	TCG	E	Н	G	Imaginary Frequency
int1 (doublet)	0.402938	0.432857	0.338549	-3373.739683	-3373.306826	-3373.401134	
int2 (doublet)	0.257714	0.273516	0.214856	-654.293904	-654.020388	-654.079048	
TS3 (triplet)	0.661809	0.706908	0.581810	-4028.045108	-4027.338200	-4027.463298	283.9i
int4 (CSS)	0.309719	0.332599	0.256694	-2743.737570	-2743.404971	-2743.480876	
P _{Ax} (CSS)	0.353818	0.375738	0.302092	-1284.348409	-1283.972671	-1284.046317	

TS5 (triplet)	0.662605	0.708128	0.579847	-4028.051988	-4027.343860	-4027.472141	24.0 <i>i</i>
int6 (CSS)	0.665717	0.710865	0.586529	-4028.063258	-4027.352393	-4027.476729	
TS7 (CSS)	0.663411	0.708761	0.582261	-4028.043643	-4027.334882	-4027.461382	73.3i
TS8 (triplet)	0.660577	0.706156	0.577217	-4028.027753	-4027.321597	-4027.450536	385.8 <i>i</i>
\mathbf{P}_{Eq} (CSS)	0.353496	0.375504	0.301627	-1284.346847	-1283.971343	-1284.045220	
TS9 (triplet)	0.662364	0.707645	0.579510	-4028.022330	-4027.314685	-4027.442820	45.6 <i>i</i>
int10 (CSS)	0.665186	0.710433	0.584677	-4028.055108	-4027.344675	-4027.470431	
TS11 (CSS)	0.663781	0.709101	0.581988	-4028.048124	-4027.339023	-4027.466136	162.9 <i>i</i>

* Only the most stable spin states are listed here. CSS = closed-shell singlet.

Coordinates

int1 (doublet)

`	,		
Cu	-0.14851400	1.71160700	2.29728000
S	2.10799700	1.42559000	2.41293900
С	2.58126200	1.98454000	0.80241300
С	3.38921100	3.12836400	0.64889300
С	2.14456900	1.31098700	-0.35638000
С	3.73695000	3.59101600	-0.62110500
Н	3.72514500	3.65582600	1.54412600
С	2.49181400	1.77887300	-1.62430500
Н	1.49262700	0.44350300	-0.25095600
С	3.28886000	2.92031300	-1.76497900
Н	4.35983600	4.48433600	-0.71973100
Н	2.12550300	1.25172800	-2.50879600
Н	3.55948100	3.28488100	-2.75907700
Ν	-1.92345900	1.21404800	1.57273900
С	-2.07350600	1.05502600	0.22131600
С	-3.11239000	1.08908300	2.24577800
С	-3.53790000	0.73744200	-0.11017800
0	-1.17756000	1.16090300	-0.60402700
С	-4.23258800	0.73850700	1.25181500
0	-3.27788700	1.23199300	3.44665500
Н	-3.58364000	-0.22566000	-0.64148600
Н	-3.91524800	1.50211900	-0.80691400
Н	-4.66296200	-0.23457900	1.53579300
Н	-5.03888400	1.48175200	1.34811600
Ν	-0.69446200	3.03995000	3.93223800
С	-0.78079300	4.33905200	3.66822800
С	-1.05260000	2.51118500	5.09787700
С	-1.25026100	5.22984900	4.64554800
С	-0.38240700	4.71798000	2.28180600
С	-1.53347100	3.33359600	6.12606400
С	-1.62637200	4.70579500	5.88402300
С	-0.26612400	6.04693300	1.85947900
Ν	-0.15752800	3.69714000	1.43004400
Н	-1.83565300	2.92330200	7.08921200
Н	-2.00223300	5.37113100	6.66427500
С	0.07749800	6.30957500	0.53203000
С	0.14430400	3.94128900	0.15404800
Н	0.18301200	7.34056200	0.18668700
С	0.27734900	5.24166000	-0.34010800
Н	0.26612400	3.06521400	-0.48450700
Н	0.53941300	5.39683400	-1.38735800
Н	-0.43343500	6.86670100	2.55826500
Н	-1.33844600	6.29818300	4.44879300

С	-0.88242400	1.03352900	5.18735300
С	-1.20823000	0.28943700	6.32658400
С	-0.16230600	-0.87390300	4.08169500
С	-1.00445800	-1.09047300	6.31364400
Н	-1.62159100	0.77581000	7.20994100
С	-0.46908200	-1.68999400	5.17320000
Н	0.27819100	-1.27650300	3.16454200
н	-1.26001100	-1.69075000	7.18972400
н	-0.28855600	-2.76514900	5.12529300
Ν	-0.37260800	0.43819900	4.09670300

int2 (doublet)

С	-0.02842900	-2.23280300	0.22050300
С	0.30903400	-1.38447700	1.40480400
0	0.15597300	-1.71512400	-1.02553900
Н	0.13479200	-3.31357700	0.24048400
С	-0.20085600	0.04425700	1.22443000
Н	1.40902200	-1.32012100	1.55533600
С	-0.28995600	-0.37847900	-1.24894100
С	0.22174800	0.56515800	-0.14919800
0	0.31142200	0.87325500	2.25098300
Н	-1.30639100	0.04565200	1.24943800
С	0.17098800	0.03920500	-2.62862300
Н	-1.39564700	-0.36129300	-1.23418900
0	-0.30285300	1.85851600	-0.37799000
Н	1.32805800	0.58261500	-0.18517300
С	-0.63749900	1.70396200	2.87610400
0	-0.56342800	-0.66056800	-3.59628800
Н	1.25732700	-0.17097400	-2.72123400
Н	0.02230800	1.13202600	-2.72958500
С	0.62693400	2.90996100	-0.24976500
Н	-1.43038100	1.11577100	3.37858700
Н	-1.12023400	2.39533100	2.16219800
Н	-0.10765700	2.29260500	3.63961100
С	-0.16755100	-0.37617100	-4.90830700
Н	0.07803400	3.85227100	-0.39207700
Н	1.10432000	2.91625400	0.74518700
Н	1.42131500	2.84829200	-1.01945000
Н	-0.80639000	-0.95844700	-5.58811000
Н	0.89033400	-0.65512500	-5.09291500
Н	-0.27979800	0.70060100	-5.15356500
Н	-0.10348700	-1.82433500	2.32652800

TS3 (triplet)

Cu -0.31242900	2.11887600	2.73299500
----------------	------------	------------

S	1.99535700	1.35762300	2.47070200
С	2.58047000	2.24935600	1.05293500
С	3.20542400	3.50622100	1.18173700
С	2.41975800	1.70467700	-0.23563000
С	3.66587400	4.18379600	0.05110700
Н	3.32611500	3.95510300	2.16720700
С	2.88357200	2.39066400	-1.36058600
Н	1.89524300	0.75500300	-0.34351800
С	3.51397800	3.63138100	-1.22507500
Н	4.14732200	5.15844900	0.17175100
Н	2.74494100	1.95068500	-2.35201600
Н	3.87774400	4.16598500	-2.10641700
Ν	-1.72636000	1.08746500	1.76295800
С	-1.65414000	0.57595500	0.49436300
С	-2.92214000	0.78128100	2.37490000
С	-2.90357900	-0.26602400	0.19722100
0	-0.74752600	0.75902900	-0.30446700
С	-3.78131700	-0.07637000	1.43298300
0	-3.25852600	1.12975900	3.49246300
Н	-2.58891900	-1.30859000	0.03150300
Н	-3.35455300	0.08256200	-0.74402900
Н	-4.05345800	-1.00950300	1.94961000
Н	-4.72131400	0.46071900	1.23189400
Ν	-0.32070500	3.59652800	4.11896700
С	-0.15276100	4.85563300	3.69353900
С	-0.47513500	3.26719900	5.41090200
С	-0.15866600	5.90467600	4.61549200
С	0.03352400	4.95256600	2.23323400
С	-0.49350700	4.27079900	6.38242000
С	-0.33751600	5.59845500	5.97023900
С	0.37236300	6.12914500	1.55870000
Ν	-0.13805300	3.78852400	1.55588200
Н	-0.61119200	4.02862500	7.43777900
Н	-0.34913700	6.40075500	6.71053200
С	0.52839100	6.09608800	0.17419300
С	0.00492200	3.75084800	0.22572900
Н	0.80597400	7.00211100	-0.36872400
С	0.33718500	4.89068900	-0.50444800
Н	-0.14485600	2.77341600	-0.24103500
Н	0.46323400	4.81790600	-1.58447900
Н	0.52345700	7.05397000	2.11566400
Н	-0.02611400	6.93689300	4.29272600
С	-0.55985300	1.81451700	5.62985000
С	-0.65799900	1.20292700	6.88597900
С	-0.54512900	-0.26609600	4.57146600

С	-0.70920200	-0.18441200	6.96389200
н	-0.68564900	1.81108300	7.78916700
С	-0.65687400	-0.93938700	5.78435800
н	-0.49087700	-0.79248900	3.61551400
н	-0.78467400	-0.67742100	7.93526000
н	-0.70068900	-2.02921300	5.80347600
Ν	-0.49469000	1.06412800	4.50296400
С	4.37402000	1.71071700	3.81554500
С	4.26315500	0.67532800	4.87945700
0	4.29085800	3.01357200	4.18514900
н	5.00964700	1.56129100	2.94171300
С	3.14267100	0.99632900	5.88076400
н	5.20642200	0.60209300	5.46642900
С	3.19778800	3.34628300	5.03571700
С	3.21695200	2.46751200	6.29505900
0	3.22473900	0.21157000	7.05617600
н	2.16431500	0.83703700	5.39138200
С	3.28788600	4.82743200	5.32208300
н	2.26706400	3.14141600	4.47909700
0	2.12594400	2.85892600	7.10350300
Н	4.16915900	2.63119400	6.83945800
С	2.97081100	-1.15868400	6.87340200
0	2.94516600	5.52892600	4.14824500
Н	4.32208600	5.07433100	5.63663100
Н	2.59894800	5.08268900	6.14724500
С	2.27868600	2.67081800	8.49138700
Н	3.77758600	-1.66837800	6.31452500
Н	2.01901400	-1.32766200	6.33631600
Н	2.90044100	-1.61755600	7.87065400
С	3.17992400	6.90549700	4.22530700
Н	1.41122400	3.14154800	8.97959000
Н	2.32276500	1.60446300	8.75974800
Н	3.19646500	3.16460900	8.86580800
Н	2.88575000	7.35050400	3.26344700
Н	4.24929500	7.13334600	4.40606000
Н	2.58978600	7.38323500	5.03445400
Н	4.09768600	-0.30440400	4.40696200
int4 (CSS)			
Cu	-0.52341300	2.03335900	3.04072000
Ν	-1.33299600	1.10101600	1.52815700
С	-1.23243600	-0.23615100	1.25149000
С	-2.08199400	1.76115300	0.57998300
С	-1.99453200	-0.57138200	-0.03946300
0	-0.63143100	-1.06781600	1.91858000

С	-2.56405300	0.77110800	-0.49226200
0	-2.32609300	2.95598600	0.57311000
Н	-2.75775300	-1.33144400	0.18950300
н	-1.29588600	-1.03151500	-0.75549000
Н	-3.66375700	0.80335100	-0.53535700
Н	-2.19945700	1.10821500	-1.47527900
Ν	-0.47678300	3.46274900	4.51293900
С	-0.15303800	4.72561500	4.18769600
С	-0.52035300	3.06564200	5.79559000
С	0.04739000	5.69427900	5.17820600
С	0.01278700	4.95439800	2.73393700
С	-0.32578700	3.98009300	6.83805200
С	-0.05570100	5.31248700	6.51800300
С	-0.14967100	6.20347500	2.12214700
Ν	0.33223400	3.84914000	2.03090500
Н	-0.35621300	3.65423600	7.87817600
Н	0.11152300	6.04384900	7.31152000
С	0.02732300	6.30094200	0.74252500
С	0.48260900	3.94609400	0.70921800
Н	-0.10462500	7.25933200	0.23552500
С	0.35364100	5.15134100	0.02007600
Н	0.71309400	3.01515000	0.18397800
Н	0.49209000	5.18161900	-1.06195800
Н	-0.43711500	7.07584600	2.71092600
Н	0.31079000	6.71762100	4.90835100
С	-0.73616300	1.61035200	5.97373800
С	-1.17462300	1.03178000	7.17177600
С	-0.61846000	-0.46489300	4.93443400
С	-1.31980800	-0.35372400	7.23382900
Н	-1.41699300	1.65526600	8.03341800
С	-1.03463400	-1.11593600	6.09818500
Н	-0.42162700	-0.99431900	3.99556100
Н	-1.66310800	-0.83046200	8.15487000
Н	-1.13666700	-2.20269600	6.10480200
Ν	-0.46511500	0.86425200	4.88097100
P _{Ax} (CSS)			
С	0.09443800	-1.98186300	1.16471100
С	0.52561300	-0.74791100	1.95697000
0	0.36082800	-1.81203800	-0.19860800
Н	0.66362700	-2.86935700	1.47091500
С	-0.06255000	0.54182400	1.37073700
Н	1.62385800	-0.67347500	1.89776000
С	-0.26600500	-0.68938000	-0.80366900
С	0.19332100	0.61592500	-0.13671600

0	0.50420600	1.68968600	1.97318400
Н	-1.16143400	0.55508800	1.50858200
С	0.04501800	-0.74181500	-2.28280400
Н	-1.36127800	-0.76793200	-0.68161500
0	-0.52619300	1.66919400	-0.73688100
Н	1.28280100	0.74241200	-0.29824000
С	-0.03656900	2.03009300	3.22510400
0	-0.66924700	-1.80950900	-2.85540600
Н	1.13769300	-0.87665300	-2.42109300
Н	-0.24834000	0.22155700	-2.73994200
С	0.14676600	2.90555700	-0.82569700
Н	0.14558000	1.25385800	3.99252400
н	-1.12896900	2.20279200	3.16510400
н	0.45014000	2.95941200	3.55416400
С	-0.41347400	-1.99305500	-4.22035300
н	-0.52822700	3.60468000	-1.34073900
Н	0.40407400	3.30597500	0.16732800
н	1.07836400	2.81624500	-1.41944600
Н	-1.02884600	-2.83540300	-4.56793700
Н	0.65262500	-2.22893500	-4.41450600
Н	-0.67627700	-1.09403100	-4.81410200
Н	0.25451300	-0.86185300	3.01664700
S	-1.69122100	-2.35770700	1.54347500
С	-1.84645300	-3.98838200	0.82833100
С	-2.31831500	-5.02586900	1.64714500
С	-1.55608600	-4.24035500	-0.52297900
С	-2.50283300	-6.30660700	1.12152400
Н	-2.53346600	-4.82236700	2.69837200
С	-1.72204900	-5.53157300	-1.03043900
Н	-1.19843400	-3.44208300	-1.17348700
С	-2.19919500	-6.56447400	-0.21801200
Н	-2.87464900	-7.10754200	1.76548000
Н	-1.48650900	-5.72586000	-2.07994400
Н	-2.33548200	-7.56814400	-0.62803900
TS5 (triplet)			
Cu	0.17489900	1.75278600	2.50937300
S	1.48282200	0.12030900	1.55546800
С	0.39957100	-0.64707100	0.37990600
С	-0.19585600	0.09307700	-0.65988900
С	0.11627000	-2.02065600	0.47014700
С	-1.04445200	-0.52425300	-1.57837300
Н	-0.01013500	1.16547800	-0.73060300

-0.72425700

0.55057400

-2.63875000

-2.59539700

С

Н

-0.45766000

1.28971800

С	-1.31099900	-1.89535000	-1.48586900
н	-1.50214400	0.07146000	-2.37268600
н	-0.93451900	-3.70757400	-0.36626200
Н	-1.97535900	-2.37820100	-2.20667200
Ν	-1.70969800	1.21708100	1.87459400
С	-2.39940300	1.99948200	0.99124200
С	-2.30745700	-0.00667300	2.04286900
С	-3.60665800	1.23214900	0.43146000
0	-2.10779800	3.14685500	0.67624100
С	-3.52342900	-0.13075500	1.11363300
0	-1.94010200	-0.88809200	2.80461700
Н	-3.50801700	1.18881400	-0.66401200
Н	-4.52696500	1.79559000	0.65165400
Н	-3.32266300	-0.95819800	0.41655800
Н	-4.41090400	-0.40488400	1.70417500
Ν	-0.48200400	3.35068200	3.60447900
С	-0.44733600	4.55736100	3.03175200
С	-0.93697000	3.14300600	4.84383500
С	-0.93558300	5.67139400	3.72311800
С	0.22948200	4.58402200	1.71435200
С	-1.42490400	4.21645500	5.59744200
С	-1.42792700	5.48635300	5.01576200
С	0.28062900	5.70858800	0.88903100
Ν	0.84333300	3.43732700	1.37313500
Н	-1.77240400	4.07210200	6.62000200
Н	-1.79613900	6.34278400	5.58450000
С	0.99161900	5.63186900	-0.30648600
С	1.53356100	3.35958800	0.23793100
Н	1.04023800	6.49531700	-0.97370300
С	1.63947700	4.44084200	-0.63779800
Н	1.99957000	2.38867000	0.04171700
Н	2.21333500	4.34266300	-1.56070300
Н	-0.23547700	6.62583800	1.17108000
Н	-0.89946600	6.66454200	3.27846400
С	-0.84203800	1.73327900	5.29933100
С	-1.46393500	1.24317400	6.45084900
С	-0.02591200	-0.37502400	4.76047700
С	-1.33678800	-0.11509100	6.75311900
Н	-2.05414000	1.90120100	7.08906100
С	-0.61117400	-0.94030000	5.89655100
Н	0.54225400	-0.96198300	4.03536500
Н	-1.81791600	-0.52416400	7.64443600
Н	-0.50976500	-2.00956300	6.08699900
Ν	-0.12153800	0.92559000	4.49607800
С	3.55913500	2.41274700	3.02329700

С	3.83921300	1.55362700	4.20823100
0	3.55317000	3.76492400	3.19898700
С	3.04776300	2.01712500	5.43679300
Н	4.91668200	1.58622500	4.48247300
С	2.79994700	4.24136700	4.30802700
С	3.15889900	3.52847800	5.62040400
0	3.49751500	1.38907900	6.62461200
Н	1.97910600	1.80036600	5.27623700
С	2.98091100	5.74079000	4.38590300
Н	1.73810100	4.02987000	4.12535200
0	2.23038700	3.99688400	6.58170600
Н	4.19535000	3.78120400	5.92072300
С	2.91074400	0.13674800	6.87718900
0	2.23974500	6.34655700	3.35284000
Н	4.05942900	5.97895300	4.28753800
Н	2.63191800	6.09099000	5.37502800
С	2.69659800	4.05586700	7.91104500
Н	3.05325100	-0.57367600	6.04119400
Н	1.82416400	0.22436900	7.06636000
Н	3.39332900	-0.28184800	7.77251000
С	2.42425800	7.73006600	3.26334900
Н	1.87007900	4.44052400	8.52707400
Н	3.00431700	3.06598600	8.28175400
Н	3.55587200	4.74906700	8.00790800
Н	1.80882800	8.09848700	2.42905300
Н	3.48147600	7.99552200	3.06171100
Н	2.11448800	8.25357800	4.19148000
Н	3.60133100	0.50753000	3.96118400
Н	3.86786200	2.11664700	2.02006000
int6 (CSS)			
Cu	0.30745000	1.86224500	2.22008700
S	1.44471000	0.03294000	1.39446000
С	0.27439000	-0.96571300	0.51910300
С	0.46414700	-1.20634100	-0.85307700
С	-0.82919200	-1.56102400	1.15943900
С	-0.40791100	-2.03853300	-1.55786400
Н	1.29561400	-0.71634600	-1.36141200
С	-1.70815000	-2.37846900	0.44920700
Н	-1.01195300	-1.35826700	2.21424100
С	-1.49937000	-2.62748300	-0.91246000
Н	-0.24217100	-2.21409400	-2.62397000
Н	-2.56297500	-2.82481300	0.96423200
Н	-2.18719300	-3.27042100	-1.46712600
Ν	-1.40221500	1.48935700	1.21683200

С	-1.45195700	1.49356900	-0.16093500
С	-2.60463000	1.11234100	1.75797800
С	-2.81602600	0.98922100	-0.64130400
0	-0.55245200	1.82794800	-0.91235800
С	-3.60603100	0.77896900	0.64426500
0	-2.87571100	1.03891800	2.94793100
Н	-2.64290200	0.06051000	-1.20554300
Н	-3.25128400	1.72210800	-1.33727200
Н	-3.95179300	-0.25498600	0.79344800
Н	-4.48527300	1.43374300	0.74940900
Ν	-0.77383000	3.28173400	3.43146900
С	-0.90892500	4.52272300	2.94918900
С	-1.30283600	2.93290400	4.61328400
С	-1.54776900	5.52072100	3.69857100
С	-0.34568400	4.78263400	1.59569800
С	-1.96085600	3.88075300	5.40744100
С	-2.06809800	5.19088400	4.94527400
С	-0.61509400	5.95352500	0.87281600
Ν	0.42780000	3.82066400	1.08537900
Н	-2.36198600	3.60696700	6.38170300
Н	-2.55293600	5.95283200	5.55896600
С	-0.03200900	6.11343500	-0.38423800
С	0.98401900	3.96003000	-0.11348100
Н	-0.22738500	7.01648500	-0.96724200
С	0.79570400	5.10934800	-0.88614200
Н	1.57985000	3.11772600	-0.46955200
Н	1.26776600	5.19615800	-1.86600900
Н	-1.27261000	6.72408500	1.27368600
Н	-1.60640100	6.54214700	3.32840400
С	-1.14238600	1.51347800	5.03506800
С	-1.84843700	0.96005800	6.11222300
С	-0.11820500	-0.50697200	4.58719400
С	-1.66380900	-0.38891800	6.41201900
Н	-2.55530500	1.55493400	6.68924800
С	-0.78509200	-1.14629800	5.63558300
Н	0.57953100	-1.03863000	3.93077200
Н	-2.21331000	-0.84654600	7.23788100
Н	-0.62131900	-2.20776400	5.83037900
Ν	-0.29115200	0.78080400	4.31317400
С	2.24328800	2.38364600	2.88659000
С	2.87608300	1.44963900	3.89667500
0	2.29501300	3.71026100	3.23406900
С	2.60255200	1.81336500	5.35602100
Н	3.97309500	1.50832800	3.75970700
С	2.08145100	4.12452100	4.57949600

С	2.87987700	3.29210200	5.58908500
0	3.42202500	1.05819000	6.23035200
Н	1.54247800	1.64425500	5.60431600
С	2.43106600	5.60452400	4.66438300
Н	1.01819100	4.00146000	4.82908500
0	2.46040300	3.72417200	6.86600100
Н	3.96449900	3.47623400	5.45109200
С	2.95709700	-0.24414300	6.48592900
0	1.66084100	6.41208900	3.80613600
Н	3.51177700	5.73293600	4.46019500
Н	2.23909900	5.92182700	5.69970200
С	3.42158800	3.62845500	7.89469200
Н	2.90758000	-0.86295200	5.57066500
Н	1.94901600	-0.23578500	6.94383300
Н	3.66240000	-0.71580000	7.18529700
С	2.26640700	6.71056600	2.56770600
Н	2.95451500	4.01971200	8.81040800
Н	3.74351400	2.58864000	8.05855800
Н	4.31637900	4.24161900	7.66814500
Н	1.60716400	7.41465200	2.04191800
Н	2.40220600	5.81375300	1.94235100
Н	3.25288500	7.19441100	2.71051300
Н	2.58918800	0.41461600	3.67367100
Н	2.67613700	2.29442000	1.88556200
TS7 (CSS)			

Cu	0.23246900	1.50423500	2.63533100
S	1.65017000	-0.24403400	2.05369600
С	0.68407100	-0.86162100	0.69653100
С	1.15146300	-0.76799500	-0.62326200
С	-0.54356100	-1.50546500	0.93764200
С	0.40867800	-1.29676300	-1.67941700
Н	2.10016500	-0.26221700	-0.81346400
С	-1.27650600	-2.04612500	-0.11789500
н	-0.92407100	-1.56171800	1.95846700
С	-0.80723700	-1.93891700	-1.43233500
н	0.77867900	-1.19994800	-2.70323400
н	-2.22753900	-2.54564000	0.08565200
н	-1.38997300	-2.35158500	-2.25956600
Ν	-1.51162600	1.29358600	1.58739300
С	-1.62648000	1.43578000	0.22806300
С	-2.69613500	0.90180000	2.14854700
С	-3.05747200	1.11004700	-0.22668000
0	-0.73804800	1.77627700	-0.53923800
С	-3.74846200	0.65584100	1.05402700

0	-2.91391900	0.73993900	3.34231000
Н	-3.00763800	0.34791200	-1.01764800
Н	-3.50023900	2.01524600	-0.67228400
Н	-3.99063300	-0.41938200	1.05835400
Н	-4.67488900	1.19510600	1.30316000
Ν	-0.63598700	3.12085000	3.85663900
С	-0.70487500	4.33692300	3.30195600
С	-1.19049300	2.86445300	5.04688900
С	-1.31033700	5.40402000	3.97793400
С	-0.09951000	4.45955600	1.94907200
С	-1.81641700	3.88334000	5.77806700
С	-1.86130600	5.16727300	5.23619600
С	-0.36686700	5.53544900	1.09251600
Ν	0.69611900	3.44765300	1.57519100
Н	-2.24954500	3.68383100	6.75752000
Н	-2.32524800	5.98282500	5.79517200
С	0.22035600	5.54783900	-0.17308400
С	1.23662400	3.44656000	0.35959600
Н	0.02215100	6.37208400	-0.86225700
С	1.04328900	4.48759300	-0.55014800
Н	1.83910200	2.57282500	0.10159900
Н	1.50254200	4.44520900	-1.53881200
Н	-1.03460300	6.34058800	1.39908100
Н	-1.32464000	6.40262700	3.54327100
С	-1.12210600	1.44941300	5.50030400
С	-1.88189600	0.95898800	6.57074500
С	-0.29628900	-0.65813400	5.04296400
С	-1.83420700	-0.40333000	6.86076000
Н	-2.53006500	1.61844700	7.14736400
С	-1.03456100	-1.23731100	6.07711400
Н	0.35256400	-1.24908700	4.38622900
Н	-2.43187800	-0.81182700	7.67893400
Н	-0.98690400	-2.31322900	6.25568500
Ν	-0.33208200	0.64437900	4.78024500
С	3.30357000	1.80054300	2.80196300
С	3.71331300	0.88250300	3.89626000
0	3.15045300	3.07950100	3.06509000
С	2.99962200	1.18223500	5.21520700
Н	4.80425700	1.01890800	4.04822800
С	2.56982500	3.49389200	4.31975300
С	3.05990500	2.67374400	5.52152000
0	3.59142800	0.47529700	6.28612600
Н	1.93580300	0.92040800	5.10869000
С	2.82442000	4.98107700	4.50870400
Н	1.49377200	3.30334300	4.21278600

0	2.19281200	3.03350400	6.57522600
Н	4.10741700	2.94279400	5.76993200
С	3.11737000	-0.84358100	6.44241400
0	2.16459500	5.81023000	3.58954400
Н	3.91745300	5.16809300	4.50379600
Н	2.43918500	5.22687000	5.50870500
С	2.72911600	2.95252000	7.87871400
Н	3.24847200	-1.44788600	5.52558700
Н	2.04571000	-0.86113600	6.71252800
Н	3.69848200	-1.30796700	7.25190000
С	2.87545100	6.09271500	2.40400600
Н	1.94497400	3.29527400	8.56897200
Н	3.02729900	1.92507400	8.13636500
Н	3.61154100	3.61267800	7.99164000
Н	2.28361700	6.82439200	1.83778100
Н	3.02236000	5.19825100	1.77884500
Н	3.86614500	6.53500000	2.62878200
Н	3.56562600	-0.15899400	3.57949200
Н	3.62478600	1.61825400	1.77759500

TS8 (triplet)

Cu	-0.26257700	1.52643500	2.58678900
S	1.73069600	0.31502600	1.80060000
С	2.40590500	1.28222800	0.47588800
С	3.45709000	2.19333500	0.69030500
С	1.87459300	1.15869500	-0.82225300
С	3.96617300	2.95002300	-0.36658000
Н	3.84349600	2.32681900	1.69854900
С	2.38720500	1.92314200	-1.87196200
Н	1.02740900	0.49375100	-0.98934400
С	3.43831100	2.82015800	-1.65477800
Н	4.77960300	3.65661200	-0.17705100
Н	1.95290200	1.81816700	-2.86981800
Н	3.83768300	3.41511600	-2.47998500
Ν	-1.99046000	1.28315700	1.60821900
С	-2.18462800	1.20185200	0.25620900
С	-3.17439200	1.17456000	2.30612700
С	-3.66573700	0.93384100	-0.04755300
0	-1.32429500	1.33484400	-0.60283000
С	-4.33472500	0.94420100	1.32578200
0	-3.29326300	1.24497800	3.51577200
Н	-3.74670100	-0.02753800	-0.57871800
Н	-4.03179000	1.70871400	-0.73825600
Н	-4.84085900	0.00335200	1.59180000
Н	-5.07307000	1.74997000	1.45847600

Ν	0.31833200	2.42120300	4.29514200
С	0.86675900	3.64225300	4.21183100
С	0.18308500	1.75225300	5.45376700
С	1.28409900	4.29906600	5.36859400
С	0.96399300	4.13750700	2.82477600
С	0.58790800	2.35558100	6.65100500
С	1.13272200	3.64101500	6.59847800
С	1.61464600	5.31764400	2.45225000
Ν	0.37946700	3.34693100	1.88951700
Н	0.48675000	1.83541400	7.60415100
Н	1.45685700	4.13186800	7.51797700
С	1.66467800	5.66705200	1.10399300
С	0.41593400	3.67968500	0.59503600
Н	2.18221400	6.57763500	0.79355300
С	1.05709600	4.83873300	0.15813800
Н	-0.07403400	2.98246300	-0.09019900
Н	1.08846600	5.06681000	-0.90717600
Н	2.08783000	5.93671500	3.21070300
Н	1.74429200	5.28211600	5.32137100
С	-0.37088900	0.40174500	5.28231500
С	-0.63362900	-0.49694600	6.32781800
С	-1.10967500	-1.15769600	3.70763100
С	-1.14515500	-1.75506800	6.03106100
Н	-0.43997000	-0.20546300	7.36060700
С	-1.38847100	-2.10020800	4.69339300
Н	-1.28313000	-1.35875800	2.64753700
Н	-1.35666800	-2.46456000	6.83398400
Н	-1.79124500	-3.07640100	4.42050000
Ν	-0.61786300	0.04668700	3.99443200
С	3.10796100	0.84211400	3.91252200
С	4.21703700	-0.14494600	3.77199000
0	3.47179900	2.16266300	3.88539600
Н	2.26349400	0.61260500	4.56945400
С	5.34330400	0.15709400	4.77275600
Н	4.65305200	-0.09382600	2.75876000
С	4.59731500	2.58049200	4.66640500
С	5.78851900	1.60494400	4.58987300
0	6.47799400	-0.66617900	4.58677000
Н	4.96913900	0.04682200	5.81155600
С	5.03336000	3.95087100	4.18599800
Н	4.29405500	2.65304500	5.72704000
0	6.69165800	2.01964200	5.59189700
Н	6.25648600	1.68234300	3.58776500
С	6.33511100	-1.98763300	5.04118800
0	4.14882800	4.95579400	4.62085300

Н	5.09653500	3.93772600	3.07904900
Н	6.04493300	4.13990600	4.59010800
С	8.06085600	1.83538100	5.30325200
Н	5.57499500	-2.55375600	4.47096400
Н	6.05799200	-2.02357200	6.11370600
Н	7.30539900	-2.48835300	4.91205700
С	4.59050700	6.24471500	4.29319300
Н	8.62677700	2.23045700	6.15966500
Н	8.30900400	0.77339600	5.15475400
Н	8.36062200	2.39691800	4.39589100
Н	3.86704600	6.96693700	4.70091400
Н	4.65882100	6.39371100	3.19651200
Н	5.58614200	6.46292400	4.72863100
Н	3.81735000	-1.16030300	3.90309800

 $\mathbf{P}_{\mathsf{Eq}}(CSS)$

С	-0.25080900	-1.93371000	1.01294100
С	0.27820400	-0.80435200	1.89134400
0	0.20130900	-1.75525100	-0.31161100
Н	-1.35793100	-1.94871700	1.02531900
С	-0.13043500	0.55794700	1.31029800
н	1.37858200	-0.85683100	1.92083100
С	-0.32414400	-0.58656500	-0.91483200
С	0.19887600	0.65857200	-0.18349200
0	0.51364000	1.62752900	1.97273300
Н	-1.23011300	0.67849400	1.39668200
С	0.04850200	-0.62385500	-2.38032800
Н	-1.43076600	-0.58907900	-0.84824200
0	-0.40766400	1.78576100	-0.77395800
н	1.30041700	0.69914900	-0.29410100
С	-0.01845700	1.95909800	3.23073900
0	-0.67098900	-1.66238000	-2.99582400
Н	1.14171300	-0.79038500	-2.46915500
Н	-0.19256800	0.35556400	-2.83479800
С	0.36130800	2.96856800	-0.78561200
Н	0.10627600	1.14820000	3.97291500
Н	-1.09712700	2.20349600	3.16616800
Н	0.52203900	2.84442600	3.59491400
С	-0.34166700	-1.85195100	-4.34451500
Н	-0.22717500	3.73129200	-1.31622600
Н	0.58923600	3.32096100	0.23247100
Н	1.31675900	2.82291700	-1.32751100
Н	-0.96096200	-2.67450300	-4.73030700
Н	0.72584300	-2.12125900	-4.47622600
Н	-0.54079900	-0.94458100	-4.95054500

Н	-0.09626300	-0.91847600	2.91928000
S	0.31997500	-3.54358700	1.63987000
С	-0.78598700	-4.66790000	0.80049800
С	-1.20057000	-4.47852800	-0.52882200
С	-1.21132900	-5.80283000	1.50878500
С	-2.05416200	-5.41286400	-1.12093400
Н	-0.85396500	-3.61467000	-1.09681600
С	-2.04162800	-6.74241400	0.89484600
Н	-0.89728800	-5.93980500	2.54620600
С	-2.47299700	-6.54747900	-0.42034000
Н	-2.38193300	-5.25335600	-2.15139000
Н	-2.36510300	-7.62361900	1.45461600
Н	-3.13210400	-7.27716100	-0.89660300

TS9 (triplet)

Cu	0.41066300	1.80185200	2.71192000
S	1.62512900	0.16531300	1.29408000
С	0.46648600	-0.75918800	0.37566100
С	0.68402600	-0.95969500	-1.00690900
С	-0.70829800	-1.28975600	0.95825400
С	-0.23522400	-1.66898000	-1.77556400
Н	1.57787600	-0.52906800	-1.46098800
С	-1.62112000	-2.00196600	0.18541800
Н	-0.91100700	-1.11511900	2.01316400
С	-1.39108500	-2.19381800	-1.18337800
Н	-0.05644500	-1.80857200	-2.84447100
Н	-2.52486500	-2.40178800	0.65163400
Н	-2.11357800	-2.74733200	-1.78810300
Ν	-1.27210600	1.63092600	1.51458900
С	-1.15869900	1.89637300	0.17497300
С	-2.53251100	1.21127200	1.83715400
С	-2.48076100	1.59780600	-0.54359700
0	-0.14427100	2.27759900	-0.39123800
С	-3.42159500	1.18171300	0.58342200
0	-2.92176300	0.88458200	2.95187100
Н	-2.28929800	0.79653500	-1.27376100
Н	-2.80209000	2.48557500	-1.10910500
Н	-3.83328300	0.16716400	0.47254600
Н	-4.27492100	1.86157100	0.73395800
Ν	-0.80774800	2.87210200	4.18691900
С	-1.05180100	4.16167700	3.94723500
С	-1.50606000	2.17059300	5.07865600
С	-2.05898100	4.83944800	4.64930200
С	-0.20108100	4.78280400	2.89475000
С	-2.52872700	2.77890600	5.81968900

С	-2.79980100	4.12766800	5.59374300
С	-0.10307100	6.16685900	2.70428000
Ν	0.49474400	3.92716200	2.12768900
Н	-3.11851800	2.21173300	6.53862600
Н	-3.60084800	4.62361900	6.14616600
С	0.74902800	6.64967000	1.70855300
С	1.29135700	4.37762700	1.16257100
Н	0.85627000	7.72583400	1.55407700
С	1.46070600	5.74391800	0.92327600
Н	1.78610800	3.61896400	0.56429900
Н	2.14707100	6.07471300	0.14284000
Н	-0.66207000	6.85778500	3.33592200
Н	-2.27693000	5.88846900	4.44976300
С	-1.10753100	0.74267700	5.21817800
С	-1.60957500	-0.09460300	6.22253800
С	0.22807300	-0.95939100	4.39498500
С	-1.16349800	-1.41451900	6.28930800
Н	-2.33634300	0.27508600	6.94545900
С	-0.22361800	-1.86263600	5.36061900
Н	0.96222700	-1.24392200	3.63282900
Н	-1.54610300	-2.08441600	7.06277100
Н	0.15411800	-2.88633900	5.37770300
Ν	-0.20622800	0.29415800	4.33137500
С	2.24664300	2.24891500	3.62244900
С	2.80819900	1.29172100	4.64550600
0	3.12673900	2.37407400	2.53051900
С	4.19333400	1.77442400	5.10833000
Н	2.92056400	0.28469300	4.21149500
С	4.38671800	2.92736000	2.85644000
С	5.10044100	2.06439100	3.91065200
0	4.86059800	0.82583000	5.92736700
Н	4.08024200	2.72516700	5.66953800
С	5.21511100	3.03167200	1.58017800
Н	4.24469000	3.94372800	3.27740900
0	6.27288800	2.76026700	4.28563800
Н	5.35836000	1.09144600	3.44681700
С	4.33810500	0.68737600	7.22115000
0	4.56146000	3.75643800	0.56383000
Н	5.46518500	2.01079100	1.23471800
Н	6.15769700	3.54199500	1.83275200
С	7.38234300	1.96265300	4.62843700
Н	3.32213000	0.24802000	7.22734200
Н	4.29168800	1.65944400	7.75262200
Н	5.00597000	0.01507100	7.77982100
С	3.99689400	2.95324500	-0.44921500

Н	8.22238200	2.64414800	4.83020100
Н	7.18748300	1.34444500	5.51915100
н	7.67035700	1.29059700	3.79533900
н	3.47948100	3.62286700	-1.15232700
н	3.27311400	2.21949000	-0.05505100
н	4.77777300	2.40275900	-1.01184900
н	2.12464600	1.21301300	5.50377900
н	2.04866300	3.24125800	4.07240400
int10 (CSS)			
Cu	0.35296900	1.70694200	2.51622400
S	1.50061200	0.03683400	1.45089200
С	0.28528400	-0.80293500	0.47075100
С	0.44415000	-0.80688800	-0.92672400
С	-0.80561600	-1.49682900	1.02742100
С	-0.44396600	-1.51118500	-1.74269800
н	1.26303100	-0.23258300	-1.36185800
С	-1.70314300	-2.18068900	0.20813000
н	-0.96893100	-1.46974000	2.10378000
С	-1.52306100	-2.19908300	-1.18040700
Н	-0.30196600	-1.50543100	-2.82645000
Н	-2.55073300	-2.70399600	0.65837400
Н	-2.22572400	-2.73948300	-1.81944000
Ν	-1.31140700	1.53888400	1.46090500
С	-1.28485300	1.83523000	0.11350200
С	-2.53948800	1.07373400	1.85388900
С	-2.62056100	1.45221600	-0.52821900
0	-0.34106200	2.30572200	-0.49572900
С	-3.48530800	1.01254800	0.64806900
0	-2.86740900	0.75040800	2.98626800
Н	-2.41730400	0.63964100	-1.24189200
Н	-3.01329000	2.30534500	-1.10111500
Н	-3.86854700	-0.01502900	0.56386100
Н	-4.34868100	1.66815200	0.84272800
Ν	-0.76897600	2.82609800	4.11409500
С	-0.94829800	4.13550700	3.89919000
С	-1.47847800	2.17636900	5.04605900
С	-1.88652900	4.87408400	4.63356900
С	-0.11041400	4.74869900	2.83170700
С	-2.43287000	2.85468900	5.81905000
С	-2.63778100	4.21411700	5.60307800
С	0.10723400	6.12893000	2.72273800
Ν	0.44759600	3.88952000	1.97193900
Н	-3.01963100	2.32732700	6.56875300
н	-3.38772400	4.75610200	6.18321200

С	0.93744000	6.59438900	1.70067600
С	1.21781500	4.32453500	0.97877300
Н	1.14265500	7.66333700	1.60693200
С	1.50352500	5.68187400	0.81081900
Н	1.58610000	3.55941500	0.30067900
Н	2.16927200	6.00108200	0.00840200
Н	-0.33460800	6.82511300	3.43587300
Н	-2.04300300	5.93327700	4.43237400
С	-1.19424900	0.72408600	5.22471500
С	-1.83339100	-0.06071700	6.19615700
С	0.03238600	-1.08613200	4.48396600
С	-1.51114800	-1.41441800	6.28457900
Н	-2.57742000	0.36419100	6.86849300
С	-0.55921400	-1.94620800	5.41351600
Н	0.78222900	-1.43297500	3.76429400
Н	-2.00299700	-2.04725200	7.02695900
Н	-0.28062500	-3.00106100	5.44695200
Ν	-0.28217300	0.20224600	4.40214200
С	2.13991600	2.08128600	3.35047900
С	2.71031000	1.10609900	4.34500000
0	3.04695900	2.35144900	2.33171000
С	4.00646000	1.70260300	4.92970000
Н	2.94860900	0.14982000	3.85401500
С	4.22713800	3.00434800	2.76717300
С	4.95591700	2.15312700	3.81877400
0	4.70280800	0.77483600	5.74020500
Н	3.75789800	2.60087000	5.53243800
С	5.11195100	3.25071800	1.54678900
Н	3.95900700	3.97758600	3.22618900
0	6.02102600	2.93941000	4.31036100
Н	5.33991700	1.24069000	3.32172300
С	4.11202900	0.50754200	6.98536100
0	4.43621400	3.89050800	0.49306100
Н	5.53278300	2.28360000	1.21151200
Н	5.95075200	3.88716500	1.86826600
С	7.18443900	2.23763500	4.68779000
Н	3.14792800	-0.02744700	6.89329800
Н	3.93487600	1.43717200	7.56252900
Н	4.80658500	-0.13013700	7.55119900
С	3.97008200	3.01267400	-0.51301900
Н	7.92965100	2.98694200	4.99334400
Н	6.99542400	1.54423800	5.52243300
Н	7.59872500	1.65735000	3.83963400
Н	3.43908300	3.62171100	-1.25927900
Н	3.28391400	2.24488000	-0.11796000

Н	4.81378500	2.50486000	-1.02121200
Н	1.98684200	0.91385800	5.14556800
Н	1.81904000	3.01356800	3.84831100

TS11 (CSS)

Cu	-0.58992000	1.32378300	2.69080700
S	0.42212200	-0.58155900	2.02989300
С	1.17864800	-0.45042900	0.43660600
С	2.48779500	-0.93637600	0.26490600
С	0.46644300	0.02721800	-0.67680500
С	3.07048200	-0.95925600	-1.00220300
Н	3.03833100	-1.29517400	1.13619600
С	1.06008700	0.00435700	-1.94128600
Н	-0.54112100	0.42632700	-0.54101100
С	2.35701900	-0.49090900	-2.11104900
Н	4.08681700	-1.34217600	-1.12559900
Н	0.49843200	0.37669800	-2.80190500
Н	2.81359100	-0.50942100	-3.10384800
Ν	-2.57116600	1.27998200	2.14952300
С	-2.90852100	1.44462700	0.83633700
С	-3.68933700	1.18609500	2.93698500
С	-4.43168300	1.39343700	0.65206200
0	-2.12544300	1.62037400	-0.09117300
С	-4.96068400	1.22375700	2.07180000
0	-3.71577600	1.09800400	4.15636500
Н	-4.67534400	0.55908700	-0.02408800
Н	-4.76239000	2.31607800	0.15045300
Н	-5.52605300	0.29326200	2.23617700
Н	-5.60057600	2.04981600	2.41906600
Ν	-1.03105900	2.76361900	4.42131000
С	-0.96144000	4.06933900	4.13593700
С	-1.49270900	2.33717800	5.60201400
С	-1.36935500	5.03887600	5.06506900
С	-0.44832600	4.42929700	2.78133000
С	-1.89244800	3.25221400	6.58865500
С	-1.83224600	4.61463500	6.30815900
С	-0.10514000	5.74208500	2.42768800
Ν	-0.33628900	3.42205300	1.90159700
Н	-2.23949300	2.90778200	7.56154700
Н	-2.14907400	5.34503100	7.05584400
С	0.35259800	5.99343800	1.13397600
С	0.07986800	3.66043500	0.65944400
Н	0.63995500	7.00562700	0.84082900
С	0.44214700	4.93862600	0.22851500
Н	0.10825100	2.79886700	-0.00682600

Н	0.79816300	5.09339800	-0.79010500
Н	-0.17560700	6.55478700	3.15020700
Н	-1.33907900	6.09979700	4.82092300
С	-1.55584900	0.86352100	5.81574000
С	-2.30133300	0.30247500	6.86330700
С	-0.93028100	-1.22455600	5.06891800
С	-2.35229800	-1.08276100	6.98887400
Н	-2.87220500	0.93239000	7.54412300
С	-1.65574600	-1.87085600	6.07194500
Н	-0.36499800	-1.79668300	4.32689800
Н	-2.94238200	-1.54170900	7.78552500
н	-1.67414500	-2.96093800	6.12460300
Ν	-0.87811600	0.10149700	4.95004900
С	1.51684200	1.34103600	3.06845200
С	2.27658300	0.56356200	4.10753400
0	2.32095200	1.69567900	1.99654100
С	3.36920800	1.49790400	4.65552600
Н	2.74841600	-0.32461500	3.66536700
С	3.31011100	2.64807100	2.38067000
С	4.19705100	2.08907000	3.51128600
0	4.25954900	0.83262900	5.53069600
Н	2.89645100	2.34812300	5.18960600
С	4.15509200	3.01170400	1.16648700
Н	2.80822700	3.56349500	2.75175000
0	5.01155100	3.15655100	3.94789100
Н	4.81623400	1.26921900	3.09588900
С	3.72930600	0.53028600	6.79594500
0	3.43412500	3.63560200	0.13618200
Н	4.66105600	2.09750200	0.80065300
Н	4.92717000	3.71234300	1.51887500
С	6.30791700	2.80798200	4.38071500
Н	2.90762400	-0.20871800	6.74728000
Н	3.34470900	1.43643500	7.30524300
Н	4.54162100	0.10386800	7.40197900
С	2.98617100	2.75539500	-0.87276500
Н	6.82498800	3.74372400	4.63944700
Н	6.28405400	2.14445400	5.25939700
Н	6.87929100	2.30294400	3.57672700
Н	2.44304800	3.35450200	-1.61817500
Н	2.31785500	1.97741800	-0.48051600
Н	3.83440800	2.25798100	-1.38092100
Н	1.59657200	0.24150300	4.90468800
Н	1.10658000	2.24879700	3.53758300

8. References

- 1. Zhu, F.; Rourke, M. J.; Yang, T.; Rodriguez, J.; Walczak, M. A. Highly Stereospecific Cross-Coupling Reactions of Anomeric Stannanes for the Synthesis of C-Aryl Glycosides *J. Am. Chem. Soc.*, **2016**, *138*, 12049-12052.
- 2. Zhu, F.; Miller, E.; Zhang, S.-Q.; Yi, D.; O'Neill, S.; Hong, X.; Walczak, M. A. Stereoretentive C(*sp*³)–S Cross-Coupling. *J. Am. Chem. Soc.*, **2018**, *140*, 18140-18150.
- Zhu, F.; Rourke, M. J.; Yang, T.; Rodriguez, J.; Walczak, M. A. Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl C-Glycosides. *J. Am. Chem. Soc.*, 2017, *139*, 17908-17922.
- 4. Jin, Y.; Yang, H.; Fu, H. An *N*-(acetoxy)phthalimide motif as a visible-light pro-photosensitizer in photoredox decarboxylative arylthiation *Chem. Commun.*, **2016**, *52*, 12909-12911.
- Sau, A.; Williams, R.; Palo-Nieto, C.; Franconetti, A.; Medina, S.; Galan, M. C. Palladium-catalyzed direct stereoselective synthesis of deoxyglycosides from glycals. *Angew. Chem. Int. Ed.* 2017, *56*, 3640-3644.
- 6. Chambers, D. J.; Evans, G. R.; Fairbanks, A. J. An approach to the synthesis of α -(1-6)-C-disaccharides by tandem Tebbe methylenation and Claisen rearrangement. *Tetrahedron*, **2005**, *61*, 7184-7192.
- *Gaussian 16, Revision A.03,* M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.
- (a) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C., Yang, W., Parr, R. G. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789.
- 9. Grimme, S., Ehrlich, S., Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011, 32, 1456-1465.
- Weigend, F., Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305.
- 11. Marenich, A. V., Cramer, C. J., Truhlar, D. G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* **2009**, *113*, 6378-6396.
- 12. CYLview, 1.0b, C. Y. Legault, Université de Sherbrooke, 2009 (http://www.cylview.org).

9. Copies of 1D and 2D NMR Spectra

f1 (ppma)/

f1 (ppna8)5

f1 (ppm))0

S192

S202

S245

