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Supplementary Notes

1 Derivation of the hydrodynamic equations through a Boltzmann-
like kinetic approach

In this section we show how the set of hydrodynamic equations,

∂tρ(r, t) = −v0∇ · p +Dρ ∆ρ , (1a)

∂tp(r, t) = σ (ρ− 1)p− δ |p|2 p +Dp ∆p− χp ·∇p−Q(ρ)∇ρ+ ρω∇c , (1b)

∂tc(r, t) = Dc ∆c− α c+ ρ βΘ (c− cth) (1− s) , (1c)

∂ts(r, t) = Dρ ∆s− ε (s− c)− v̄ p ·∇s , (1d)

can be derived from a Boltzmann-like approach for the probability density P (r, ϕ, t) of
finding a particle at position r with orientation ϕ at time t; the particle’s orientation is
signified by the unit vector n = (cosϕ, sinϕ)T . The equation accounts for center-of-mass
diffusion, particle self-propulsion, rotational diffusion, alignment with the signaling field, and
interactions between particles:

∂tP (r, ϕ, t) = Dρ∂i∂iP − v0 ∂i(niP ) + ∂ϕ
[
DR∂ϕ + ω(c) sin(ϕ− ϕc)

]
P + interactions . (2)

The advection term together with the rotational diffusion describe the self-propelled motion
of the particles combined with the angular noise as in the agent-based model. The fourth term
corresponds to a probability flux directed towards orientations that are aligned with the local
gradients of the signaling field c with sensitivity parameter ω(c) and ϕc ≡ tan−1(∂yc/∂xc) =
angle (∇c). The interaction contributions will be discussed further below.

We follow the standard approach for deriving hydrodynamic equations from a Boltzmann-
type of equation by expanding the probability density function in Fourier modes for the
spatial orientation of the director n in two-dimensional space1,2,

P (r, ϕ) =
∑
k

Pk(r) eikϕ , (3)

whereby, for the sake of brevity, we suppress the time dependency here and in the following.
The corresponding Fourier coefficients follow from the forward transform

Pk(r) =
1

2π

∫ 2π

0

dϕP (r, ϕ) e−ikϕ . (4)

We define the particle density ρ and the density-weighted polar order p by relating them to
the harmonics via the Fourier expansion, Eq. (3):

ρ(r) ≡
∫ 2π

0

dϕP (r, ϕ) = 2πP0 , (5)

p(r) ≡
∫ 2π

0

dϕn(ϕ)P (r, ϕ) ,

=
∑
k

1

2

∫ 2π

0

dϕ
(
eiϕ + e−iϕ, i

(
e−iϕ + eiϕ

) )T
Pk(r) eikϕ ,

= π
(
P1 + P−1, i(P1 − P−1)

)T
. (6)
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To describe the intrinsic states of the communicating active matter, we introduce a
probability density P s(s) of particles in a given signaling state s and assume that the total
probability density Ptot(r, ϕ, s) = P s(s)P (r, ϕ) factorizes in a part for the signaling state
and the distribution for the agent’s positions and orientations. Thus, the density-weighted
signaling state of the agents is given by

s̄ ≡
∫

ds

∫ 2π

0

dϕ sP s(s)P (r, ϕ) . (7)

In the following, the different contributions to the Boltzmann equation, Eq. (2), are ana-
lyzed separately. First, in order to derive expressions for the diffusive contributions in the
hydrodynamic equations we use the projection onto the m-th harmonic,

(. . .)
m

=
1

2π

∫ 2π

0

dϕ e−imϕ (. . .) , (8)

which gives the m-th Fourier coefficient to the expansion above, Eq. (3). Applying the
projection operator, Eq. (8), onto the corresponding term in Eq. (2) one obtains

∂tρ = Dρ∆ρ , (9)

for the dynamics of the density. One would obtain the same dynamics for the center-of-mass
diffusion in the polar order field, but contributions from interaction kernels, representing
elasticity of the polarity field, can lead to similar terms, which is why we assume a different
coefficient Dp for the polar field. Continuing with the advective term, (i.e. ∼ v0), the
projection onto the modes yields

∂tPm(r) = −v0∂i(niP (r, ϕ))
m
,

= − v0
2π

∫ 2π

0

dϕ
∑
k

Pk(r)eikϕ

[
∂xe

−imϕ (eiϕ + e−iϕ)

2
+ ∂ye

−imϕ (eiϕ − e−iϕ)

2i

]
,

= −v0
2

[
∂x
∑
k

Pk(r)(δk,m−1 + δk,m+1) + i∂y
∑
k

Pk(r)(δk,m+1 − δk,m−1)

]
. (10)

With the definitions, Eqs. (5) and (6), we obtain for the field variables

∂tρ(r) = 2π∂tP0(r) = −v0∂ipi(r) , (11)

∂tpx(r) = π∂t(P1(r) + P−1(r)) = −v0
2
∂xρ(r) , (12a)

∂tpy(r) = iπ∂t(P1(r)− P−1(r)) = −v0
2
∂yρ(r) . (12b)

Since a Boltzmann-approach is by design a low-density approximation, these results must
be interpreted as such and require for an extension to assure well-behavedness at higher
densities. Notably, this applies to the coupling of the polarity field to density gradients,
∂tpi ∼ −1

2
v0 ∂iρ. At low densities, this term accounts for an effective pressure, increasing

with increasing particle densities. At higher densities, other cooperative effects emerging
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from anisotropic interactions can dominate the coupling of the polarity field to density gra-
dients, counteracting the repulsion dominating at low densities. In addition, at a critical
maximum density, which we set to ρ = 2, the effective pressure increases significantly due
to the finite volumes of the agents. Therefore, steric interactions dominate the cooperative
interactions for ρ → 2. We account for these effects by extending the terms ∼ −∂iρ by a
density-dependent prefactor Q(ρ) which is proportional to v0 and has the following form:

Q(ρ) =
v0
2

[
exp (−32ρ) + exp (16(ρ− 2))

]
. (13)

The function Q(ρ) captures the repulsion at low densities which decays for intermediate
densities due to cooperative effects. Moreover, it limits the maximum density to values
ρ ≈ 2 taking into account the steric repulsion at dense packing of the agents. The presented
results do not qualitatively depend on the particular choice of the function Q(ρ). The scalar
field corresponding to the agent’s signaling activity, Eq. (7) is directly associated with the
agents. Hence, in the same way as the particles it is advected with the polar flow and exhibits
center-of-mass diffusion. From the definition, Eq. (7), we obtain

∂ts̄ = −v0
∫

dϕ ds s∂iniP ,

= −v0
∫

dϕ ds s

[
∂x
eiϕ + e−iϕ

2
+ ∂y

eiϕ − e−iϕ

2i

]∑
k

P kP s ,

= −2πv0

∫
ds s

[
1

2
∂x
(
Pϕ
−1 + Pϕ

1

)
+

1

2i
∂y
(
Pϕ
−1 − P

ϕ
1

)]
P s ,

and with the definition of the polarity field, Eq. (6),

∂ts̄ = −v0∂i
(
s̄ pi
ρ

)
. (14)

Thus, the complete diffusive and advective contributions to the dynamics of the density
weighted signaling state s̄ = ρs are given by

∂ts̄ = Dρ∆s̄− v0∂i
(
s̄pi
ρ

)
. (15)

Correspondingly to the agent-based model, we re-express the state field s̄ in terms of the
’state concentration‘, i.e., the local state normalized by the particle density, s by replacing
s = s̄/ρ in Eq. (15); one obtains

∂ts = Dρ∆s−
v0pi
ρ
· (∂is) , (16)

where we neglected cross-gradient contributions in the density ρ and the field s.
Next, we turn to the contribution of the angular noise to the dynamics of the polar field.

Fourier-expanding the corresponding term ∼ DR in Eq. (2) and projecting it onto the jth

harmonic according to Eq. (8), yields the equation

∂tPj(r) = −DRj
2Pj(r) (17)
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and, thus, with the definition of the polar field, Eq. (6),

∂tp(r) = −2DR p(r) . (18)

Finally, regarding the alignment of the agents’ orientation vectors with gradients of the
signaling field c, we want to briefly highlight the origin of the corresponding terms, ∼ ω, in
the Boltzmann equation (2) starting from the proposed underlying Langevin dynamics

∂r

∂t
= v0n(ϕ) ,

∂ϕ

∂t
= ξ(t) + ω(c) sin (ϕ− ϕc) ,

(19)

with the particle position vector r and the angle of the chemical gradient ϕc = angle(∇c).
The chemotaxis contributes to the Boltzmann equation, Eq. (2), directly as the angular drift
term

∂tP ∼ −∂ϕ [ω(c) sin (ϕ− ϕc)]P . (20)

Expanding the probability density in the Fourier harmonics as in Eq. (3), one obtains

∂tPk = −ω(c)

2π

∫ 2π

0

dϕ e−ikϕ∂ϕ

[
sin (ϕ− ϕc)

∑
k′

Pk′e
ik′ϕ

]
, (21)

and after integration by parts

∂tPk = −ikω(c)

2π

∑
k′

∫ 2π

0

dϕ [cos(ϕc) sin(ϕ)− sin(ϕc) cos(ϕ)]Pk′e
i(k′−k)ϕ ,

= −ikω(c)

4π

∑
k′

[cos(ϕc) (iδk,k′−1 − iδk,k′+1)− sin(ϕc) (δk,k′−1 + δk,k′+1)]Pk′ . (22)

Using the definitions, Eqs. (5),(6), and neglecting contributions of the second harmonics, the
response of the dynamics of p to the signaling stimulus is given by

∂tpi = ω ρ ∂ic , (23)

where we chose a linear dependence of the alignment strength on the signaling amplitude c,
namely ω(c) = 4π ωc. The contributions arising from particles’ interactions can be motivated
as done in Refs.3–5. As such, we include for completeness an elasticity like contribution

∂tp ∼ Dp∆p , (24)

and a self-propulsion
∂tp ∼ χp · ∇p , (25)

in the model. Both terms may arise from anisotropic interactions, e.g., for elongated particles.
They are not included in the agent-based model and we set the corresponding parameters
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Dp and χ to small values as the effects are not crucial for the reported behavior of signaling
active matter. Altogether we obtain the set of hydrodynamic equations

∂tρ(r, t) = −v0∇ · p +Dρ ∆ρ , (26a)

∂tp(r, t) = σ (ρ− 1)p− δ |p|2 p +Dp ∆p− χp ·∇p−Q(ρ)∇ρ+ ρω∇c , (26b)

∂tc(r, t) = Dc ∆c− α c+ ρ βΘ (c− cth) (1− s) , (26c)

∂ts(r, t) = Dρ ∆s− ε (s− c)− v̄ p ·∇s , (26d)

complementing the derived contributions from the Boltzmann equation, Eq. (2), with the
interaction terms, Eqs. (24), (25), and the continuous versions of the equations for the
signaling machinery, Eqs. (3), (5) in the main text.

2 Reduced model without decision making

To highlight the role of the individual decision making for the multi-scale aggregation process,
for comparison we also investigate the behavior of a system lacking such a mechanism. In
particular, we modify the source dynamics given in main text Eq. (3), such that it becomes
independent of the agents’ internal state,

∂tc(r, t) = Dc∆c− αc+ β
N∑
i=1

f(r, t) . (27)

The polar agents with dynamics given by main text Eqs. (1), (2), and supplementary in-
formation Eq. (27), are assumed to contribute as persistent sources of the signaling field.
Similar to what has been reported in reference6, we observe aster-like stationary cluster
formation with interface controlled ripening, see Supplementary Fig. 4a. Moreover, the in-
terplay between self-propulsion and attraction towards a local aggregation center can give
rise to short-lived ring-like structures and vortices which eventually tend to dissolve into a
few aster-like aggregates as depicted in Supplementary Fig. 4b. Since in the modified model
there is only local interactions mediated by the comparably slow diffusion of the signaling
field, it does not exhibit a collective long-range organization of aggregation centers. In con-
trast to a system with active decision making, here the established smaller aggregates collide
and merge upon random encounters.
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3 Model parameters

The supplementary tables 1-3 provide an overview of the system parameters used in the
numerical simulations shown in the main text as well as in the supplementary figures and
movies. We measure densities in units of the critical density for the isotropic-polar transition.
Time is given in units of the signal decay rate [α] and lengths are given in units of the resulting
diffusion length

√
Dc/[α].

Supplementary Tables

Parameter Description Value (continuum model) Value (agent-based)
α signal decay rate 10 0.9
β signal production rate 40 2
a threshold factor 0.9 0.9
b constant threshold 0.05 0.05
ε refractory rate 4 0.3
Dc signal diffusion 1 0.9

Supplementary Table 1: Parameters of the signaling system, Eqs. (1c), (1d), in the excitable regime used for
the hydrodynamic- and the agent-based model, respectively.

Parameter Description Value
v0 propulsion speed 0.2
DR rotational diffusion 0.05
rc interaction radius 2
rp particle radius 0.25
Γ polar alignment factor 0.1

Supplementary Table 2: Parameters of the agent-based model as detailed in Methods. The chemical suscep-
tibility parameter in main text Fig. 1 is set to ω ∈ {0.1, 0.4, 0.004, 0.2, 0.004} for panels e-i, respectively.
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Value
Parameter Description Default Fig. 1j Fig. 1k Fig. 1 l,n Fig. 1 m

v0 motility 0.5 0.1 0.5 0.2 0.1
σ polar persistence parameter 0.01 0.1 0.2 0.5 0.05
ω signal susceptibility 0.1 0.8 0.3 0.8 0.4
Dρ translational diffusion 0.05
Dp elasticity parameter 0.1
χ convective derivative coefficient 0.1
δ magnitude of bulk order 1.0
ρ0 average density 0.6

Supplementary Table 3: Parameters of the hydrodynamic continuum model, described in Methods. Figure
numbers correspond to main text figures.
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Supplementary Figures
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Supplementary Figure 1: Signaling-enhanced aggregation capabilities. a, Aggregation times Taggr of the
hydrodynamic system, main text Eqs. (6)-(9), reaching the polar-order transition at ρ = 1 from a homoge-
neous initial density ρ0. We observe faster aggregation for higher initial densities as well as larger signaling
susceptibilities ω. b, Corresponding temporal evolution of the system’s maximum density ρmax evolving
from a homogeneous initial density ρ0 = 0.4 for different values of ω. We determine the aggregation times
Taggr (dashed colored lines) as the first times at which the critical density (dashed black line) is reached,
ρmax = ρc = 1. Other parameters as given in SI section 3.

Supplementary Figure 2: Spiral waves and vortex solution in the hydrodynamic model. a, Vortex solution
with persistent spiral wave activity in the hydrodynamic model, see Methods. The composite image contain-
ing layers representing the orientation vector field p(r) (arrows), the local density profile ρ(r), concentration
of signaling molecules c(r), and field of state s(r). b, Dependence of spiral frequency on spatially homoge-
neous density values ρ. Error bars indicate error ranges arising from the numerical measurement of spiral
frequencies. Parameters as stated in SI section 3.
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Supplementary Figure 3: Excitable dynamics of the well-mixed signaling system. The agents serve both as
a source of chemical signals and can adapt their internal state to the chemical environment. In this process,
the release of the chemicals by the agents depends on the internal state of the agents and the state of the
environment. The combination of these factors leads to a ‘sense-and-response’ system that exhibits excitable
dynamics. a, Phase-space flow of the excitable system, main text Eqs. (3), (5). The black line indicates
the nullcline c = s of the agents’ state kinetics, main text Eq. (5). Due to the discontinuous switch in the
agents’ signal relaying capability, there are two nullclines (violet and orange) originating from the signaling
kinetics, main text Eq. (3), with c = β/α(1 − s) and c = 0, respectively. These nullclines are valid in the
correspondingly colored areas c ≷ (s+ b)/a. The red trajectory highlights an excursion in phase space upon
initial excitation. b, Dynamics of the chemical concentration c and the signaling state s corresponding to
the red trajectory in a. Parameters as stated in SI section 3. Time is measured in the units of the decay
rate [α].
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Supplementary Figure 4: Time evolution of a reduced model, lacking the internal decision making machinery
of the self-propelling agents, main text Eqs. (1), (2), and SI Eq. (27). The two parameter regimes shown
in panels a and b illustrate localized cluster formation as a generic form of aggregation in the model. The
clusters exhibit an interface-controlled coarsening behavior. a, Formation of localized clusters for small polar
alignment Γ = 0.01. b, Cluster formation with intermediate transient solutions for stronger polar alignment,
Γ = 0.1. Agent colors indicate the polar orientation and background colors represents concentrations of the
communication field c(r, t), see Eq. (27). Parameters as in table 2 with rp = 0.5, β = 0.9, and ω = 0.05.
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