1 Chromosome-level genome and population genomics reveal 2 evolutionary characteristics and conservation status of Chinese 3 indigenous geese

Jing Ouyang^{1†}, Sumei Zheng^{1,2†}, Min Huang², Hongbo Tang¹, Xiaohui Qiu³, Shoujin

5 Chen⁴, Zhangzhang Wang⁴, Zhongdong Zhou⁴, Yuren Gao¹, Yanpeng Xiong¹, Guohua

6 Zeng³, Jimin Huang³, Jiugen He³, Jun Ren², Hao Chen^{1*}, Xueming Yan^{1*}

7

8 Supplementary Methods

9 Supplementary Method 1. Genome assembly

10 Stage 1: PacBio assembly

Genomic DNA was isolated from a female Xingguo gray goose (XGG) through a traditional phenol-chloroform protocol, the qualified genomic DNA was fragmented by 26 G Needle, and then PacBio SMRTbell libraries (20 Kb insert) were prepared for single-molecule realtime sequencing with a sequencing depth of 101.33× and raw data was 123.62 Gb (Supplementary Figure 1 and Supplementary Table 1).

Using wtdbg v2.4¹ for *de novo* assembly based on the data generated by PacBio
sequencing above, the assembly process was as follows:

18 (1) Alignment: KBM (Kmer-Bin-Mapping) algorithm was used to cut the sequenced long 19 reads into several bins with 256-bp as a unit without overlapping. The k-mers in the fragment were then classified into a bin, and a k-mer has at least 4 \times 256-bp. If most k-mers in a bin 20 21 occur at a higher frequency, the bin will be filtered out as a high repeat bin. Finally, the linear 22 relationship between matched bins in the sequence was searched by dynamic programming. 23 (2) Assembly: FBG (Fuzzy Bruijn Graph) was used to break reads into multiple 1024-bp k-mers as vertices in FBG graph, and then these points were connected to form FBG graph 24 25 according to the reading path, and contigs were obtained by simplifying FBG graph.

26 (3) Polish: To improve the assembly quality, the reads generated by PacBio sequencing

were used to polish the assembled contigs. The high-confidence bases were obtained by
 comparing and correcting each other between sequences, and finally high-quality
 consensus sequences were produced.

30 Stage 2: Super-scaffolding

31 10× Genomics is based on GemCode platform to amplify the long fragment sequence, 32 introduces barcode sequence and adapter primers, then break the sequences into 33 appropriate fragments for sequencing, and assemble multiple reads through barcode 34 sequence information to obtain 99.10× Linked-reads data (120.90 Gb; Supplementary 35 Figure 1 and Supplementary Table 1).

36 The Linked-reads generated by the $10 \times$ Genomics were assembled with the consensus 37 sequences of Stage 1 using fragScaff v140324.1² to generate the supper-scaffold, and the 38 final 10× Genomics assembly version was obtained.

39 Stage 3: Super-scaffold gap filling

To improve the assembly of complex regions of the genome, we constructed the BioNano library for high-depth sequencing (137.47×, 167.72 Gb) using the Irys system, and used the obtained physical map to span repetitive fragments and some regions containing complex elements to acquire highly continuous Super-scaffold (Supplementary Table 1).

44 The process of BioNano assisted genome assembly was as follows:

45 (1) The assembled version of Stage 2 was electronically digested and converted into a46 cmap file, which was recorded as NGS cmap.

47 (2) Enzyme site spacing was normalized by bionano data bnx, NGS map and estimated
48 genome size, and the optimal assembly parameters were screened out. BioNano data were
49 assembled to generate a BioNano assembly version, which was recorded as BNG cmap.

(3) The bnx, NGS map, BNG map and initial assembly version were based on
 hybridScaffold software³, and reasonable parameters were set to obtain the final assembly
 version of BioNano.

53 Stage 4: Assembly polishing using Illumina reads

54 In addition, we sequenced by constructing a 350-bp insert library based on a standardized 55 process of Illumina NOVASEQ 6000 platform with a sequencing depth of 111.59×, resulting in a total of 136.14 Gb of data (Supplementary Table 1). Using Illumina pair-end reads to
polish the assembled version of Stage 3 and the specific process was as follows:

(1) The reads generated by Illumina sequencing were aligned to the assembled version
of Stage 3 by BWA v0.7.17⁴, and the Sequence Alignment/MAP format (BAM) files were
obtained and sorted.

(2) Subsequently, combined with the mapping results, the assembled version was
 polished iteratively 2 to 3 times to improve the single-base correct rate using Pilon v1.23⁵.

63 Stage 5: Hi-C aided chromosome-level whole-genome assembly

64 Hi-C technology obtains the interaction information of spatially connected DNA fragments through special experimental techniques. Different contigs or scaffolds are classified into 65 different chromosomes according to the probability of internal chromosome interaction 66 67 significantly higher than that between chromosomes. Contigs or scaffolds of the same chromosome are ordered and orientated according to the probability which decreases with 68 the increase of the interaction distance. To anchor assembled scaffolds onto the 69 70 chromosome, we constructed the Hi-C library and obtained sequencing data $(112.91 \times,$ 71 137.75 Gb) via the Illumina HiSeq X Ten platform. The detailed auxiliary anchoring process 72 was as follows:

(1) Alignment: Hi-C data were aligned to the assembled scaffolds constructed by Stage 4
 through BWA, and duplicated and non-aligned data were removed by SAMtools v1.10⁶ to
 obtain high-quality alignment data while extracting reads near the restriction site for auxiliary
 assembly.

(2) Clustering: Through the physical coverage information of the comparison results, the incorrect assembly from the previous step was interrupted and corrected. If read pairs captured by Hi-C technology on two contigs, it is determined that there is an interaction between the two contigs. The greater the number of interacting reads on two contigs, the stronger the interaction, and the more they tend to cluster together. Subsequently, we counted the number of interactions between contigs to cluster the contigs and divided them into designated classes according to the number of chromosomes of the species.

84 (3) Sorting and orientation: According to the results of clustering, the position of each two
 85 contigs and the intensity of interaction, LACHESIS v201701⁷

86 (https://github.com/shendurelab/LACHESIS) was used to sort and orientate the assembled
87 sequences to the chromosome level.

Finally, we performed artificial correction of the LACHESIS-assembled results and gap filling or sequence de-duplication to increase the accuracy and completeness of the assembled genome.

91 Assembly quality assessment

92 (1) Sequence consistency assessment

To evaluate the accuracy of genome assembly, we used BWA to re-align the Illumina pair-93 94 end reads to the assembled genome of XGG and counted the mapping rate, the coverage 95 and sequencing depth of the genome to assess consistency of assembly and the 96 homogeneity of sequencing. The alignment rate was about 99.19%, and the coverage rate 97 was about 97.96%, indicating that the reads and the assembled genome had a good consistency (Supplementary Table 6). The heterozygous SNP ratio of XGG was 0.2777% 98 and the homozygous SNP ratio was 0.0005%, which generally reflected the accuracy of 99 100 genome assembly. This result indicated that the XGG genome had a higher single-base 101 accuracy.

102 (2) Sequence integrity assessment

103 To further investigate the quality of the genome assembly, the assembled transcriptome Unigenes were mapped to the genome sequences and performed CEGMA v2.5⁸ (Core 104 105 Eukaryotic Genes Mapping Approach: http://korflab.ucdavis.eGO/dataseda/cegma/) and BUSCO v.5.2.2⁹ (Benchmarking Universal Single-Copy Orthologs: http://busco.ezlab.org/) 106 107 assessments. CEGMA assessment was to select conserved genes (248 genes) in 6 eukaryotic model organisms to form the core gene library, and combined with tblastn¹⁰ and 108 109 GeneWise¹¹ to evaluate the completeness of assembled genome. BUSCO assessment based on metaeuk v5.34¹² and hmmer v3.1¹³ to assess the integrity of XGG genome 110 111 assembly of 8,338 orthologous single-copy genes in the Aves database. Results showed 112 that over 92.3% of 248 core genes could be covered by the genome indicating its 113 completeness. BUSCO results also indicated that more than 95.7% of 8,338 avian 114 orthologous genes could be found in the XGG genome, also reflecting its high quality 115 (Supplementary Table 7).

116 Supplementary Method 2. Genome annotation

117 Stage 1: Repeat annotation

118 We used homologous alignment and *de novo* search to annotate whole-genome repeat 119 sequences of XGG in our repeat annotation pipeline (Supplementary Figure 3). Tandem 120 Repeat was extracted using Tandem Repeats Finder (TRF) v4.09¹⁴ 121 (http://tandem.bu.edu/trf/trf.html) by ab initio prediction. Based on the repeat sequence database RepBase¹⁵ (http://www.girinst.org/repbase/), we used RepeatMasker v4.0.7¹⁶ 122 123 (http://www.repeatmasker.org/) software and its in-house scripts (RepeatProteinMask) with 124 default parameters to identify and classify sequences similar to known repetitive sequences. 125 And *ab initio* prediction built *de novo* repetitive elements database by LTR FINDER v1.05¹⁷ 126 (http://tlife.fudan.edu.cn/ltr finder/), RepeatScout v1.05¹⁸ (http://www.repeatmasker.org/), RepeatModeler v1.0.3¹⁹ (http://www.repeatmasker.org/RepeatModeler.html) with default 127 128 parameters, then all repeat sequences with lengths >100bp and gap 'N' less than 5% 129 constituted the raw transposable element (TE) library. A custom library (a combination of 130 Repbase and our *de novo* TE library which was processed by uclust v1.2.22g²⁰ to yield a 131 non-redundant library) was supplied to RepeatMasker for DNA-level repeat identification. 132 Finally, we obtained 2.04% tandem repeats by TRF, 8.55% transposable elements by 133 RepeatMasker and 4.55% transposable element proteins by RepeatProteinMask, and totally 134 of 10.17% non-redundant repetitive sequences. Additionally, we annotated 0.16% DNA 135 transposable elements, 6.26% LINE, 0.03% SINE and 2.54% LTR (Supplementary Tables 136 10–11).

137 Stage 2: Gene annotation

138 (1) Gene structure annotation

Structural annotation of XGG genome incorporates homology-based prediction, *de novo* prediction, and transcriptome data-based approach. First, the homology prediction was performed, using coding sequences of the homologous species (*Anas platyrhynchos, Anser cygnoides, Gallus gallus, Meleagris gallopavo,* and *Coturnix japonica*) to compare with the genome sequence of XGG through BLAST v2.28¹⁰ (http://blast.ncbi.nlm.nih.gov/Blast.cgi), and then the matching proteins were aligned to the homologous genome sequences for 145 accurate spliced alignments with GeneWise v2.4.1²¹ (http://www.ebi.ac.uk/~birney/wise2/) 146 software which was used to predict gene structure contained in each protein region. Afterward, we conducted *de novo* prediction and used Augustus v3.3.3²² (http://bioinf.uni-147 greifswald.de/augustus/), Geneid v1.423, Genescan v3.1.224, GlimmerHMM v3.0425 148 149 (http://ccb.jhu.edu/software/glimmerhmm/) SNAP v2013.11.29²⁶ and 150 (http://homepage.mac.com/iankorf/) to predict gene structure based on the statistical 151 characteristics of Xingguo gray goose genome sequence data. To optimize the genome 152 annotation, the transcriptome reads from different tissues that were aligned to XGG genome 153 using TopHat v2.0.8²⁷ with default parameters to identify exons region and splice positions. The alignment results were then used as input for Cufflinks v2.1.1²⁸ with default parameters 154 for genome-based transcript assembly. Furthermore, combining the genes supported by 155 156 various v1.1.1²⁹ methods through EVidenceModeler (EVM) 157 (http://evidencemodeler.sourceforge.net/) to generate a non-redundant and more complete gene set. In the end, using PASA v2.4.1²⁹ (http://pasa.sourceforge.net/) to correct the EVM 158 159 annotation results, add UTR and variable shear, and other information to get the final gene 160 set.

161 (2) Gene function annotation

162 After acquiring gene structure information, we further utilized Blastp v2.28³⁰ (E-value < 1e-5) to compare the sequences with protein databases such as SwissProt³¹ 163 Pfam³³ 164 (http://www.uniprot.org/), NCBI nr³² (http://www.ncbi.nlm.nih.gov/protein), InterPro³⁵ 165 (http://pfam.xfam.org/), KEGG³⁴ (http://www.genome.jp/kegg/) and 166 (https://www.ebi.ac.uk/interpro/) to predict the domain, the functions of encoding proteins of 167 new genes, and the metabolic pathway and signal transduction pathway. Ultimately, we 168 totally annotated 17,135 (98.2%) functional genes of 17,448 predicted genes, of which 169 16,381 (93.9%) genes from Swissprot database, 16,803 (96.3%) genes from NCBI nr 170 database, 14,631 (83.9%) genes from KEGG database, 17,072 (97.8%) genes from InterPro 171 database, 15,926 (91.3%) genes from GO³⁶ and 14,435 (82.7%) genes from Pfam database 172 (Supplementary Figure 4 and Supplementary Table 9).

173 Stage 3: Annotation of ncRNAs

174 Annotations of noncoding RNAs include tRNAs, rRNAs, miRNAs, and snRNAs. The

tRNAscan-SE v1.4³⁷ (http://lowelab.ucsc.edu/tRNAscan-SE/) was used to identify the tRNA
sequences in terms of the structural characteristics. According to the high conservation of
rRNA, we used the rRNA sequences of the related species as reference to predict by BLAST.
Moreover, the INFERNAL v1.1.2³⁸ (http://infernal.janelia.org/) in Rfam³⁹ was used to predict
the sequence information of miRNA and snRNA on the genome through the covariance
model of the Rfam family (Supplementary Table 12).

181 Supplementary Method 3. Identification of sex chromosomes

The sex chromosomes of XGG were determined based on the genomic sequence of avian chromosome-level genomes in the public database, which mainly encompasses four steps: segmentation of genomic sequence, homologous analysis of sequences, sequence-based screening and assessment. The specific process was as follows:

186 Step 1: Segmentation of genomic sequence

Firstly, we split sequences of XGG into short-reads with a size of 300 bp using in-house python script, and then filtered the reads with more than 10 ambiguous bases N. The remaining reads were used for subsequent alignment.

190 Step 2: Homologous analysis of sequences

We simultaneously downloaded the assembled sequences of 7 birds whose sex chromosomes have been identified (Supplementary Table 13). Then, we separately merged all Z and W sequences as the Z and W reference library and built the index files for each of them using BWA. The short-reads (300 bp) of XGG that split and filtered above were then mapped to the reference libraries and all the aligned reads were extracted by SAMtools.

196 Step 3: Sequence-based screening

197 Subsequently, we further carried out quality control on the aligned reads extracted above. 198 We kept the reads with Mapping Quality > 30 by SAMtools and sorted the alignments 199 according to scaffolds and read ID. Afterward, we filtered the alignments that were mapped 200 on different sequences or different regions in one scaffold. Finally, the chromosome type of 201 the scaffolds was inferred according to the proportion of aligned reads to the scaffold and

then calculated the cumulative length of the same chromosome type of scaffolds until theaverage length of the downloaded high-quality Z and W references.

204 Step 4: Sex chromosome assessment

205 Due to the close relationship between goose and duck, and considering the high assembly quality of Pekin duck, XGG and Pekin duck⁴⁰ were selected for collinearity analysis. We 206 207 used the "One Step MCScanX-Super Fast" function of TBtools v1.06⁴¹ to align the genome 208 sequences of Pekin duck and XGG, merged the results of MCScanX to generate a 209 collinearity file, and then visualized though the "File Transformat for MicroSynteny Viewer" 210 function to further evaluate the sex-linked sequences. Next, with the re-sequenced mapping 211 data of 162 Chinese domestic geese (Supplementary Table 15), the average sequencing 212 depth of all sequences was computed using the 'samtool depth' command of SAMtools in 213 5-kb non-overlapping windows. We regarded the sequencing depth of autosomes as a 214 normal value. The sequencing depths of Z and W chromosomes in females were 215 approximately identical, and both were half of the autosomes. The average sequencing 216 depth of Z chromosome in males was similar to that of autosomes, while the W chromosome 217 was closer to zero. Based on the above identification results, we focused on Hic 3 and 218 Hic 4 as Z and W chromosomes of XGG, respectively.

219 Supplementary Method 4. SNP calling

220 To improve the efficiency and accuracy of variants detection, we used the commercial 221 software Sentieon v201711.03⁴² on Tianhe-2 Supercomputer to identify SNPs and small 222 Indels for 994 geese. First, we built the index file for XGG and aligned high-quality reads to 223 the reference with BWA to generate Sequence Alignment/Map (SAM) files, which were then 224 format transformed to BAM files and sorted by SAMtools. For the mapping results, 225 "LocusCollectora" and "Realigner" functions from Sentieon were used to delete polymerase 226 chain reaction (PCR) duplicates and calibrated according to the quality score. Next, "Haplotyper" function was applied to generate Genomic Variant Call Format (GVCF) files for 227 228 each individual and separately performed joint calling for 772 XGG and 222 geese using "GVCFtyper" function. Finally, GATK v4.0.1243, BCFtools v1.1544 and PLINK v1.945 were 229

230 used to filter SNPs with the following conditions:

231 (1) For 772 low-depth $(1\times)$ resequencing individuals: we call variants for 2 steps. For the 232 first step, we retained SNPs with the parameters "QD (QualByDepth) < 2.0, FS 233 (FisherStrand) > 60.0, MQ (RMSMappingQuality) < 40.0, SOR (StrandOddsRatio) > 3.0, 234 MQRankSum (MappingQualityRankSumTest) -12.5. ReadPosRankSum < 235 (ReadPosRankSumTest) < -8.0, SOR (StrandOddsRatio) > 3.0, MAF (Minor Allele Frequency) > 0.003, and call rate > 0.8". Secondly, we used SNPs obtained from the first 236 237 step as a known data set to perform joint calling again. After filtering with the same conditions 238 above, 163,067 SNPs were obtained to carry out whole genome imputation using STITCH v1.68⁴⁶ with the parameters of K = 40 and nGen = 50. Finally, a total of 12,415,004 SNPs 239 240 was retained with MAF > 0.01 and call rate > 0.9.

241 (2) For 222 high-depth ($10\times$) resequencing individuals: after joint calling, 13,008,900 242 SNPs were obtained after quality control with the parameters "QD < 2.0, FS > 60.0, MQ < 243 40.0, SOR > 3.0, MQRankSum < -12.5, ReadPosRankSum < -8.0, SOR>3.0, MAF > 0.05, 244 and call rate > 0.9".

245 Supplementary Tables

Pair-end	Insert	Total data	Read length	Sequence
libraries	size (bp)	(Gb)	(bp)	coverage (×)
Illumina reads	350	136.14	150	111.59
PacBio reads	20,000	123.62	15,280 (N50)	101.33
10× Genomics	600	120.90	150	99.10
Bionano	-	167.71	-	137.47
Hi-C	350	137.75	150	112.91
Total	-	686.12	-	562.4

246 **Supplementary Table 1.** Statistics of genome sequencing data of XGG.

Hic_ID	_ID Pseudo- Cluster		length (bp)	G+C (%)
	chromosome	number		
Hic_0	1	7	209,937,520	40.16
Hic_1	2	7	161,260,155	40.04
Hic_2	3	5	121,836,162	39.94
Hic_3	38 (Z)	8	78,059,545	39.64
Hic_4	4 (W)	5	18,190,528	45.29
Hic_5	5	4	77,964,326	39.83
Hic_6	6	2	65,887,397	41.49
Hic_7	7	2	40,772,850	41.41
Hic_8	8	2	38,093,052	41.88
Hic_9	9	2	32,954,318	42.25
Hic_10	10	3	26,882,679	43.10
Hic_11	11	2	20,182,763	44.98
Hic_12	12	2	22,278,886	43.40
Hic_13	13	2	22,003,932	42.55
Hic_14	14	2	22,645,356	43.25
Hic_15	15	2	21,569,393	43.09
Hic_16	16	3	18,393,121	45.26
Hic_17	17	2	16,340,960	46.30
Hic_18	18	3	15,607,799	45.79
Hic_19	19	2	13,056,453	47.62
Hic_20	20	17	12,304,091	48.79
Hic_21	21	25	12,166,798	47.25
Hic_22	22	2	9,065,161	48.44
Hic_23	23	2	7,873,851	49.76
Hic_24	24	2	7,713,126	51.44
Hic_25	25	2	7,064,174	52.59
Hic_26	26	2	6,484,800	52.70
Hic_27	27	3	5,512,697	49.52
Hic_28	28	2	6,110,239	53.50
Hic_29	29	2	3,196,551	59.17
Hic_30	30	2	2,953,559	59.97
Hic_31	39	2	1,382,414	62.90
Hic_32	31	2	1,172,193	56.62
Hic_33	32	4	1,164,976	60.47
Hic_34	33	2	780,505	62.98
Hic_35	34	46	638,055	58.32
Hic_36	35	5	931,379	63.66
Hic_37	36	17	1,369,031	57.16
Hic_38	37	15	4,330,114	51.62
Scaffold	-	2,203	27,335,139	-

248	Supplementary Table	2. Statistical results for e	each chromosome on XGG genome.
-----	---------------------	------------------------------	--------------------------------

Supplementary Table 3. The assembly rate of XGG.

Number of anchored bases (bp)	1,136,130,909
Total number of bases (bp)	1,163,486,048
Anchored Rate (%)	97.65

Supplementary Table 4. Nucleotide content of XGG.

Туре	Number (bp)	% of genome
А	334,957,286	28.79%
Т	335,072,751	28.80%
С	244,919,141	21.05%
G	244,557,032	21.02%
Ν	3,979,838	0.34%

257 Supplementary Table 5. Genome assemblies for scaffold N50 length comparison and258 BUSCO analyses.

Common name	Species	Assembly level	Assembly version
Xingguo gray goose	Anser cygnoides	Chromosome	This study
Tianfu goose	Anser cygnoides ⁴⁷	Chromosome	GCA_013030995.1
Zhedong white goose	Anser cygnoides ⁴⁸	Scaffold	GCF_000971095.1
Sichuan white goose	Anser cygnoides ⁴⁹	Scaffold	GCA_002166845.1
Bar-headed goose	Anser indicus ⁵⁰	Chromosome	GCA_006229135.1
Pink-footed goose	Anser brachyrhynchus ⁵¹	Chromosome	GCA_002592135.1
African pygmy goose	Nettapus auritus	Chromosome	GCA_011076525.1
Canada goose	Branta canadensis	Chromosome	GCA_006130075.1
Chicken	Gallus gallus ⁵²	Chromosome	GCA_000002315.5
Turkey	Meleagris gallopavo ⁵³	Chromosome	GCF_000146605.3
Peregrine falcon	Peregrine falcon ⁵⁴	Chromosome	GCA_001887755.1
Bengalese finch	Lonchura striata domestica ⁵⁵	Chromosome	GCA_005870125.1
Pekin duck	Anas platyrhynchos40	Chromosome	GCA_003850225.1
Zebra finch	Taeniopygia guttata ⁵⁴	Chromosome	GCA_009859065.2
Kakapo	Strigops habroptila ⁵⁶	Chromosome	GCA_004027225.2
Superb fairywren	Malurus cyaneus ⁵⁷	Chromosome	GCA_009741485.1

Supplementary Table 6. Reads coverage of XGG.

Reads	Mapping rate (%)	99.19
	Average sequencing depth	100.88
	Coverage (%)	97.96
Genome	Coverage at least $4 \times (\%)$	97.87
	Coverage at least $10 \times (\%)$	97.76
	Coverage at least $20 \times (\%)$	97.56

263 Note: Coverage at least $N \times (\%)$, the proportion of the genome covered with $N \times$ Reads.

Supplementary Table 7. The results of assembly quality assessment of CEGMA and 267 BUSCO.

CEG	iMA		BUSCO	
complete	complete + partial	Complete	Fragmented	Missing
171 (68.95%)	230 (92.30%)	95.70%	1.0%	3.30%

Supplementary Table 8. Basic statistical results of gene structure prediction in XGG.

Method	Gene set	Gene number	Mean transcript length (bp)	Mean CDS length (bp)	Exons per transcri pt	Mean exon length (bp)	Mean intron length (bp)
De novo	Augustus ²²	20,204	14,520.68	1,313.99	7.75	169.54	1,956.45
	GlimmerHMM ²⁵	211,371	4,751.23	480.92	2.69	178.52	2,520.96
	SNAP ⁵⁸	66,746	25,705.76	663.00	5.52	120.04	5,536.67
	Geneid ²³	35,320	22,781.80	1,148.26	6.11	187.86	4,231.63
	Genscan ²⁴	43,982	19,943.00	1,368.08	7.97	171.71	2,666.07
Homolog	Anser cygnoides	33,702	9,941.82	959.90	4.96	193.37	2,265.80
	Anas platyrhynchos	21,983	15,062.37	1,263.90	6.67	189.36	2,431.61
	Coturnix japonica	19,020	17,262.92	1,405.10	7.64	183.90	2,388.01
	Gallus gallus	24,233	12,354.55	1,090.99	5.74	190.01	2,375.31
	Meleagris gallopavo	32,801	8,315.85	900.67	4.71	191.27	1,999.30
RNA-seq	PASA	60,697	14,925.87	1,132.57	6.88	164.57	2,344.99
	Cufflinks ⁵⁹	35,577	24,131.15	3,309.39	8.38	394.76	2,820.16
EVM		24,855	16,188.96	1,228.27	7.27	168.92	2,385.63
Pasa-upda	ate*	24,688	17,192.64	1,244.96	7.34	169.66	2,516.29
Final set**		17,448	23.019.79	1,533.17	9.52	160.98	2,520.65

Note: * includes the UTR region, others do not. ** contains the UTR region, which was
obtained by removing the alternative splicing, selecting the longest transcript, removing
redundant exons and filtering from the gene set of pasa2 update. Filtering conditions:
overlap with TE greater than or equal to 20%, stop gain, only supported by *de novo* evidence,
and rpkm expression in each tissue was less than 1.

276	Supplementary	/ Table 9.	Statistical	results of	aene	function	annotation.
			0.000000		90110		

Database	Gene number	Percent (%)
Swissprot	16,381	93.90
Nr	16,803	96.30
KEGG	14,631	83.90
InterPro	17,072	97.80
GO	15,926	91.30
Pfam	14,435	82.70
Annotated	17,135	98.20
Unannotated	313	1.80
Total	17,448	-

Supplementary Table 10. The predicted genome-wide repetitive sequences of XGG.

Repeat Size (bp)	Percent (%)
23,771,262	2.04
99,737,512	8.55
53,067,289	4.55
118,586,730	10.17
	Repeat Size (bp) 23,771,262 99,737,512 53,067,289 118,586,730

283	Supplementary	y Table 11	. Whole gen	ome transp	osable elem	ents (TE) of XGG.
			J			(

TE type	Denovo+Rep base Length (bp)	% in Genome	TE proteins Length (bp)	% in Genome	Combined TEs Length (bp)	% in Genome
DNA	1,737,587	0.15	218,250	0.02	1,919,410	0.16
LINE	67,441,314	5.78	45,338,969	3.89	72,973,327	6.26
SINE	292,458	0.03	0	0	292,458	0.03
LTR	28,477,183	2.44	7,597,143	0.65	29,561,807	2.54
Simple_re peat	2,171,633	0.19	0	0	2,171,633	0.19
Unknown	4,584,688	0.39	0	0	4,584,688	0.39
Total	99,737,512	8.55	53,067,289	4.55	103,475,240	8.87

Note: Denovo+Repbase is a library predicted by RepeatModeler, RepeatScout and LTR_FINDER software combined with RepBase nucleotide library, using Uclust software to integrate according to the 80-80-80 principle, and then using RepeatMasker software to identify TEs; TE proteins are based on RepBase protein library, using RepeatProteinMask software to identify TEs; Combined TEs is the result of integrating the above two methods and removing redundancy. Unknown indicates that the repeat sequence cannot be classified by RepeatMasker.

- 290
- 291
- 292

293 **Supplementary Table 12.** Noncoding RNA statistics in XGG.

ncRNA Type		Copy number	Mean length (bp)	Total length (bp)	% of genome
miRNA		424	85.59	36,290	0.003112
tRNA		371	74.68	27,706	0.002376
rRNA	rRNA	234	247.90	58,009	0.004975
	18S	20	683.45	13,669	0.001172
	28S	85	339.14	28,827	0.002472
	5.8S	8	155.38	1,243	0.000107
	5S	121	117.93	14,270	0.001224
snRNA	snRNA	346	126.76	43,858	0.003761
	CD-box	114	92.05	10,494	0.000900
	HACA-	81	139.48	11,298	0.000969
	box				
	splicing	132	142.40	18,797	0.001612

Chromosome	Species	Length (bp)	Assembly version
Z	Anas platyrhynchos ⁴⁰	84,547,829	GCF_015476345.1
Z	Coturnix japonica ⁶⁰	67,000,979	GCA_001577835.1
Z	Gallus gallus ⁵²	82,529,921	GCA_000002315.5
Z	Numididae ⁶¹	75,261,281	GCA_002078875.2
Z	Parus major ⁶²	74,514,349	GCA_001522545.3
Z	Taeniopygia guttata ⁵⁴	78,980,481	GCA_008822125.1
W	Anas platyrhynchos ⁴⁰	16,693,329	GCF_015476345.1
W	Coturnix japonica ⁶⁰	122,254	GCA_001577835.1
W	Gallus gallus ⁵²	6,813,114	GCA_000002315.5
W	Meleagris gallopavo ⁵³	313,225	GCA_000146605.4

Supplementary Table 13. Reference chromosomes used in sex chromosomes 296 identification.

298	Supplementary	Table 14.	Sex-linked sequen	ces identified in the	genome of XGG.
			•		•

Chromosome	Sequence ID	Length (bp)
type	-	
W	Hic_4	18,190,528
W	original_scaffold_2066_obj_pilon	6,053
Z	Hic_3	78,059,545
Z	fragScaff_scaffold_42_obj_pilon:::fragment_2:::debris	10,000
Z	Super-Scaffold_84_pilon:::fragment_4:::debris	10,000
Z	Super-Scaffold_29_pilon:::fragment_4:::debris	30,000
Z	original_scaffold_1774_obj_pilon	23,497
Z	original_scaffold_265_obj_pilon	31,285
Z	original_scaffold_1886_obj_pilon	14,535
Z	Super-Scaffold_66_pilon:::fragment_6:::debris	20,000
Z	original_scaffold_1674_obj_pilon	50,807
Z	original_scaffold_2242_obj_pilon	13,126
Z	original_scaffold_512_obj_pilon	17,222
Z	Super-Scaffold_29_pilon:::fragment_10:::debris	10,000
Z	original_scaffold_462_obj_pilon	11,778
Z	Super-Scaffold_29_pilon:::fragment_14:::debris	30,000
Z	original_scaffold_1741_obj_pilon	10,647
Z	Super-Scaffold_84_pilon:::fragment_6:::debris	50,000
Z	Super-Scaffold_66_pilon:::fragment_2:::debris	50,000
Z	Super-Scaffold_27_pilon:::fragment_2:::debris	50,000
Z	original_scaffold_1602_obj_pilon	10,177
Z	original_scaffold_1079_obj_pilon	7,689
Z	Super-Scaffold_66_pilon:::fragment_4:::debris	50,000
Z	Super-Scaffold_50_pilon:::fragment_2:::debris	10,000

Supplementary Table 15. Sequencing depth for each individual and their chromosomes in

301 162 geese.

ID	Sex	Hic_19	Hic_20	Hic_21	Hic_22	Hic_23	Hic_24	Hic_25	Hic_26	Hic_27	Hic_28	Hic_29	Hic_30	Hic_31	Hic_32	Hic_33	Hic_34	Hic_35	Hic_36	Hic_37	Hic_38	z	w
FCG10	female	10.97	11.89	12.11	15.26	12.78	11.69	10.72	10.90	11.24	12.11	10.95	13.86	11.53	17.28	7.89	8.12	9.28	6.43	8.81	35.71	4.99	10.29
FCG12	female	11.68	12.85	12.98	16.82	13.71	12.50	11.39	11.85	12.11	13.04	11.55	14.22	12.35	18.29	9.37	8.51	9.96	6.88	9.47	37.65	5.41	11.00
FCG13	female	10.58	10.69	11.56	13.03	11.21	10.38	9.54	9.54	10.13	9.75	7.97	8.78	5.81	13.38	5.03	4.07	6.22	3.51	5.68	21.12	4.87	7.63
FCG14	female	12.41	13.17	14.33	18.26	14.54	13.16	12.08	12.39	12.55	13.59	12.26	15.32	11.98	19.70	9.46	9.25	10.19	7.13	9.73	37.39	5.70	11.11
FCG16	female	13.24	13.94	15.11	19.67	15.59	13.99	12.79	13.27	13.54	14.36	12.81	16.02	13.20	18.63	12.13	9.61	10.80	7.62	10.35	39.92	6.19	11.85
FCG17	female	10.78	11.24	12.33	15.63	12.27	11.09	10.12	10.36	10.75	11.14	9.67	12.42	9.04	14.84	7.20	6.19	8.30	5.45	7.44	28.26	4.87	9.03
FCG18	female	11.96	13.71	13.52	17.97	14.67	13.17	11.99	12.50	12.63	13.81	12.46	16.41	13.55	20.21	10.11	9.64	10.68	7.43	10.44	37.47	4.65	11.21
FCG19	female	9.44	9.99	10.51	13.36	11.03	10.02	9.12	9.50	9.73	10.55	9.33	11.88	9.72	15.31	7.17	7.10	8.42	5.70	7.75	30.90	4.31	8.76
FCG1	female	11.12	11.65	12.42	15.96	13.11	11.81	10.71	11.17	11.42	12.20	10.71	14.23	11.54	17.53	9.10	8.24	10.31	7.08	8.68	32.80	5.23	10.26
FCG20	female	11.39	12.21	12.96	17.01	13.52	12.14	11.05	11.62	11.62	12.54	11.23	13.94	11.71	17.68	9.08	8.55	9.43	6.46	9.00	32.01	5.24	10.29
FCG21	female	10.98	11.88	12.14	15.74	12.94	11.72	10.56	11.05	11.27	12.24	10.68	13.92	11.36	17.14	9.36	8.03	9.45	6.40	9.06	31.92	5.10	10.14
FCG24	female	12.85	13.68	14.74	19.21	15.35	13.93	12.59	13.16	13.24	14.34	12.82	16.29	13.69	20.77	10.50	9.83	11.14	7.67	10.85	40.31	5.85	11.97
FCG25	female	11.85	12.07	13.03	14.65	12.89	11.74	10.97	10.51	11.29	10.66	8.84	10.24	5.83	11.24	4.29	3.86	6.41	3.83	5.60	23.79	4.64	8.25
FCG26	female	12.79	13.78	14.45	18.54	15.05	13.52	12.36	12.82	13.13	14.15	12.93	16.17	13.20	20.98	9.57	10.09	10.65	7.65	10.16	35.41	5.85	11.34
FCG27	female	14.20	14.89	15.69	19.75	16.60	15.06	13.60	13.97	14.71	15.85	13.80	17.06	14.88	23.56	12.08	10.56	12.60	9.29	11.61	44.52	6.70	13.01
FCG28	female	16.36	17.68	18.98	24.34	19.42	17.40	15.87	16.36	16.87	18.28	16.18	20.78	17.12	26.29	12.29	11.90	13.29	9.98	13.27	53.03	4.65	14.65
FCG29	female	13.49	13.85	14.82	17.41	14.93	13.72	12.75	12.66	12.96	12.92	10.95	12.55	8.16	16.85	7.15	5.24	8.36	5.50	7.95	34.44	7.13	10.26
FCG2	female	12.41	13.53	13.92	17.49	14.51	13.12	11.94	12.37	12.65	13.49	12.23	16.34	13.01	22.73	9.82	8.76	10.07	7.10	9.83	36.26	4.75	11.17
FCG30	female	12.08	12.95	13.24	17.19	13.98	12.71	11.70	12.25	12.45	13.29	11.93	14.82	12.18	18.63	8.61	8.70	9.86	6.99	9.47	37.30	4.74	10.99
FCG32	female	12.71	13.92	14.67	19.40	15.05	13.67	12.32	12.73	12.99	14.11	12.73	15.77	13.24	20.20	9.24	9.47	12.00	8.61	10.35	38.89	4.11	11.63
FCG33	female	13.19	14.60	14.64	18.88	15.69	14.19	12.98	13.49	13.91	14.89	13.37	17.26	14.02	19.39	10.34	10.21	12.12	8.90	10.89	39.82	4.75	12.14
FCG34	female	12.67	13.71	13.79	17.38	14.71	13.42	12.33	12.65	13.00	14.00	12.53	15.75	12.99	20.77	9.28	8.80	10.13	6.99	9.97	35.28	4.24	11.27
FCG35	female	11.90	12.67	13.27	16.74	14.05	12.86	11.70	12.06	12.27	13.28	11.97	15.42	12.29	18.76	7.57	8.14	9.40	6.56	8.90	37.60	6.15	10.94
FCG37	female	13.74	14.95	15.58	19.94	16.31	14.74	13.32	13.82	14.26	15.43	13.83	16.89	14.34	21.37	10.14	10.34	11.60	8.33	11.30	43.07	4.42	12.20
FCG38	female	14.53	16.78	16.31	23.25	19.01	17.60	15.99	17.26	16.62	19.55	19.51	23.92	23.90	29.14	17.01	16.38	18.76	15.50	17.20	54.59	5.10	14.88
FCG39	female	11.84	12.54	12.79	15.48	13.07	12.07	11.07	11.14	11.61	11.81	10.45	12.73	9.23	15.58	7.37	6.89	9.32	6.38	7.99	31.74	3.89	9.38
FCG3	female	13.68	14.80	14.81	18.55	15.88	14.56	13.18	13.71	14.02	15.14	13.35	16.78	14.29	19.83	11.18	9.78	11.57	8.38	10.59	36.85	5.06	12.29
FCG40	female	11.18	11.86	12.10	15.13	12.96	11.90	10.81	11.28	11.55	12.56	11.43	15.11	11.87	17.71	8.64	8.74	9.75	6.82	9.25	32.11	5.88	10.21
FCG41	female	11.92	12.76	13.46	17.02	13.93	12.54	11.45	11.88	12.13	13.00	11.45	14.51	11.96	20.33	9.05	8.89	10.90	7.61	9.65	38.42	6.37	10.89
FCG42	female	11.62	12.09	13.28	16.92	13.73	12.33	11.17	11.52	11.95	12.58	11.28	14.70	11.14	18.72	9.31	7.59	9.77	6.63	9.33	39.08	4.75	10.65
FCG43	female	13.23	14.03	14.75	17.58	14.61	13.95	12.67	12.99	13.29	13.77	12.66	14.32	10.48	21.20	9.89	8.49	10.95	7.66	10.39	35.39	4.16	11.33
FCG44	female	13.66	14.99	15.44	19.86	16.13	14.67	13.26	13.82	14.15	15.27	13.78	16.63	13.99	23.95	10.58	10.94	12.85	9.08	10.66	39.02	5.24	12.38
FCG45	female	9.82	10.39	11.10	14.40	11.56	10.30	9.43	9.75	10.08	10.76	9.58	12.59	10.18	15.41	8.31	7.56	8.72	5.79	8.00	27.24	6.24	8.88
FCG47	female	7.84	8.06	8.70	11.12	9.13	8.24	7.48	7.77	7.96	8.55	7.67	9.96	8.19	12.32	5.89	5.72	6.94	4.58	6.17	21.95	3.56	7.24
FCG48	female	11.81	12.54	12.95	16.79	13.84	12.48	11.32	11.73	12.18	13.02	11.22	15.17	12.13	20.38	9.51	7.91	9.50	6.52	9.43	34.75	7.21	10.78
FCG51	female	10.85	11.65	12.29	16.19	13.09	11.74	10.71	11.05	11.25	12.19	10.77	14.16	11.56	16.81	9.27	8.31	9.32	6.37	8.97	30.57	4.69	9.84
FCG5	female	11.86	12.45	13.50	17.43	14.05	12.44	11.23	11.73	12.10	12.88	11.11	15.20	11.87	21.18	9.10	8.65	9.86	6.51	9.00	37.44	4.62	11.05
FCG6	female	12.03	12.85	13.81	17.45	14.16	12.79	11.56	11.99	12.25	13.19	11.47	15.70	12.18	20.51	8.83	8.48	10.00	6.93	9.58	36.48	5.00	10.99
FCG7	female	10.07	10.57	11.11	14.34	11.91	10.76	9.70	10.11	10.38	11.09	9.85	12.70	10.62	15.74	7.57	7.15	8.92	5.70	7.78	29.45	4.89	9.39
FCG8	female	12.21	13.31	13.71	18.44	14.86	12.88	11.44	11.99	12.87	13.90	11.69	16.68	15.41	19.58	9.68	9.66	10.51	7.61	10.02	38.26	5.07	11.82
FCG9	female	10.06	10.87	11.54	14.80	11.77	10.65	9.70	10.01	10.18	10.96	9.65	12.03	9.72	15.40	8.01	7.28	8.77	5.94	7.82	30.92	4.40	9.06
GFW11	female	14.57	15.04	16.32	20.58	16.94	15.35	13.87	14.34	14.81	15.72	13.86	17.50	14.30	22.88	11.10	10.16	11.85	8.41	11.54	43.15	4.85	13.08
GFW14	female	14.89	15.77	16.10	19.59	17.09	15.49	13.88	14.48	15.07	15.78	13.52	17.38	13.28	25.16	10.77	10.82	12.52	9.03	10.98	39.32	5.67	13.46
GFW15	female	11.62	12.23	13.11	16.55	13.54	12.09	10.86	11.34	11.79	12.45	10.82	13.94	10.88	17.75	8.92	8.33	10.25	7.16	9.29	31.47	5.29	10.74
GFW16	female	14.70	15.17	15.82	18.99	16.55	15.23	13.66	14.15	14.77	15.64	13.50	16.71	13.79	22.64	11.05	10.51	11.86	8.16	11.26	40.23	4.15	13.46
GFW17	female	12.47	13.08	13.19	15.83	13.97	13.14	11.73	12.34	12.62	13.19	11.59	14.67	11.27	17.19	9.20	9.17	10.61	7.10	9.65	36.18	5.01	11.34
GFW19	female	16.30	17.05	18.20	22.71	18.71	16.77	15.29	15.90	16.39	17.38	14.87	19.44	15.40	25.78	13.86	11.71	13.59	9.61	12.78	50.66	4.94	15.03
GFW21	female	11.73	12.38	13.30	16.11	13.17	12.32	11.06	11.51	11.56	12.10	10.71	12.28	8.67	17.78	7.97	7.52	10.50	7.11	8.50	27.46	4.13	10.17
GFW23	female	9.65	10.98	10.20	14.36	13.95	10.88	8.77	9.25	11.21	12.26	9.18	14.99	17.87	15.08	8.60	8.78	10.01	6.96	8.41	37.35	5.06	11.38
GFW24	female	13.75	14.95	15.02	18.77	15.99	14.93	13.24	13.90	14.12	15.06	13.57	16.36	13.96	24.05	11.04	10.67	12.19	8.66	11.54	38.55	7.44	12.37
GFW27	female	11.35	12.14	12.84	15.99	13.10	11.76	10.63	11.18	11.41	12.13	10.48	13.69	10.50	19.22	8.70	8.54	10.78	7.50	8.74	32.10	4.55	10.49
GFW29	female	12.55	13.06	13.66	16.51	13.98	12.67	11.49	11.90	12.49	13.13	11.12	14.75	10.79	20.57	8.65	7.99	10.79	7.50	8.95	36.02	4.09	11.50
GFW2	female	14.79	16.27	16.87	22.04	17.99	15.74	13.85	14.34	15.42	16.67	13.95	18.55	17.05	22.94	12.89	11.58	13.73	10.10	12.58	48.06	5.36	14.26
GFW30	female	10.54	10.78	11.80	14.77	12.03	10.83	9.73	10.09	10.51	11.01	9.46	12.18	9.62	16.19	7.61	7.01	8.98	5.69	7.99	30.90	5.96	9.72
GFW33	female	11.96	12.88	13.33	17.37	14.23	12.53	11.29	11.65	12.34	13.22	11.10	15.18	13.26	18.29	9.72	9.64	10.67	7.42	9.58	35.21	6.01	11.36
GFW35	female	13.55	14.45	15.04	18.95	15.88	14.09	12.74	13.23	13.89	14.74	12.34	16.03	13.49	19.79	10.54	9.87	11.77	8.33	10.51	39.41	5.64	12.29
GFW36	female	13.95	14.81	15.43	19.19	15.87	14.47	13.19	13.72	14.08	14.96	13.20	17.09	13.76	22.53	10.08	10.23	11.82	8.32	10.94	43.90	6.27	13.12

302 Supplementary Table 15. Sequencing depth statistics of each chromosome in 162 geese (Continued).

303

ID	Sex	Hic_19	Hic_20	Hic_21	Hic_22	Hic_23	Hic_24	Hic_25	Hic_26	Hic_27	Hic_28	Hic_29	Hic_30	Hic_31	Hic_32	Hic_33	Hic_34	Hic_35	Hic_36	Hic_37	Hic_38	z	w
GFW39	female	12.69	12.83	13.98	15.94	13.55	12.53	11.64	11.70	11.95	11.79	9.94	11.68	6.77	16.57	5.52	4.93	7.51	4.72	6.68	26.32	6.25	9.62
GFW45	female	14.59	14.78	16.45	20.50	16.57	14.94	13.29	13.85	14.49	15.15	12.64	17.06	13.20	22.94	10.61	9.61	11.39	7.69	10.53	40.56	7.02	13.37
GFW46	female	12.23	12.38	13.59	16.42	13.64	12.45	11.22	11.49	11.93	12.23	10.30	13.22	9.07	17.33	7.76	6.62	8.63	5.57	8.00	30.62	5.79	10.21
GFW47	female	14.24	15.30	16.02	19.57	16.46	14.81	13.11	13.59	14.37	15.27	12.95	16.34	12.93	22.06	10.49	10.00	12.17	8.16	10.46	38.84	6.20	13.47
GFW5	female	14.11	15.03	15.67	19.24	16.12	14.54	13.23	13.79	14.29	14.94	13.02	15.84	12.84	23.25	10.05	10.12	11.89	7.89	10.53	43.04	5.77	12.90
GFW7	female	15.80	16.83	17 49	21.35	18 20	16.57	14 97	15.45	16.09	16.81	15.01	18 91	14 75	25.24	11 64	11 78	13.06	9 20	12 18	45.22	6 17	14 65
GEW8	female	11 94	12 35	13.46	17.08	13.84	12.57	11 27	11 70	12.06	12.80	11 13	14.46	11 47	18.60	9.29	8 57	10.69	7 21	9.36	35.55	5.22	10.84
GEWO	female	16.03	16 77	17.96	22.27	18 50	16.81	15.06	15.60	16.25	17.00	1/ 00	18.05	15.46	25.67	12.50	11 /3	13.80	0.06	12 31	45.67	5.48	15 15
	female	10.00	14.70	15.10	10.50	15.00	14.05	10.00	12.14	10.20	14.20	10.40	15.35	11.05	10.00	10.16	0.25	14 74	9.90	10.20	40.07	4.22	10.10
	female	13.00	14.72	10.12	10.55	15.60	14.05	12.70	13.14	13.74	14.30	12.42	15.40	10.04	10.30	10.16	9.35	10.40	0.20	10.30	30.31	4.33	12.03
	female	14.00	15.16	16.86	21.57	10.09	14.68	13.07	13.30	14.18	14.81	12.67	15.32	12.34	19.39	9.07	9.17	12.10	8.47	10.04	38.34	4.38	13.03
LHVV1	temale	12.33	12.50	14.10	16.86	13.64	12.53	11.46	11.84	12.11	12.43	10.58	12.40	8.31	13.81	7.58	5.91	9.40	6.26	8.07	33.29	6.26	10.53
LHW2	temale	14.61	15.45	16.17	18.89	16.01	15.08	13.85	14.19	14.40	14.79	13.11	14.52	10.25	19.27	9.27	7.90	10.18	7.28	9.99	37.47	6.24	11.69
LHW3	female	13.31	14.20	15.17	18.56	14.83	13.71	12.67	12.87	13.25	13.45	12.04	14.69	9.79	20.73	7.79	7.25	9.60	6.38	8.64	32.84	3.29	11.29
LHW5	female	15.93	17.50	18.15	23.19	18.99	16.96	15.21	15.78	16.32	17.30	15.03	18.73	15.45	25.83	12.27	11.35	13.44	9.79	12.33	42.89	5.64	14.83
LHW6	female	8.75	9.45	9.69	11.77	9.81	8.86	7.92	8.23	8.83	9.18	7.59	10.17	7.52	12.80	6.06	5.67	7.20	4.56	6.29	24.50	4.48	8.08
LHW7	female	10.06	10.72	11.75	14.93	11.72	10.33	9.34	9.78	10.23	10.63	8.94	11.78	8.94	14.50	7.31	7.21	9.38	6.15	7.72	27.59	5.26	9.34
LHW8	female	13.51	14.57	15.50	19.42	15.79	14.05	12.60	13.12	13.70	14.33	12.18	15.65	12.12	20.86	9.89	9.07	12.17	9.02	9.98	36.47	6.06	12.67
LHW9	female	13.23	14.23	14.74	17.87	15.01	13.53	12.16	12.78	13.35	13.86	11.61	15.69	11.87	19.15	9.85	9.01	10.42	7.20	9.87	38.02	5.80	12.41
LXW10	female	13.30	13.80	14.44	16.99	14.85	13.90	12.72	12.82	13.07	13.62	11.83	14.36	9.87	17.11	8.33	7.73	9.83	6.55	9.23	32.77	5.56	10.30
LXW11	female	10.06	11.07	11.32	13.52	11.54	10.42	9.25	9.68	10.26	10.59	9.03	11.33	8.64	13.51	7.41	6.86	8.55	5.57	7.55	28.23	5.35	9.50
LXW12	female	10.65	11.78	12.25	15.23	12.41	11.03	9.92	10.38	10.81	11.48	9.74	12.64	9.81	17.30	8.14	7.51	9.70	6.68	8.23	30.69	4.07	10.09
LXW14	female	13.49	14.25	14.82	18.18	15.37	13.84	12.24	12.81	13.55	14.35	11.70	14.85	11.79	19.63	9.67	8.93	11.70	8.19	10.08	41.20	5.94	12.52
LXW16	female	12.74	13.56	13.63	16.85	14.63	13.35	12.02	12.50	12.80	13.78	12.18	16.05	12.45	19.35	9.81	9.00	10.17	7.12	10.00	37.77	3.80	11.71
LXW20	female	12.99	13.37	15.31	19.29	15.31	13.51	12.08	12.56	13.09	14.05	11.92	15.70	12.27	19.67	10.15	9.05	11.22	7.59	10.32	33.54	4.81	11.49
LXW22	female	11.00	11.24	12.01	13.32	11.76	10.58	9.94	9.59	10.40	9.80	7.85	8.81	5.31	10.86	4.18	3.55	6.14	3.56	6.22	20.52	6.88	7.29
LXW23	female	10.77	11.68	12.79	16.40	12.84	11.32	10.15	10.58	11.05	11.55	10.07	13.21	9.82	18.42	9.11	7.82	9.77	6.74	8.45	32.41	5.04	10.15
LXW24	female	14.86	15.21	15.89	17.43	15.64	14.43	13.32	13.05	14.08	13.46	10.78	12.70	7.65	17.35	6.86	5.55	8.29	5.27	7.52	33.09	6.40	10.60
LXW25	female	11.26	11.74	12.51	15.30	12.88	11.68	10.44	10.89	11.33	12.01	10.34	13.33	10.02	17.15	7.73	7.36	10.37	7.55	8.69	32.87	4.08	10.41
LXW27	female	11.68	12.60	12.72	15.65	13.28	11.97	10.76	11.26	11.66	12.13	10.66	13.15	10.58	16.35	8.90	7.87	10.11	6.66	8.96	34.05	5.41	10.45
LXW29	female	14.48	15.44	17.10	21.19	16.72	14.92	13.31	13.84	14.60	15.09	12.63	16.03	12.34	22.73	10.16	9.47	11.78	8.23	10.57	41.39	5.14	13.30
LXW2	female	15.07	15.98	17.21	21.23	17.22	15.61	14.12	14.64	15.33	15.76	13.77	17.88	12.45	21.66	10.84	10.10	12.22	8.56	11.50	40.82	4.92	13.60
LXW31	female	14.56	15.17	16.46	19.55	16.17	15.05	13.78	14.36	14.53	14.97	13.27	14.71	10.88	22.38	9.80	8.60	11.59	7.68	10.93	38.18	4.43	12.53
LXW32	female	13.97	15.00	16.08	19.86	15.79	14.56	13.24	13.72	13.84	14.50	12.91	15.64	11.40	20.09	9.77	8.08	11.74	7.86	10.37	38.73	5.07	12.50
LXW34	female	13.71	14.49	15.04	19.25	16.05	14.52	13.15	13.65	14.18	15.40	13.63	17.21	14.51	21.16	10.86	10.90	12.65	8.89	11.38	39.32	5.57	12.35
LXW36	female	11.15	11.95	12.23	15.76	12.99	11.96	10.88	11.36	11.44	12.62	11.41	14.49	11.64	15.42	8.71	8.47	11.01	8.15	9.13	32.66	5.78	10.06
LXW37	female	13.18	14.73	14.29	17.98	15.26	13.97	12.78	13.17	13.53	14.78	13.47	17.73	13.82	21.11	10.79	10.30	12.63	9.03	11.10	41.56	4.23	12.03
LXW3	female	13.26	15.09	15.53	20.05	16.31	14.50	13.05	13.69	13.89	15.39	13.60	17.65	14 49	22.50	11 15	10.52	12.54	9.27	11 44	41 71	4 40	12.88
LXW40	female	11 70	12.93	13.00	17 35	14 43	12.56	11 40	11.82	12.42	13.57	12 10	16.17	14 59	16.25	10.32	10.37	12.01	8.47	10.55	37.28	6 11	11 42
1 XW42	female	17.20	18.81	10.00	25.21	20.21	18.27	16.65	17.41	17.64	18.85	16.41	20.76	16.48	26.10	13.82	12.20	15.38	10.99	13.76	49.63	4.30	16.04
1 200/42	fomalo	14.55	15.40	16.22	20.21	17.05	15.46	14.09	14.67	14.79	16.00	12.00	17.40	14 11	20.10	10.02	10.19	12.26	0.62	11 10	20.62	5.20	12.24
	fomalo	17.69	10.49	20.00	20.01	10.70	19.56	17.00	14.07	17.50	10.20	17.20	19.10	12.25	21.70	10.37	11.61	14 71	9.02	12.41	42.62	4.00	14 20
	fomalo	12.07	14.02	14.95	19.71	15.70	12.00	12.61	12.02	12.42	14.41	12.62	15.02	13.25	20.45	0.26	0.00	12.10	0.74	10.09	42.03	4.00	14.25
	fomolo	12.00	14.02	14.00	24 54	10.40	14.06	12.01	14.10	14.26	14.41	12.02	13.02	14.44	20.45	3.20	9.00	12.10	0.74	11.00	34.42	4.00	10.00
	female	13.99	14.90	14.61	21.04	15.00	14.90	10.49	14.12	12.44	10.70	13.97	16.20	14.41	21.01	0.99	10.07	13.00	9.01	10.54	39.95	5.75	12.04
LXVV5	remale	13.14	13.83	14.61	18.16	15.30	13.70	12.22	12.69	13.41	14.24	12.09	16.30	13.38	19.69	9.88	10.05	11.54	7.78	10.54	38.90	4.62	12.00
	remale	13.21	14.19	16.85	22.48	16.25	13.98	12.84	13.49	13.49	14.52	13.14	16.87	13.18	22.91	10.03	10.17	12.41	8.55	10.68	40.14	4.54	12.78
LXVV8	temale	11.86	12.69	14.73	19.62	14.38	12.50	11.44	11.94	12.08	12.89	11.67	14.86	11.61	20.06	8.83	8.99	10.99	7.49	9.43	34.77	4.25	11.23
FCG11	male	11.98	12.87	13.60	17.58	14.16	12.61	11.64	11.99	12.40	13.21	11.59	15.20	12.09	19.26	8.76	8.43	9.99	7.04	9.28	31.87	10.80	6.32
FCG15	male	9.67	10.51	10.47	13.05	11.22	10.08	9.26	9.41	9.75	10.50	9.13	11.98	9.72	17.44	6.90	6.86	8.08	5.45	7.57	25.62	8.74	5.06
FCG22	male	13.03	14.05	15.03	20.02	15.65	13.85	12.75	13.09	13.60	14.54	12.87	16.16	13.39	19.95	9.66	9.47	11.28	8.15	10.50	35.94	11.68	6.87
FCG23	male	11.04	12.10	12.03	14.84	12.79	11.55	10.62	11.02	11.26	12.15	10.87	13.62	11.35	16.75	8.28	8.13	9.42	6.43	8.43	26.48	9.78	5.87
FCG31	male	10.41	11.22	11.66	15.11	12.32	10.99	10.05	10.46	10.81	11.63	10.32	13.32	11.01	16.01	7.79	7.76	8.95	6.21	8.35	27.72	9.78	5.52
FCG36	male	12.95	14.04	14.76	19.66	15.65	13.45	12.19	12.83	13.34	14.42	12.41	17.29	15.07	20.30	9.36	10.02	10.95	7.84	10.18	35.64	9.97	6.74
FCG46	male	11.32	12.15	12.86	16.88	13.40	11.93	11.03	11.43	11.60	12.64	11.36	13.96	11.61	17.03	8.13	8.82	9.67	6.78	8.59	28.91	11.02	6.04
FCG49	male	11.82	12.96	13.40	17.42	14.09	12.54	11.58	11.95	12.24	13.17	12.05	14.78	12.51	19.33	9.96	9.39	10.37	7.36	9.73	29.82	8.58	6.21
FCG4	male	11.43	12.57	12.60	16.30	13.57	12.20	11.21	11.67	11.90	12.72	11.29	14.53	12.19	19.62	9.20	8.36	9.88	6.99	9.44	30.51	11.47	6.11
FCG50	male	13.42	13.44	14.46	16.99	14.65	13.21	12.15	12.36	13.11	12.97	10.84	12.54	9.01	17.98	9.03	6.56	8.81	5.43	8.57	28.36	9.99	6.62
GFW10	male	13.26	13.71	14.99	19.16	16.38	13.83	12.23	12.73	13.93	15.23	12.29	17.67	16.56	21.48	10.81	9.88	11.46	8.38	10.56	36.32	7.58	6.92
GFW12	male	14.41	15.62	16.18	20.64	16.66	14.90	13.65	14.24	14.69	15.67	13.65	17.61	13.99	23.52	11.41	10.55	12.92	9.67	11.41	36.31	9.85	7.38

304 Supplementary Table 15. Sequencing depth statistics of each chromosome in 162 geese305 (Continued).

⊫30	6sex	Hic_19	Hic_20	Hic_21	Hic_22	Hic_23	Hic_24	Hic_25	Hic_26	Hic_27	Hic_28	Hic_29	Hic_30	Hic_31	Hic_32	Hic_33	Hic_34	Hic_35	Hic_36	Hic_37	Hic_38	z	w
GFW13	male	13.57	14.20	14.95	18.46	15.74	14.09	12.79	13.26	13.64	14.63	12.46	16.18	12.52	21.08	9.51	9.47	11.49	8.26	10.87	38.33	9.55	7.08
GFW18	male	13.40	13.90	14.70	18.12	15.09	13.81	12.48	12.90	13.41	14.14	12.26	15.88	12.75	21.60	10.16	9.49	11.07	7.78	10.19	31.45	10.28	6.77
GFW1	male	14.58	16.08	16.22	20.54	17.07	15.53	14.13	14.50	14.79	15.95	14.06	18.05	14.68	22.50	11.28	10.65	11.63	8.32	10.92	34.55	13.08	7.42
GFW20	male	12.56	13.49	14.30	17.89	14.33	12.75	11.62	12.14	12.56	13.24	11.21	14.73	11.55	20.03	9.06	8.52	9.93	6.81	9.34	31.17	12.45	6.43
GFW22	male	12.75	13.52	14.50	18.76	14.83	13.11	12.02	12.32	12.86	13.71	11.78	15.23	12.55	20.19	9.83	8.90	10.74	7.21	10.20	32.35	10.34	6.59
GFW25	male	12.67	13.56	13.85	17.30	14.71	13.41	12.29	12.70	12.93	14.06	12.67	16.47	13.03	22.67	10.24	10.61	11.50	8.14	10.28	32.56	9.05	6.73
GFW26	male	14.12	14.78	15.90	19.78	16.26	14.37	13.11	13.49	14.23	14.91	12.88	16.96	13.36	19.86	9.89	10.18	12.04	8.32	10.74	34.14	10.12	7.06
GFW28	male	12.27	13.09	13.85	17.13	13.98	12.54	11.41	11.77	12.45	12.96	10.90	13.58	10.88	19.77	8.92	8.22	10.04	6.64	9.00	28.72	8.94	6.31
GFW31	male	13.82	14.38	15.97	20.02	15.94	13.93	12.58	12.96	13.77	14.30	11.84	15.03	11.99	21.37	9.81	8.66	10.75	6.97	10.23	34.28	11.40	7.04
GFW32	male	11.25	12.23	12.57	15.56	12.97	11.38	10.42	10.90	11.41	11.85	10.10	13.78	10.89	18.07	8.51	8.44	9.69	6.49	8.80	33.58	8.67	5.89
GFW34	male	13.04	13.90	14.51	18.13	15.13	13.76	12.47	12.89	13.35	14.19	12.69	15.63	12.27	20.10	10.16	9.61	10.72	7.48	10.39	32.79	7.07	6.89
GFW37	male	11.63	12.40	12.88	16.32	13.39	12.10	11.04	11.36	11.80	12.58	10.90	14.25	11.39	19.74	8.40	9.07	10.81	7.49	8.85	30.10	14.25	6.13
GFW38	male	16.18	17.40	18.47	23.75	18.79	16.73	15.38	15.90	16.47	17.43	15.11	19.65	15.63	24.87	13.07	11.89	14.39	10.64	12.90	42.87	7.17	8.21
GFW3	male	12.86	13.39	14.00	17.05	14.50	13.08	12.04	12.47	12.95	13.66	11.70	14.46	12.00	19.83	9.61	9.03	10.42	7.21	9.78	26.72	10.74	6.59
GFW40	male	14.90	15.85	16.81	21.10	17.64	15.54	14.03	14.56	15.42	16.09	13.94	17.75	14.48	23.76	11.37	10.97	12.51	8.61	11.72	39.08	11.55	7.75
GFW41	male	12.19	12.96	13.89	17.56	14.26	12.58	11.48	11.96	12.45	13.07	10.96	14.36	11.32	22.06	9.80	8.69	11.12	7.56	9.63	33.68	8.46	6.42
GFW42	male	11.68	12.29	13.23	20.25	13.50	11.99	10.82	11.20	11.63	12.32	12.68	16.97	10.93	19.90	8.92	8.20	9.65	0.53	8.85	29.69	7.98	0.00 7.41
GEW43	male	12.14	12.47	10.14	20.25	15.30	12.00	12.00	12.01	12.45	14.24	13.40	15.22	13.00	24.35	10.77	0.92	12.09	0.01	10.74	35.30	9.05	7.41
GEW48	male	11.08	12.64	13.52	16.70	13.03	12.09	11 1/	11.50	12.45	12.66	11.07	14.24	11 31	10.42	8.61	9.02	0.58	6.59	0.04	32 70	9.21	6.35
GFW49	male	12.94	13.51	15.02	19.56	15.35	13.33	12 13	12.60	12.10	13.62	11.98	14 79	12.51	19.32	9.54	9.26	11 23	7.51	10 11	32.13	10 11	6.71
GFW4	male	13.65	14.61	15.38	19.03	15.77	14.19	12.81	13.15	13.90	14.62	12.40	16.41	12.83	23.02	10.61	9.60	11.10	7.68	10.42	32.83	7.50	6.96
GFW50	male	13.48	14.21	14.91	18.77	15.68	14.12	12.89	13.36	13.83	14.83	13.21	16.41	13.19	21.75	11.27	10.38	12.01	8.60	10.71	32.78	8.77	6.92
GFW6	male	15.60	16.91	17.82	22.19	18.18	16.07	14.60	15.08	15.70	16.48	13.97	17.16	14.38	25.08	11.15	11.06	13.01	9.45	11.38	40.32	10.51	7.91
LHW4	male	11.42	12.57	12.93	16.42	13.57	12.13	11.04	11.42	11.84	12.36	10.94	13.44	10.58	17.90	8.63	7.72	9.66	6.65	8.72	25.84	9.19	5.85
LXW13	male	10.59	11.35	11.60	14.28	12.10	10.71	9.82	10.29	10.81	11.11	9.68	12.40	9.47	17.24	7.71	6.97	9.62	6.42	8.10	26.49	12.35	5.52
LXW15	male	12.26	13.15	13.80	17.62	14.43	12.82	11.51	12.03	12.45	13.34	11.34	14.24	11.57	17.25	9.50	9.37	10.95	7.24	9.47	30.62	11.77	6.44
LXW17	male	13.57	14.68	15.08	18.97	16.17	14.09	12.58	13.28	13.97	14.82	12.67	16.90	14.50	19.09	10.25	9.52	11.36	7.79	10.52	36.74	11.96	7.21
LXW18	male	14.17	15.39	16.86	22.82	18.05	14.63	13.16	13.65	15.03	16.22	13.14	17.54	18.28	21.03	12.09	11.22	13.24	8.94	11.65	38.26	10.17	7.61
LXW19	male	14.26	15.24	15.55	18.95	16.18	14.75	13.53	14.02	14.52	15.15	13.36	16.42	12.42	22.98	10.73	9.42	12.13	8.52	11.21	34.86	11.69	7.17
LXW1	male	12.03	12.60	13.68	16.78	13.80	12.39	11.38	11.58	11.95	12.39	10.49	13.10	9.90	13.99	7.70	7.03	8.54	5.72	8.40	27.04	10.32	5.98
LXW21	male	10.84	11.62	12.60	16.68	12.93	11.35	10.42	10.82	11.15	12.02	10.77	14.10	10.83	16.23	8.73	7.74	10.21	7.11	8.74	26.03	10.78	5.76
LXW26	male	13.13	14.55	15.16	19.28	15.53	13.53	12.11	12.68	13.53	14.15	11.81	15.68	13.20	21.39	9.85	9.59	11.45	7.51	10.30	35.72	8.65	6.74
LXW28	male	12.84	13.46	15.27	18.90	14.88	12.96	11.78	12.14	12.89	13.09	10.97	13.59	10.09	18.08	8.46	7.86	10.15	6.84	8.91	32.53	10.48	6.42
LXW30	male	11.00	11.38	12.37	15.10	12.58	11.11	10.02	10.34	11.06	11.29	9.80	12.50	9.29	16.93	8.57	7.27	9.35	6.14	8.25	28.33	9.95	5.73
LXW33	male	11.54	12.57	13.61	17.59	14.07	12.02	10.88	11.21	12.11	12.71	11.07	15.01	12.44	19.68	9.09	8.78	10.58	7.29	9.39	31.55	6.88	6.23
LXW35	male	11.98	13.07	13.97	18.55	14.28	12.53	11.61	12.09	12.27	13.38	12.08	15.20	12.61	22.52	9.88	9.59	11.97	8.61	10.02	32.75	10.96	6.39
LXW38	male	12.66	13.46	13.87	17.50	14.79	13.43	12.20	12.71	12.92	14.07	12.84	16.03	12.84	19.07	10.90	9.61	11.96	8.51	10.60	33.61	9.35	6.64
LXW39	male	12.93	13.88	14.55	18.55	15.15	13.77	12.51	13.05	13.33	14.30	13.00	15.22	12.77	19.18	10.41	10.27	12.46	9.00	10.48	34.17	8.15	6.68
LXW41	male	14.27	15.55	15.98	19.16	15.87	14.71	13.69	14.22	14.21	15.19	13.48	15.29	11.56	19.55	10.65	9.03	12.60	8.74	11.15	35.18	11.36	7.05
LXW45	male	14.75	15.52	16.40	20.35	17.28	15.67	14.19	14.71	15.21	16.55	14.50	17.72	14.45	20.39	11.36	10.47	13.58	9.79	12.03	37.79	8.56	7.45
LXW47	male	12.31	13.43	14.22	18.17	14.36	12.97	12.03	12.53	12.53	13.56	12.19	14.85	11.53	17.43	10.47	8.42	11.84	8.52	10.07	33.21	13.26	6.36
LXW49	male	12.53	13.43	14.52	18.54	14.41	13.15	12.10	12.59	12.73	13.50	12.21	15.12	11.14	16.60	9.08	8.82	12.06	8.45	9.74	29.45	12.98	6.39
LXW4	male	13.75	15.05	15.39	18.67	15.82	14.17	12.89	13.43	13.99	14.76	12.59	16.08	12.87	21.04	9.77	10.54	11.80	7.85	10.66	33.43	10.24	7.11
LXW50	male	13.74	14.88	14.82	18.70	15.89	14.53	13.32	13.77	14.16	15.35	13.76	17.01	14.95	21.21	11.36	10.93	13.31	9.79	11.28	37.14	11.74	7.32
	maie	13.58	14.50	15.21	19.14	15.54	14.00	12.91	13.38	13.77	14.04	12.83	10.10	12.90	20.57	10.45	9.03	12.13	8.77	10.69	34.72	9.20	7.01
LXW9	male	15.24	15.95	17.14	21.00	17.13	15.32	13.98	14.34	15.10	15.60	13.14	16.30	12.81	21.18	9.67	8.59	11.15	7.49	10.46	36.79	9.74	7.68

307 Supplementary Table 16. Genome assemblies used for gene families and phylogenetic
 308 analysis.
 Common name
 Species
 Genus
 Family
 Assembly

Common name	Species	Genus	Family	Assembly			
Xingguo gray goose	Anser cygnoides	Anser	Anatidae	This study			
Tianfu goose ⁴⁷	Anser cygnoides	Anser	Anatidae	GCA_013030995.1			
Zhedong white goose ⁴⁸	Anser cygnoides	Anser	Anatidae	GCF_000971095.1			
Sichuan white goose ⁴⁹	Anser cygnoides	Anser	Anatidae	GCA_002166845.1			
Mallard ⁶³	Anas platyrhynchos	Anas	Anatidae	GCA_008746955.1			
Eastern spot-billed duck	Anas zonorhyncha	Anas	Anatidae	GCA_002224875.1			
Pekin duck ⁴⁰	Anas platyrhynchos	Anas	Anatidae	GCA_003850225.1			
Tufted duck	Aythya fuligula	Aythya	Anatidae	GCF_009819795.1			
Muscovy duck	Cairina moschata	Cairina	Anatidae	GCA_009194515.1			
Ruddy duck	Oxyura jamaicensis	Oxyura	Anatidae	GCF_011077185.1			
Pink-footed goose51	Anser brachyrhynchus	Anser	Anatidae	GCA_002592135.1			
Black swan	Cygnus atratus	Cygnus	Anatidae	GCF_013377495.1			
Magpie goose ⁶⁴	Anseranas semipalmata	Anseranas	Anatidae	GCA_013399115.1			
Turkey ⁵³	Meleagris gallopavo	Meleagris	Phasianidae	GCF_000146605.3			
Chicken ⁵²	Gallus gallus	Gallus	Phasianidae	GCF_000002315.6			

309 Note: Shaed species are used for phylogenetic analysis.

Supplementary Table 17. GO analysis for the lineage-specific gene families in XGG compared to TFG, SCW and ZDW.

GO term	Category	Function	<i>p</i> -value
GO:0005869	GO Cellular Components	dynactin complex	3.53E-13
GO:0005884	GO Cellular Components	actin filament	1.28E-10
GO:0030137	GO Cellular Components	COPI-coated vesicle	8.59E-07
GO:0005925	GO Cellular Components	focal adhesion	7.09E-06
GO:0005938	GO Cellular Components	cell cortex	1.09E-03

GO term	Category	Function	<i>p</i> -value
GO:0005005	GO Molecular Functions	transmembrane-ephrin receptor activity	1.80E-16
GO:0035637	GO Biological Processes	multicellular organismal signaling	4.67E-09
GO:0016309	GO Molecular Functions	1-phosphatidylinositol-5-phosphate 4- kinase activity	2.09E-07
GO:0030424	GO Cellular Components	axon	3.47E-07
GO:1902495	GO Cellular Components	transmembrane transporter complex	5.85E-07
GO:0090625	GO Biological Processes	mRNA cleavage involved in gene silencing by siRNA	8.30E-07
GO:0044420	GO Cellular Components	extracellular matrix component	9.37E-07
GO:0046718	GO Biological Processes	viral entry into host cell	1.58E-06
GO:0044449	GO Cellular Components	contractile fiber part	8.58E-06
GO:0045322	GO Molecular Functions	unmethylated CpG binding	1.14E-05
GO:0000139	GO Cellular Components	Golgi membrane	1.54E-05
GO:0042541	GO Biological Processes	hemoglobin biosynthetic process	2.43E-05
GO:0030900	GO Biological Processes	forebrain development	2.53E-05
GO:0016594	GO Molecular Functions	glycine binding	7.23E-05
GO:0046982	GO Molecular Functions	protein heterodimerization activity	1.41E-04
GO:0016607	GO Cellular Components	nuclear speck	1.57E-04
GO:0007157	GO Biological Processes	heterophilic cell-cell adhesion via plasma membrane cell adhesion molecules	1.78E-04
GO:0030246	GO Molecular Functions	carbohydrate binding	2.12E-04
GO:0001525	GO Biological Processes	angiogenesis	3.20E-04
GO:0031589	GO Biological Processes	cell-substrate adhesion	3.28E-04
GO:0005509	GO Molecular Functions	calcium ion binding	3.63E-04
GO:0006907	GO Biological Processes	pinocytosis	3.85E-04
GO:0007628	GO Biological Processes	adult walking behavior	5.49E-04
GO:0002230	GO Biological Processes	positive regulation of defense response to virus by host	6.80E-04
GO:1904019	GO Biological Processes	epithelial cell apoptotic process	7.80E-04
GO:0005930	GO Cellular Components	axoneme	8.72E-04
GO:0009611	GO Biological Processes	response to wounding	1.16E-03
GO:0097190	GO Biological Processes	apoptotic signaling pathway	1.17E-03

Supplementary Table 18. GO analysis for the significant expansion gene families in XGG.

Supplementary Table 18. GO analysis for the significant expansion gene families in XGG

319 (Continued).

GO term	Category	Function	<i>p</i> -value
GO:0120035	GO Biological Processes	regulation of plasma membrane	1.37E-03
	-	bounded cell projection organization	
GO:0001540	GO Molecular Functions	amyloid-beta binding	1.42E-03
GO:0032386	GO Biological Processes	regulation of intracellular transport	1.45E-03
GO:0019932	GO Biological Processes	second-messenger-mediated signaling	1.74E-03
GO:0005912	GO Cellular Components	adherens junction	1.89E-03
GO:0042063	GO Biological Processes	gliogenesis	2.54E-03
$GO \cdot 0006303$	GO Biological Processes	double-strand break repair via	3.07E-03
00.00000000	OO Diological 1 10003303	nonhomologous end joining	
GO:1990778	GO Biological Processes	protein localization to cell periphery	4.03E-03
GO:0098900	GO Biological Processes	regulation of action potential	4.82E-03
GO:0030155	GO Biological Processes	regulation of cell adhesion	4.91E-03
GO:0009991	GO Biological Processes	response to extracellular stimulus	5.80E-03
GO:0031646	GO Biological Processes	positive regulation of neurological	6.95E-03
00.0031040	CC Diological Flocesses	system process	

Chromosome	zFst	zHp	Gene_Start	Gene_End	Gene_Name
15	11.23	-3.84	15,758,873	15,772,560	EDNRB2
15	11.23	-3.84	15,773,733	15,779,279	POLR1D
2	10.05	-3.40	18,809,517	18,832,692	EIF3E
38	6.72	-3.44	38,080,915	38,141,883	AGTPBP1
38	6.39	-3.62	66,751,352	66,789,274	CSPG4
2	5.98	-3.73	18,858,633	18,911,400	RSPO2
38	5.74	-4.13	66,642,732	66,664,363	SNX18
6	5.59	-3.66	17,455,295	17,593,698	TTC7B
5	5.08	-3.46	32,077,378	32,166,339	PTPN13
38	4.86	-4.24	23,725,129	23,779,550	ZNF462
38	4.51	-4.21	24165,321	24,181,476	TMEM38B-B
3	4.48	-3.44	67,976,648	68,050,654	SYNE1
19	3.63	-3.24	5.397.937	5.422.453	TOM1L1

321 Supplementary Table 19. Overlapping genes identified by zFst between white and gray322 geese and zHp in white geese.

Supplementary Table 20. Frequency of the 14-bp insertion in wild, white, and gray goose 325 populations.

Breeds (plumage color)	Total	Ge	Senotype (Genotype frequency)			
	number	+/+	+/wt	wt/wt		
Anser albifrons (gray)*	6	0(0)	0(0)	6(1)		
Anser anser (gray)*	6	0(0)	0(0)	6(1)		
Anser cygnoides (gray)*	59	0(0)	0(0)	59(1)		
Anser erythropus (gray)*	6	0(0)	0(0)	6(1)		
Anser fabalis (gray)*	6	0(0)	0(0)	6(1)		
Cygnus columbianus (white)*	6	0(0)	0(0)	6(1)		
Fengcheng gray goose (gray)	51	0(0)	4(0.08)	47(0.92)		
Shitou goose (gray)	100	0(0)	0(0)	100(1)		
Wuzong goose (gray)	100	0(0)	0(0)	100(1)		
Xingguo gray goose (gray)	60	0(0)	0(0)	60(1)		
Landaise goose (gray)	50	0(0)	0(0)	50(1)		
Guangfeng white goose (white)	50	50(1)	0(0)	0(0)		
Huoyan goose (white)	60	60(1)	0(0)	0(0)		
Lianhua white goose (white)	11	11(1)	0(0)	0(0)		
Linxian white goose (white)	50	50(1)	0(0)	0(0)		
Mingbei white goose (white)	51	51(1)	0(0)	0(0)		

Note: * represents wild population; + represents 14-bp insertion and wt represents wild-type.

327 Supplementary Table 21. The variants with extremely significant allele frequencies in
328 wild, white, and gray geese.

CHR	Position	Alternative allele	Reference allele	Gene	description	Cluster	MAF	MAC	Number of alleles
						Anser	0.2349	39	166
						Cygnus	1	12	12
15	15763328	G	A	EDNRB2	intronic	Gray	0.0429	31	722
						White	1	444	444
						Anser	0.3976	66	166
15	45700004	C	C		intronio	Cygnus	0	0	12
15	15763384	G	U	EDINRB2	Intronic	Gray	0.0055	4	722
						White	1	444	444
						Anser	0.1867	31	166
15	15764237	G	C	EDNRB2	intronic	Cygnus	0	0	12
10	10704207	0	Ū	LDININDZ	introffic	Gray	0.0152	11	722
						White	1	444	444
						Anser	0.0783	13	166
15	15764499	Δ	G	EDNRB2	intronic	Cygnus	1	12	12
10	10104400	7.	Ũ	LOININDE	introlito	Gray	0.0055	4	722
						White	1	444	444
					Frameshift insertion,	Anser	0	0	166
15	15764637	GCACAGGT	G	FDNRB2	exon3:c.602_603insCA	Cygnus	0	0	12
		GAGCTCT	C C	LUNNUL	CAGGTGAGCTCT:p.S	Gray	0.0055	4	722
					201fs	White	1	444	444
						Anser	0.0301	5	166
15	15765937	С	А	EDNRB2	intronic	Cygnus	0	0	12
		C C				Gray	0.0055	4	722
						White	0.9932	441	444
						Anser	0.1325	22	166
15	15765943	G	А	EDNRB2	intronic	Cygnus	0.5	6	12
						Gray	0.0402	29	722
						White	0.9932	441	444
						Anser	0.0301	5	166
15	15765978	т	G	EDNRB2	intronic	Cygnus	0	0	12
						Gray	0.0402	29	722
						White	0.9932	441	444
						Anser	0.0422	7	166
15	15765994	т	С	EDNRB2	intronic	Cygnus	0	0	12
						Gray	0.0402	29	722
						White	0.9932	441	444
						Anser	0.3735	62	166
15	15766491	С	т	EDNRB2	intronic	Cygnus	0	0	12
						Gray	0.0152	11	722
						White	0.991	440	444
15	15766502	Т	С	EDNRB2	intronic	Anser	0.3253	54	166

						Cygnus	0	0	12
						Gray	0.0055	4	722
						White	0.9887	439	444
						Anser	0.0241	4	166
15	15767006	А	G	EDNRB2	intronic	Cygnus	0	0	12
10	10101000		U	LDIWIDL	intronio	Gray	0.0083	6	722
						White	0.964	428	444
						Anser	0.0783	13	166
15	15767117	А	G	EDNRB2	intronic	Cygnus	0	0	12
			C C	LDIWIDL		Gray	0.0055	4	722
						White	0.9865	438	444
						Anser	0.5241	87	166
15	15767847	G	Δ	EDNRR2	intronic	Cygnus	1	12	12
10	10101041	Ũ	71	EDIVINDE	introlito	Gray	0.0263	19	722
						White	0.9887	439	444
						Anser	0.0301	5	166
15	15769453	т	C			Cygnus	0	0	12
15	137 03433	I	U	LDINNDZ	011(3, 0. 0500>1	Gray	0.0139	10	722
						White	0.9617	427	444
						Anser	0.0301	5	166
15	15760504	C	т			Cygnus	0	0	12
15	13709304	C	I	LDINNDZ	0113, 0. 901120	Gray	0.0319	23	722
						White	0.9685	430	444
						Anser	0.0301	5	166
15	15760505	٨	G			Cygnus	0	0	12
15	13709303	A	9	EDINRDZ	01K3, C. 902G2A	Gray	0.0152	11	722
						White	0.9617	427	444
						Anser	0.0482	8	166
15	15760692	٨	G			Cygnus	0	0	12
15	13709003	A	9	LDINNDZ	01K3, C. 1000G2A	Gray	0.0125	9	722
						White	0.9595	426	444
						Anser	0.0241	4	166
15	15770566	т	C			Cygnus	0	0	12
15	13770300	I	C	EDINRDZ	011(3, 0. 19030>1	Gray	0.0152	11	722
						White	0.9842	437	444
						Anser	0.4398	73	166
15	15770990	G	٨			Cygnus	1	12	12
15	15770660	9	A	EDINRDZ	01K3, C. 2211A>G	Gray	0.0457	33	722
						White	0.9887	439	444
						Anser	0.0241	4	166
15	16775055	٨	C		intronio	Cygnus	0	0	12
15	13//3255	A	G	PULKID	Intronic	Gray	0.0485	35	722
						White	0.9865	438	444
45	16777650	т	0		intronia	Anser	0.0181	3	166
15	10///008		G	FULRID	Intronic	Cygnus	0	0	12

						Gray	0.0471	34	722
						White	0.982	436	444
						Anser	0.3795	63	166
45	45770500	-	0		intern in	Cygnus	1	12	12
15	15778568	I	C	POLR1D	Intronic	Gray	0.0471	34	722
						White	0.9707	431	444
						Anser	0.3735	62	166
45	45770575	٨	0		internation	Cygnus	1	12	12
15	15//85/5	А	G	POLRID	Intronic	Gray	0.0457	33	722
						White	0.9685	430	444
						Anser	0.3133	52	166
15	45770500	т	C		intronio	Cygnus	0	0	12
15	15//6592	I	C	POLRID	intronic	Gray	0.0499	36	722
						White	0.9595	426	444
						Anser	0.2289	38	166
15	45770050	0	۸		intronio	Cygnus	0	0	12
15	10//0909	G	A	POLRID	intronic	Gray	0.0499	36	722
						White	0.9707	431	444
						Anser	0.1747	29	166
15	45770004	C	CCAGCG		intronio	Cygnus	0	0	12
15	12//0991	C	CTGCTA	PULRID	Intronic	Gray	0.0499	36	722
						White	0.9707	431	444

Note: MAF, minor allele frequency; MAC, minor allele count in cluster; Anser, ancestral populations and
 closely related species.

331 Supplementary Table 22. Overlapping genes identified by zFst between XGG and other332 geese and zHp in XGG population.

Chr	zFst	zHp	Gene_start	Gene_end	Gene
1	4.2423609	-3.97783751	164365239	164387414	SLC5A8
2	5.1030351	-3.16406827	99128590	99194125	PPP1R17
6	5.3002111	-4.00008866	61246543	61396443	PLEKHA7
9	3.6587609	-5.16182216	17309730	17330843	Hic_asm_9.361
15	4.4666206	-4.32233659	16795527	16819262	CHIC1
15	3.7679185	-4.23615863	18373952	18475699	AMMECR1
15	8.361944	-3.95922	5804230	5991030	DIAPH2
15	4.0971025	-3.89774323	18486092	18530364	TMEM164
15	5.0179989	-3.15456429	16795527	16819262	CHIC1
15	9.3826581	-3.1264262	15758873	15772560	EDNRB
16	3.9087894	-3.12637206	11720364	11739084	LUC7L
26	4.1295195	-4.99522952	4635431	4640908	Hic_asm_26.322
28	4.1747604	-3.88297635	5633672	5674798	MYO1F
38	6.6557467	-5.05047353	60381450	60398646	AGXT2
38	4.8800648	-4.96661217	59045958	59138210	CCBE1
38	4.0933975	-4.91338601	60410068	60430582	PRLR
38	7.1068973	-4.382922	38833035	38854797	FBP2
38	6.1352576	-4.22897146	38817894	38823677	CTSL
38	5.4233538	-4.04068453	60573405	60625640	SPEF2
38	4.5662638	-3.99617173	62224295	62249090	DAB2
38	6.9723499	-3.17589598	9001616	9192436	EDIL3

334 Supplementary Figures

336 Supplementary Figure 1. The genome assembling flowchart of XGG in Novogene337 Company.

Supplementary Figure 2. The Hi-C interaction contact heatmap of goose pseudo-

341 chromosome genome assembly.

343
 344 Supplementary Figure 3. The genome annotation pipeline of XGG genome in Novogene
 345 Company.

Functions Annotation

351 Supplementary Figure 4. Venn diagram of gene function annotation results of different352 protein databases.

Supplementary Figure 5. The collinearity results between XGG and Pekin duck. The

orange and green blocks represent the chromosomes of XGG and Pekin duck,

respectively.

Supplementary Figure 6. The number of shared and unique gene families among four domestic geese. SCW, Sichuan white goose; XGG, Xingguo gray goose; TFG, Tianfu goose;

360 ZDW, Zhedong white goose.

Supplementary Figure 7. Neighbor-joining tree of 845 geese. XGG, Xingguo gray goose;
 FCG, Fengcheng gray goose; GFW, Guangfeng white goose; LXW, Lingxian white goose;
 LHW, Lianhua white goose; ACy, Swan goose; AAn, Greylag goose; LDG, Landaise goose.

Supplementary Figure 8. Population structure analysis with the maximum likelihood. (a) Cross-validation error from K = 2 to K = 10 in ADMIXTURE analysis. (b) Population-structure plots with $K = 2 \sim 10$.

Supplementary Figure 9. Linkage disequilibrium (LD) analysis for six geese breeds and two wild species. LD values were estimated using whole-genome sequence data of all individuals for each population. The y-axis indicates the physical distance, the ordinate indicates the predicted $LD(r^2)$ value, and the horizontal dashed line indicates the threshold line ($r^2 = 0.3$).

378

Supplementary Figure 10. The proportion of F_{ROH} and Ho for six geese breeds and two wild species. The box plot shows the F_{ROH} values of each population, and the broken line shows the Ho.

385 Supplementary Figure 11. The genetic distance (DST) of each population.386

Supplementary Figure 12. The inbreeding coefficient (F) of each population.

Supplementary Figure 13. Haplotype network and the difference between 32 haplotypes of 285 variants in *EDNRB2* and *POLR1D* locus. (a) The same haplotype network diagram as Fig. 4d with haplotype ID and the corresponding haplotype differences. (b) The number represents the difference between every two haplotypes, the black box represents the haplotype of white plumage geese, and the cyan box indicates the lowest haplotype difference between gray and white geese.

400 401

393

402

⁴⁰⁴ **Supplementary Figure 14.** Epidermal cysts occur on the feet of XGG population.

407 Supplementary Figure 15. Haplotype analysis of *KIT* gene. White represents the Chinese 408 white geese, and Gray represents Chinese gray geese. The black box represents the 409 haplotypes of the white geese population, and the beige and orange colors represent the 410 high and low frequency alleles in the white geese, respectively.

411 Supplementary References

- 412 1. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. *Nat. Methods*413 **17**, 155-158 (2020).
- 414 2. Adey, A. et al. In vitro, long-range sequence information for de novo genome 415 assembly via transposase contiguity. *Genome Res.* **24**, 2041-2049 (2014).
- 4163.Shelton, J.M. et al. Tools and pipelines for BioNano data: molecule assembly417pipeline and FASTA super scaffolding tool. *BMC Genomics* 16, 734 (2015).
- 418 4. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler 419 transform. *Bioinformatics* **25**, 1754-1760 (2009).
- 420 5. Walker, B.J. et al. Pilon: an integrated tool for comprehensive microbial variant 421 detection and genome assembly improvement. *PLoS One* **9**, e112963 (2014).
- 422 6. Li, H. et al. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078-2079 (2009).
- 424 7. Burton, J.N. et al. Chromosome-scale scaffolding of de novo genome assemblies
 425 based on chromatin interactions. *Nat. Biotechnol.* **31**, 1119-1125 (2013).
- 4268.Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core427genes in eukaryotic genomes. *Bioinformatics* 23, 1061-1067 (2007).
- Manni, M., Berkeley, M.R., Seppey, M., Simao, F.A. & Zdobnov, E.M. BUSCO
 Update: Novel and Streamlined Workflows along with Broader and Deeper
 Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. *Mol. Biol. Evol.* 38, 4647-4654 (2021).
- 432 10. Camacho, C. et al. BLAST+: architecture and applications. *BMC Bioinformatics* 10,
 433 421 (2009).
- 434 11. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. *Genome Res.* 14, 988-995 (2004).
- 436 12. Levy Karin, E., Mirdita, M. & Soding, J. MetaEuk-sensitive, high-throughput gene
 437 discovery, and annotation for large-scale eukaryotic metagenomics. *Microbiome* 8,
 438 48 (2020).
- 439 13. Meng, X. & Ji, Y. Modern Computational Techniques for the HMMER Sequence
 440 Analysis. *ISRN. Bioinform.* 2013, 252183 (2013).
- 441 14. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic*442 *Acids Res.* 27, 573-580 (1999).
- 443 15. Bao, W., Kojima, K.K. & Kohany, O. Repbase Update, a database of repetitive
 444 elements in eukaryotic genomes. *Mob. DNA* 6, 11 (2015).
- Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements
 in genomic sequences. *Curr. Protoc. Bioinformatics* Chapter 4, Unit 4.10 (2009).
- 44717.Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length448LTR retrotransposons. *Nucleic Acids Res.* **35**, W265-268 (2007).
- Price, A.L., Jones, N.C. & Pevzner, P.A. De novo identification of repeat families in
 large genomes. *Bioinformatics* **21 Suppl 1**, i351-358 (2005).
- 451 19. Bao, Z. & Eddy, S.R. Automated de novo identification of repeat sequence families
 452 in sequenced genomes. *Genome Res.* 12, 1269-1276 (2002).
- 453 20. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST.

- 454 *Bioinformatics* **26**, 2460-2461 (2010).
- 455 21. Birney, E. & Durbin, R. Using GeneWise in the Drosophila annotation experiment.
 456 *Genome Res.* **10**, 547-548 (2000).
- 457 22. Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: a web server
 458 for gene finding in eukaryotes. *Nucleic Acids Res.* 32, W309-W312 (2004).
- 459 23. Parra, G., Blanco, E. & Guigo, R. GenelD in Drosophila. *Genome Res.* 10, 511-515
 460 (2000).
- 461 24. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic
 462 DNA. *J. Mol. Biol.* 268, 78-94 (1997).
- 46325.Majoros, W.H., Pertea, M. & Salzberg, S.L. TigrScan and GlimmerHMM: two open464source ab initio eukaryotic gene-finders. *Bioinformatics* **20**, 2878-2879 (2004).
- 465 26. Korf, I. Gene finding in novel genomes. *BMC Bioinformatics* **5**, 59 (2004).
- 466 27. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with
 467 RNA-Seq. *Bioinformatics* 25, 1105-1111 (2009).
- 468 28. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals
 469 unannotated transcripts and isoform switching during cell differentiation. *Nat.*470 *Biotechnol.* 28, 511-515 (2010).
- 471 29. Haas, B.J. et al. Automated eukaryotic gene structure annotation using
 472 EVidenceModeler and the Program to Assemble Spliced Alignments. *Genome Biol.*473 9, R7 (2008).
- 474 30. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein
 475 database search programs. *Nucleic Acids Res.* 25, 3389-3402 (1997).
- 476 31. Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence data bank and its
 477 supplement TrEMBL in 1999. *Nucleic Acids Res.* 27, 49-54 (1999).
- 478 32. O'Leary, N.A. et al. Reference sequence (RefSeq) database at NCBI: current
 479 status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 44,
 480 D733-D745 (2016).
- 481 33. Finn, R.D. et al. The Pfam protein families database. *Nucleic Acids Res.* **38**, D211-482 D222 (2010).
- 483 34. Du, J. et al. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based
 484 pathway analysis using a path analysis model. *Mol. Biosyst.* **10**, 2441-2447 (2014).
- 485 35. Apweiler, R. et al. The InterPro database, an integrated documentation resource for
 486 protein families, domains and functional sites. *Nucleic Acids Res.* 29, 37-40 (2001).
- 487 36. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene
 488 Ontology Consortium. *Nat. Genet.* 25, 25-29 (2000).
- 489 37. Lowe, T.M. & Eddy, S.R. tRNAscan-SE: a program for improved detection of
 490 transfer RNA genes in genomic sequence. *Nucleic Acids Res.* 25, 955-964 (1997).
- 491 38. Nawrocki, E.P., Kolbe, D.L. & Eddy, S.R. Infernal 1.0: inference of RNA alignments.
 492 *Bioinformatics* 25, 1335-1337 (2009).
- 493 39. Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes.
 494 *Nucleic Acids Res.* 33, D121-D124 (2005).
- 495 40. Li, J. et al. A new duck genome reveals conserved and convergently evolved
 496 chromosome architectures of birds and mammals. *Gigascience* 10, giaa142 (2021).
 497 41. Chen, C. et al. TBtools: An Integrative Toolkit Developed for Interactive Analyses of
- 497 41. Cheff, C. et al. TBloois. An integrative Tookit Developed for interactive Analyses of 498 Big Biological Data. *Mol. Plant.* **13**, 1194-1202 (2020).

- 499 42. Kendig, K.I. et al. Sentieon DNASeq Variant Calling Workflow Demonstrates Strong
 500 Computational Performance and Accuracy. *Front. Genet.* **10**, 736 (2019).
- 50143.McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for502analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303503(2010).
- 504 44. Danecek, P. & McCarthy, S.A. BCFtools/csq: haplotype-aware variant consequences. *Bioinformatics* **33**, 2037-2039 (2017).
- 50645.Chang, C.C. et al. Second-generation PLINK: rising to the challenge of larger and507richer datasets. *Gigascience* **4**, 7 (2015).
- 50846.Davies, R.W., Flint, J., Myers, S. & Mott, R. Rapid genotype imputation from509sequence without reference panels. *Nat. Genet.* **48**, 965-969 (2016).
- 510 47. Li, Y. et al. Pacific Biosciences assembly with Hi-C mapping generates an improved, 511 chromosome-level goose genome. *Gigascience* **9**, 1-8 (2020).
- 512 48. Lu, L. et al. The goose genome sequence leads to insights into the evolution of 513 waterfowl and susceptibility to fatty liver. *Genome Biol.* **16**, 89 (2015).
- 514 49. Gao, G. et al. Genome and metagenome analyses reveal adaptive evolution of the 515 host and interaction with the gut microbiota in the goose. *Sci. Rep.* **6**, 32961 (2016).
- 51650.Wang, W. et al. First de novo whole genome sequencing and assembly of the bar-517headed goose. *PeerJ* 8, e8914 (2020).
- 518 51. Pujolar, J.M., Dalen, L., Olsen, R.A., Hansen, M.M. & Madsen, J. First de novo
 519 whole genome sequencing and assembly of the pink-footed goose. *Genomics* 110, 75-79 (2018).
- 521 52. Hillier, L.W. et al. Sequence and comparative analysis of the chicken genome 522 provide unique perspectives on vertebrate evolution. *Nature* **432**, 695-716 (2004).
- 523 53. Dalloul, R.A. et al. Multi-platform next-generation sequencing of the domestic turkey
 524 (Meleagris gallopavo): genome assembly and analysis. *PLoS Biol.* 8, e1000475
 525 (2010).
- 526 54. Zhang, G.J. et al. Comparative genomics reveals insights into avian genome 527 evolution and adaptation. *Science* **346**, 1311-1320 (2014).
- 528 55. Colquitt, B.M., Mets, D.G. & Brainard, M.S. Draft genome assembly of the 529 Bengalese finch, Lonchura striata domestica, a model for motor skill variability and 530 learning. *Gigascience* **7**, 1-6 (2018).
- 531 56. Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. *Nature* **592**, 737-746 (2021).
- 57. Penalba, J.V. et al. Genome of an iconic Australian bird: High-quality assembly and
 linkage map of the superb fairy-wren (Malurus cyaneus). *Mol. Ecol. Resour.* 20,
 560-578 (2020).
- 53658.Leskovec, J. & Sosic, R. SNAP: A General Purpose Network Analysis and Graph537Mining Library. ACM Trans. Intell. Syst. Technol. 8, 1 (2016).
- 538 59. Ghosh, S. & Chan, C.K. Analysis of RNA-Seq Data Using TopHat and Cufflinks. 539 *Methods Mol. Biol.* **1374**, 339-361 (2016).
- 540 60. Wu, Y. et al. Population genomic data reveal genes related to important traits of 541 quail. *Gigascience* **7**, giy049 (2018).
- 542 61. Shen, Q.K. et al. Genomic Analyses of Unveil Helmeted Guinea Fowl (Numida
- 543 meleagris) Domestication in West Africa. *Genome Biol. Evol.* **13**, evab090 (2021).

- 544 62. Laine, V.N. et al. Evolutionary signals of selection on cognition from the great tit 545 genome and methylome. *Nature Communications* **7**, 10474 (2016).
- 546 63. Zhu, F. et al. Three chromosome-level duck genome assemblies provide insights
 547 into genomic variation during domestication. *Nature Communications* 12, 5932
 548 (2021).
- 549 64. Armstrong, J. et al. Progressive Cactus is a multiple-genome aligner for the 550 thousand-genome era. *Nature* **587**, 246-251 (2020).
- 551