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I. ADDITIONAL RESULTS

1) PlanCT to CBCT deformation: Example registrations
from planning CT to CBCT using PACS-aware method are
shown in Fig. 1. The registration in the recurrent steps are
also shown. The top two rows correspond to one example and
the bottom two rows correspond to a different example. The
warped pCT images through the recurrent steps are also shown
(row 2 and row 4 Fig. 1).
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Fig. 1. Example registrations with progressive deformations for
two representative cases. The tumor location is indicated with a
red arrow.

2) Simple diagram of CDS, RNN and (C)LSTM: Fig. 2 shows
the comparison between classical dynamic system(CDS), basic
RNN and (convolutional) LSTM.

3) Esophagus segmentation on weekly cone beams: Fig .3
shows esophagus segmentation from weekly cone beams.

4) Segmentation accuracy versus recurrent steps: Fig. 4
shows the segmentation accuracy expressed using Dice sim-
ilarity coefficient (DSC) with increasing number of recurrent
steps. The computing times for those steps are also shown.

Fig. 2. Simple diagram of simple dynamic system, basic recur-
rent network and (C)LSTM.

pCT CBCT week #1    CBCT week #2   CBCT week #3     CBCT week #4   CBCT week #5   CBCT week #6

19.9 cc

19.0 cc

18.1 cc

18.7 cc

18.6 cc

18.0 cc

16.9 cc

18.5 cc

16.4 cc

17.0 cc

16.0 cc

17.4 cc

18.3 cc

Fig. 3. Esophagus segmentation (red) and manual contour
(yellow) longitudinally visualization from PlanCT (blue). The
esophagus volume are shown in the figure. We only show the
esophagus ROI region for better visualization.

Fig. 4. Segmentation accuracy and the computation times with increas-
ing number of recurrent steps.
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5) Fusion strategies studied for combining the anatomic con-
text and shape prior with CBCT for segmentation: Fig. 5 shows
the two different strategies used for computing the CBCT
segmentation, namely the early fusion (Fig. 5(a)) and interme-
diate fusion(Fig. 5(b)). The early fusion method combines the
anatomic context (pCT) and shape prior (pCT delineation) af-
ter progressive warping using the recurrent registration into the
recurrent units placed in the encoder of the CBCT segmentor.
The intermediate fusion combines the encoded features of the
final warped pCT and its delineation with the CBCT encoded
features in the decoder of the CBCT segmentor.
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Fig. 5. Early vs intermediate fusion for CBCT segmentation.

6) Descending aorta contour during registration: Fig. 6
shows the descending aorta contour from pCT (a) deformed
to (b) and overlaid on the CBCT image(c).

Fig. 6. The descending aorta contour deformation from pCT to
CBCT.

7) Ablation experiments results: Fig. 7 shows the segmenta-
tions resulting from the various ablation experimental settings
on a representative case in the testing set.
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Fig. 7. Computed segmentations using models trained under
the ablation experiments setting. (I) w/o shape context prior,
(II) w/o the anatomic context, (III) w/o recurrent encoder of the
segmentation network, (IV) w/o CLSTM is in segmentation s and
(V) w/o OHEM

8) Longitudinal esophagus analysis: Fig. 8 shows longitudi-
nal DSC and HD95 accuracy for segmenting esophagus. The
percent slope is also shown.

9) Descending aorta alignment: Fig. 6 shows the alignment
of descending aorta in a slice containing the tumor (red arrow)
from pCT (a) to CBCT(c).
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Fig. 8. Esophagus segmentation accuracy computed at different
weeks of treatment. Percent slope of accuracy changes is also
shown.

II. THE DETAILS OF NETWORK STRUCTURES

The details of each network structure is shown. The regis-
tration net g is shown in Table 2. The segmentation network s
is shown in Table 3. The CLSTM in our implementation are
indicated in blue font.

TABLE I
THE NETWORK ARCHITECTURE USED FOR REGISTRATION. WE

USE THE FOLLOWING ABBREVIATION FOR EASE OF
PRESENTATION: N=NUMBER OF FEATURES; K=KERNEL SIZE;

S=STRIDE SIZE; CLSTM=CONVOLUTIONAL LONG
SHORT-TERM MEMORY; VECINC=DIFFEOMORPHIC

INTERGRATION LAYER.

Layers Registration net G Concatenation
1 CONV-(N16,K3,S2) LeakyReLu 1
2 CLSTM-(N16,K3,S2) LeakyReLu 2
3 CLSTM-(N16,K3,S2) LeakyReLu 3
4 CLSTM-(N16,K3,S2) LeakyReLu 4
5 CONV-(N16,K3,S1) -
6 CONV-(N32,K3,S1) LeakyReLu 4
7 CONV-(N32,K3,S1) LeakyReLu 3
8 CONV-(N32,K3,S1) LeakyReLu 2
9 CONV-(N32,K3,S1) LeakyReLu 1
10 CONV-(N16,K3,S1) LeakyReLu -
11 CONV-(N3,K3,S1) LeakyReLu -
12 VecInC -
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TABLE II
THE UNET NETWORK ARCHITECTURE USED FOR

SEGMENTATION S. WE USE THE FOLLOWING ABBREVIATION
FOR EASE OF PRESENTATION: N=NUMBER OF FEATURES;

K=KERNEL SIZE; S=STRIDE SIZE;CLSTM=CONVOLUTIONAL
LONG SHORT-TERM MEMORY;

Layers Unet Concatenation
1 CONV-(N32,K3,S1), ReLu -
2 CLSTM-(N32,K3,S1), ReLu 1
3 Max-Pooling (S2) -
4 CONV-(N64,K3,S1), ReLu -
5 CLSTM-(N64,K3,S1), ReLu 2
6 Max-Pooling (S2) -
7 CONV-(N128,K3,S1), ReLu -
8 CLSTM-(N128,K3,S1), ReLu 3
9 Max-Pooling (S2) -
10 CONV-(N256,K3,S1), ReLu -
11 CLSTM-(N256,K3,S1), ReLu 4
12 Max-Pooling (S2) -
13 CONV-(N512,K3,S1), ReLu -
14 CLSTM-(N512,K3,S1), ReLu -
15 UP-Pooling (S2) 4
16 CONV-(256,K3,S1), ReLu -
17 CONV-(N256,K3,S1), ReLu -
18 UP-Pooling (S2) 3
19 CONV-(N128,K3,S1), ReLu -
20 CONV-(N128,K3,S1), ReLu -
21 UP-Pooling (S2) 2
22 CONV-(N64,K3,S1), ReLu -
23 CONV-(N64,K3,S1), ReLu -
24 UP-Pooling (S2) 1
25 CONV-(N32,K3,S1), ReLu -
26 CONV-(N2,K1,S1), Softmax -


